首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The round stingray, Urobatis halleri, is a viviparous elasmobranch that inhabits inshore, benthic habitats ranging from the western U.S.A. to Panama. The population genetic structure of this species was inferred with seven polymorphic microsatellite loci in samples collected at three sites in coastal southern California, one near Santa Catalina Island, California and one in the eastern Gulf of California. Urobatis halleri is relatively common, but little is known of its movement patterns or population structure. Small FST values (?0·0017 to 0·0005) suggested little structure among coastal populations of southern and Baja California. The population sampled at Santa Catalina Island, which is separated by a deep‐water channel from the coastal sites, however, was significantly divergent (large FST, 0·0251) from the other populations, suggesting low connectivity with coastal populations. The Santa Catalina Island population also had the lowest allele richness and lowest average heterozygosity, suggesting recent population bottlenecks in size.  相似文献   

2.
Larval dispersal may have an important effect on genetic structure of benthic fishes. To examine the population genetic structure of spottedtail goby Synechogobius ommaturus, a 478 base pair (bp) fragment of the hypervariable portion of the mtDNA control region was sequenced and used to interpret life‐history characteristics and larval dispersal strategy. Individuals (n = 186) from 10 locations on the coasts of China and Korea were analysed and 44 haplotypes were obtained. The levels of haplotype and nucleotide diversity were higher in East China Sea populations than in other populations. Both the phylogenetic tree and the minimum spanning tree showed that no significant genealogical structures corresponding to sampling locations existed. AMOVA and pair‐wise FST revealed significant genetic differentiation between populations from Korea and China. A significant isolation by distance pattern was observed in this species (r = 0·53, P < 0·001). Both mismatch distribution analysis and neutrality tests showed S. ommaturus to have experienced a recent population expansion. These results suggest that the Pleistocene ice ages had a major effect on the phylogeographic pattern of S. ommaturus, that larvae might avoid offshore dispersal and that dispersal of larvae may maintain a migration–drift equilibrium.  相似文献   

3.
为探索褐家鼠Rattus norvegicus地理种群的遗传结构及其年度变化特点,本研究以广东省湛江市的褐家鼠指名亚种和黑龙江省哈尔滨市的褐家鼠东北亚种为主要研究对象,结合我国及世界其他褐家鼠种群的D-loop序列分析这2个褐家鼠地理种群间D-loop序列的遗传分化情况及系统进化关系,重点分析2008—2015年褐家鼠湛江种群和哈尔滨种群D-loop单倍型的年度频率变化特点。结果表明,褐家鼠湛江种群和哈尔滨种群共有32种不同的单倍型,其中有11种单倍型是2个种群共有的,有4种单倍型仅在湛江种群中出现,有17种单倍型仅在哈尔滨种群中出现。褐家鼠湛江种群D-loop区的核苷酸多态性为0.005,有27个变异位点,单倍型多态性为0.695,褐家鼠哈尔滨种群D-loop区的核苷酸多态性比湛江种群略高,为0.008,有35个变异位点,单倍型多态性为 0.793。褐家鼠湛江种群和哈尔滨种群没有经历过暴发性的扩增。褐家鼠湛江、哈尔滨和湖北3个地理种群的D-loop序列之间发生了明显的遗传分化,其中湛江种群和哈尔滨种群之间的分化程度最高,遗传分化系数Fst为0.245。褐家鼠湛江种群和哈尔滨种群的单倍型数目和主单倍型频率都发生明显波动,推测主要原因可能是由于灭鼠剂的大量使用或其他灭鼠活动导致种群出现瓶颈或更替的现象。  相似文献   

4.
In this study, we used mitochondrial control sequences and microsatellite data from 231 Common Moorhen Gallinula chloropus individuals sampled from 19 sites in China to analyse their genetic structure and evolutionary history. High genetic diversity was found for all populations, although microsatellite analysis showed that the genetic diversity in non‐migratory populations was significantly higher than in migratory populations. High gene flow occurred between neighbouring populations, although long‐distance gene flow also occurred. The Huazhong population was the single greatest genetic source for other populations. High gene flow probably led to the shallow genetic structure that we observed. Demographic expansion was found in migratory populations, non‐migratory populations and with all individuals combined. The expansion time for all populations combined was estimated to be 221 000 years ago. The Common Moorhen population grew rapidly during the interglacial before the last glacial maximum (LGM), then remained generally stable from the LGM to the present.  相似文献   

5.
The genetic diversity in the wild and semi-domestic populations of Daba ecorace of Antheraea mylitta was studied to ascertain the distribution of variability within and among populations of semi-domestic bivoltine (DB), trivoltine (DT) and nature grown wild populations (DN) with inter-simple sequence repeat (ISSR) markers. A total of 138 markers were produced among 56 individuals of the three populations, of which 98% were polymorphic. For the individual populations, the percentage polymorphism was 58.69, 52.9 and 77.54 for DB, DT and DN, respectively. Average number of observed (1.791 ± 0.408) and effective alleles (1.389 ± 0.348) was also high in the wild populations in comparison to the bivoltine and trivoltine semi-domestic populations. Genetic diversity (Ht) in DB, DT and DN was 0.180 ± 0.033, 0.153 ± 0.032 and 0.235 ± 0.033, respectively and within-population genetic diversity (Hs) ranged from 0.166 to 0.259 with a mean of 0.189. Mean gene differentiation (GST) was found to be 0.25. Shanon’s diversity index was 0.278, 0.237 and 0.361 for DB, DT and DN and overall it was 0.391. Gene flow (Nm) among the populations was 1.509. The dendrogram produced by UPGMA with Dice’s genetic distance matrices resulted in the formation of three major clusters separating the three populations. Considerable intra- and inter-population variability is found in all three populations. The population structure analysis further suggests that the semi-domestic populations of Daba ecorace are at the threshold of differentiating themselves. The high genetic variability present within wild Daba population of A. mylitta is of much importance for conservation as well as utilization in systematic breeding program.  相似文献   

6.
The population structure of olive flounder Paralichthys olivaceus was estimated using nine polymorphic microsatellite (MS) loci in 459 individuals collected from eight populations, including five wild and three hatchery populations in Korea. Genetic variation in hatchery (mean number of alleles per locus, A = 10·2–12·1; allelic richness, AR = 9·3–10·1; observed heterozygosity, HO = 0·766–0·805) and wild (mean number of alleles per locus, A = 11·8–19·6; allelic richness, AR = 10·9–16·1; observed heterozygosity, HO = 0·820–0·888) samples did not differ significantly, suggesting a sufficient level of genetic variation in these well‐managed hatchery populations, which have not lost a substantial amount of genetic diversity. Neighbour‐joining tree and principal component analyses showed that genetic separation between eastern and pooled western and southern wild populations in Korea was probably influenced by restricted gene flow between regional populations due to the barrier effects of sea currents. The pooled western and southern populations are genetically close, perhaps because larval dispersal may depend on warm currents. One wild population (sample from Wando) was genetically divergent from the main distribution, but it was genetically close to hatchery populations, indicating that the genetic composition of the studied populations may be affected by hydrographic conditions and the release of fish stocks. The estimated genetic population structure and potential applications of MS markers may aid in the proper management of P. olivaceus populations.  相似文献   

7.
Two hundred and eighty‐seven longnose sucker Catostomus catostomus were collected from 14 lakes in Labrador, 52 from three lakes in Ontario, 43 from two lakes in British Columbia and 32 from a lake in Yukon; a total of 414 in all. The resulting 34 haplotypes (20 in Labrador) contained moderate haplotypic diversity (h = 0·657) and relatively low nucleotide diversity (π = 3·730 × 10?3. Mean ?ST (0·453, P < 0·05) over all populations revealed distinct genetic structuring among C. catostomus populations across Canada, based on province, which was validated by the analysis and spatial analysis of molecular variance (c. 80% variation between provinces). These results probably reflect the historical imprint of recolonization from different refugia and possibly indicate limited ongoing gene flow within provinces. A haplotype network revealed one major and two minor clades within Labrador that were assigned to the Atlantic, Beringian and Mississippian refugia, respectively, with tests of neutrality and mismatch distribution indicative of a recent population expansion in Labrador, dated between c. 3500 and 8300 years ago.  相似文献   

8.
Six polymorphic microsatellites (eight loci) were used to study the genetic diversity and population structure of common carp from Dongting Lake (DTC), Poyang Lake (PYC), and the Yangtze River (YZC) in China. The gene diversity was high among populations with values close to 1. The number of alleles per locus ranged from 2 to 11, and the average number of alleles among 3 populations ranged from 6.5 to 7.9. The mean observed (H O) and expected (H E) heterozygosity ranged from 0.4888 to 0.5162 and from 0.7679 to 0.7708, respectively. Significant deviations from Hardy–Weinberg Equilibrium expectation were found at majority of the loci and in all three populations in which heterozygote deficits were apparent. The analysis of molecular variance (AMOVA) indicated that the percent of variance among populations and within populations were 3.03 and 96.97, respectively. The Fst values between populations indicated that there were significant genetic differentiations for the common carp populations from the Yangtze River and two largest Chinese freshwater lakes. The factors that may result in genetic divergence and significant reduction of the observed heterozygosity were discussed.  相似文献   

9.
Genetic variability and differences in wild striped snakehead Channa striata from Malaysia were analysed by genotyping nine novel nuclear microsatellite loci. Analysis revealed moderate‐to‐high genetic diversity in most of the populations, indicative of large effective population sizes. The highly diversified populations are admixed populations and, therefore, can be recommended as potential candidates for selective breeding and conservation since they each contain most of the alleles found in their particular region. Three homogenous groups of the wild populations were identified, apparently separated by effective barriers, in accordance with contemporary drainage patterns. The highest population pairwise FST found between members of the same group reflects the ancient population connectivity; yet prolonged geographical isolation resulted in adaptation of alleles to local contemporary environmental change. A significant relationship between genetic distance and geographical isolation was observed (r = 0·644, P < 0·01). Anthropogenic perturbations indicated apparent genetic proximity between distant populations.  相似文献   

10.
川金丝猴(Rhinopithecus roxellana)是我国特有珍稀濒危物种,了解其种群遗传结构和关键影响因素,对该物种的保护具有重要意义。以我国分布最东端的湖北神农架川金丝猴种群为研究对象,基于非损伤性DNA技术和微卫星DNA遗传标记等分子生物学方法及景观遗传参数,探讨了神农架川金丝猴的遗传多样性和遗传结构,旨在为川金丝猴的研究及川金丝猴种群的可持续发展提供理论基础。利用12个多态性微卫星位点,在455份川金丝猴粪便样品中,共检测到62个微卫星等位基因;共鉴定出316个不同川金丝猴个体;种群的平均期望杂合度、平均观察杂合度和多态性信息含量分别为0.626、0.559和0.650;群体间的Nei's遗传距离为0.046—0.139,分化系数为0.015—0.046。结果表明与其他地区川金丝猴种群相比,神农架川金丝猴种群具有较低的遗传多样性水平,种群内部存在遗传分化趋势;结合景观参数分析表明地理距离不是影响神农架川金丝猴群体间遗传距离的主要因素,而生境中的灌丛和草地以及人类活动干扰可能是影响川金丝猴遗传交流的主要因素。  相似文献   

11.
通过线粒体控制区序列的分析,研究采自中国南海及东海5个群体102尾细鳞鯻的遗传多样性。发现在962 bp序列中有205个变异位点,其中135个为简约信息位点,共定义102个单倍型。中国近海细鳞鯻总体呈现出较高的遗传多样性特征(Hd=1.000,Pi=0.022),其中博鳌最高(Hd=1.000,Pi=0.028),平潭最低(Hd=1.000,Pi=0.014)。不同地理群体间无明显分化,基因交流频繁(Fst=-0.014—0.041,P0.05);中性检验均为显著负值,推测在16.9万年—5.06万年前,即中-晚更新世出现种群扩张。系统邻接树和单倍型网络图均出现3个显著分化的谱系(谱系间Fst=0.508—0.698,P0.001;净遗传距离Da=0.024—0.031),且各谱系中均有不同地理来源的群体。3个谱系间分歧时间大约在1.07百万年—0.24百万年前,推测可能是更新世冰期边缘海的出现导致群体隔离而产生分化。谱系A(Lineage A)包含85.3%的个体,其总体遗传多样性较高(Hd=1.000,Pi=0.012),其中平潭最高(Hd=1.000,Pi=0.014),合浦最低(Hd=1.000,Pi=0.010);群体间Fst在-0.021—0.068之间,P0.005;AMOVA分析显示只有1.97%的变异来自于种群间,表明群体间也无明显分化;中性检验均为显著负值,推测在25.4万年—7.6万年前出现种群扩张。中国近海细鳞鯻主要受到中-晚更新世海侵和海退的影响而出现种群扩张使得谱系间发生二次接触,最终形成具有显著谱系结构但无地理分化的情况。  相似文献   

12.
不同种源马尾松ISSR遗传结构及影响因素分析   总被引:1,自引:0,他引:1  
杜明凤  丁贵杰 《广西植物》2016,36(9):1068-1075
应用ISSR分子标记技术,对来自广西、贵州3个种源的马尾松开展遗传多样性、遗传结构及遗传距离等研究。结果表明:从100条引物中筛选出12条引物,共扩增出92个条带,86条具有多态性。 POPGENE分析显示:马尾松群体水平上的Nei’ s基因多样性指数的变化范围为0.1824~0.2065,Shannon遗传多样性指数的变化范围为0.2818~0.3178,3个群体的多态性水平差异不大;物种水平上的多态性百分率为93.48%, Nei’ s基因多样性指数为0.2842,Shannon信息指数为0.4381;表明马尾松在物种水平上具有较高水平的遗传多样性。遗传结构分析显示:马尾松的基因分化系数( Gst)为0.3153,表明遗传变异主要来源于群体内;基因流Nm为1.0853,表明不同群体间存在一定的基因流动。 AMOVA分析显示:马尾松的遗传分化指数( Fst)为0.246( P=0.001),表明群体间已出现明显的遗传分化。 UPGMA聚类和Mantel检测结果显示:每个群体内的个体均能很好地首先聚集为一个分支,群体间的遗传距离与地理距离之间存在显著相关性( r=0.972, P=0.001)。这说明马尾松在裸子植物界中具有较高水平的遗传多样性,遗传变异主要分布于群体内,群体间已出现了明显的遗传分化,这种分化并非由遗传漂变引起,可能与地理生境的差异有关。  相似文献   

13.
Pueraria lobata (kudzu), a clonal, leguminous vine, is invading the southeastern United States at a rate of 50 000 ha per year. Genetic variability and clonal diversity were measured in 20 southeastern U.S. populations using 14 allozyme loci. Within its U.S. range, 92.9% of the loci were polymorphic and overall genetic diversity was 0.290. Such high levels of genetic diversity are consistent with its history of multiple introductions over an extended period of time. The average proportions of polymorphic loci and genetic diversity within populations were 55.7% (range = 28.6–85.7%) and 0.213 (range = 0.114–0.317), respectively. The proportion of total genetic diversity found among populations was similar to species with equivalent life history characters (GST = 0.199). No regional patterns of variation were seen. The number of putative genotypes in each population ranged from 2 to 26. Mean genotypic diversity was 0.694, ranging from 0.223 to 0.955. Such high levels of genotypic diversity indicate that local sites are often colonized by several propagules (most likely seeds) and/or that sexual reproduction occurs within populations after establishment. An excess of heterozygosity was observed in populations with few unique genets, implying that selection for highly heterozygous individuals may occur in populations of P. lobata.  相似文献   

14.
Aim This paper has three aims: (1) to reconstruct the colonization history of two peripheral populations of the trumpeter finch (Bucanetes githagineus) presumably originating from the same source, one the result of an ancient expansion process and the other recently established and still expanding; (2) to estimate the importance of key events, such as past and current gene flow and bottlenecks, in both expansion processes and their contribution to the present population structure and genetic diversity; and (3) to find out whether two peripheral populations that established at widely differing times also differ in terms of genetic diversity. Location Northwest Africa (assumed source population), Canary Islands (long‐established peripheral) and south‐eastern Iberian Peninsula (recently established peripheral). Methods Bayesian analysis of population structure, individual assignment tests, F‐statistics, maximum likelihood migration estimates, genetic diversity indices and bottleneck tests were calculated with microsatellite data from 194 trumpeter finches from five breeding and two seasonal non‐breeding sites. Results Our data support the existence of two subpopulations (Canary Island and Ibero‐African) as the most likely population structure. Seasonal sites in the Iberian Peninsula had the highest percentage of birds assigned to other, mainly Iberian, sites. Pairwise FST values showed that the Canary Island localities were very similar to each other, but differed from the rest. Gene flow estimates within subpopulations were only slightly higher in the Canary Island population than in the Ibero‐African one. Gene diversity indices were similar at all localities. Canary Island sites show evidence of bottlenecks, whereas the Ibero‐African sites do not. Main conclusions Our data show that, at present, birds from the Canary Islands are genetically differentiated from those in North Africa and continental Spain. We could not unequivocally confirm the African origin of Canary populations because the contrary is also plausible. The Iberian Peninsula seems to have repeatedly received individuals from North Africa, which would have led to the relatively high genetic diversity found in these recently established localities and prevented bottlenecks. Movements of individuals towards sites outside their current range during the non‐breeding season are likely to precede the establishment of new breeding sites at the periphery of the distribution range.  相似文献   

15.
We assessed the molecular genetic diversity and population structure of Amaranthus species accessions using 11 simple sequence repeat markers. A total of 122 alleles were detected, and the number of alleles per marker (NA) ranged from 6 to 21 with an average of 11.1 alleles. The frequency of major alleles per locus ranged from 0.148 to 0.695, with an average value of 0.496 per marker. The overall polymorphic information content values were 0.436–0.898, with an average value of 0.657. The observed heterozygosity (HO) and expected heterozygosity (HE) ranged from 0.056 to 0.876 and from 0.480 to 0.907, with average values of 0.287 and 0.698, respectively. The average HO (0.240) was lower than the HE and gene flow (Nm), and showed substantial genetic variability among all populations of amaranth accessions. The sample groupings did not strictly follow the geographic affiliations of the accessions. A similar pattern was obtained using model-based structure analysis without grouping by species type. Knowledge of the genetic diversity and population structure of amaranth can be used to select representative genotypes and manage Amaranthus germplasm breeding programs.  相似文献   

16.
Aim This study aims to link demographic traits and post‐glacial recolonization processes with genetic traits in Himantoglossum hircinum (L.) Spreng (Orchidaceae), and to test the implications of the central–marginal concept (CMC) in Europe. Location Twenty sites covering the entire European distribution range of this species. Methods We employed amplified fragment length polymorphism (AFLP) markers and performed a plastid microsatellite survey to assess genetic variation in 20 populations of H. hircinum located along central–marginal gradients. We measured demographic traits to assess population fitness along geographical gradients and to test for correlations between demographic traits and genetic diversity. We used genetic diversity indices and analyses of molecular variance (AMOVA) to test hypotheses of reduced genetic diversity and increased genetic differentiation and isolation from central to peripheral sites. We used Bayesian simulations to analyse genetic relationships among populations. Results Genetic diversity decreased significantly with increasing latitudinal and longitudinal distance from the distribution centre when excluding outlying populations. The AMOVA revealed significant genetic differentiation among populations (FST = 0.146) and an increase in genetic differentiation from the centre of the geographical range to the margins (except for the Atlantic group). Population fitness, expressed as the ratio NR/N, decreased significantly with increasing latitudinal distance from the distribution centre. Flower production was lower in most eastern peripheral sites. The geographical distribution of microsatellite haplotypes suggests post‐glacial range expansion along three major migratory pathways, as also supported by individual membership fractions in six ancestral genetic clusters (C1–C6). No correlations between genetic diversity (e.g. diversity indices, haplotype frequency) and population demographic traits were detected. Main conclusions Reduced genetic diversity and haplotype frequency in H. hircinum at marginal sites reflect historical range expansions. Spatial variation in demographic traits could not explain genetic diversity patterns. For those sites that did not fit into the CMC, the genetic pattern is probably masked by other factors directly affecting either demography or population genetic structure. These include post‐glacial recolonization patterns and changes in habitat suitability due to climate change at the northern periphery. Our findings emphasize the importance of distinguishing historical effects from those caused by geographical variation in population demography of species when studying evolutionary and ecological processes at the range margins under global change.  相似文献   

17.
The tropical gar Atractosteus tropicus belongs to one of the few extant lineages of early bony fishes. The genetic variation detected both within and among 11 natural populations of A. tropicus in Mesoamerica along with the implications for their recent history are presented. Sequences from cytochrome b (307 bp) and cytochrome oxidase subunit II (607 bp) were used as data sources. Apparently, the populations of this fish have decreased in size because of anthropogenic pressures, such as habitat degradation and destruction. The observed values for nucleotide diversity (0·0016 ± 0·0018) and haplotype diversity (0·477 ± 0·302) suggest low levels of genetic variation. Nonetheless, most of the populations studied are currently in a period of genetic stasis. Recent isolation by distance, reduced gene flow and translocation were inferred as the processes maintaining this stasis. Phylogenetic analyses showed reciprocal monophyly between the haplotypes from Guatemala and the other populations. This, together with the observed genetic variation, suggests that the Guatemalan haplotypes might represent a new species. The haplotypes, other than those from Guatemala, exhibited a geographic pattern consistent with two main reproductive populations, one from the Pacific and the other from the Gulf of Mexico–Caribbean slope of Mesoamerica. Pleistocene glacial and interglacial periods might be responsible for moulding the heterogeneity in the genetic structure observed during this study.  相似文献   

18.
Western white pine (Pinus monticola) is an economically and ecologically important species in western North America that has declined in prominence over the past several decades, mainly due to the introduction of Cronartium ribicola (cause of white pine blister rust) and reduced opportunities for regeneration. Amplified fragment length polymorphism (AFLP) markers were used to assess the genetic diversity and structure among populations at 15 sites (e.g., provenances) across the native range of western white pine. The level of genetic diversity was different among 15 populations tested using 66 polymorphic AFLP loci. Nei’s gene diversity (H E) at the population level ranged from 0.187 to 0.316. Genetic differentiation (G ST) indicated that 20.1% of detected genetic variation was explained by differences among populations. In general, populations below 45oN latitude exhibited a higher level of genetic diversity than higher latitude populations. Genetic distance analysis revealed two major clades between northern and southern populations, but other well-supported relationships are also apparent within each of the two clades. The complex relationships among populations are likely derived from multiple factors including migration, adaptation, and multiple glacial refugia, especially in higher latitudes. Genetic diversity and structure revealed by this study will aid recognition and selection of western white pine populations for species management and conservation programs, especially in consideration of current and future climate changes.  相似文献   

19.
Population structure and lineage diversification within a small, non‐dispersive hammerhead shark species, the bonnethead shark Sphyrna tiburo, was assessed. Sphyrna tiburo is currently described as one continuously distributed species along the Atlantic continental margins of North, Central and South America, but recent genetic analysis of an insular population (Trinidad) suggests the possibility of cryptic speciation. To address this issue S. tiburo were sampled at six sites along c. 6200 km of continuous, continental coastline and from one island location (Grand Bahama) across a discontinuity in their distribution (the Straits of Florida), in order to test if they constitute a single lineage over this distribution. A total of 1030 bp of the mitochondrial control region (CR) was obtained for 239 S. tiburo, revealing 73 distinct haplotypes, high nucleotide diversity (0·01089) and a pair of highly divergent lineages estimated to have separated 3·61–5·62 million years ago. Mitochondrial cytochrome oxidase I and nuclear internal transcribed spacer loci show the same pattern. Divergence is similar within S. tiburo to that observed between established elasmobranch sister species, providing further evidence of cryptic speciation. A global AMOVA based on CR confirms that genetic diversity is primarily partitioned among populations (ΦST = 0·828, P < 0·001) because the divergent lineages are almost perfectly segregated between Belize and North America–The Bahamas. An AMOVA consisting solely of the North American and Bahamian samples is also significantly different from zero (ΦST = 0·088, P < 0·001) and pairwise FST is significantly different between all sites. These findings suggest that S. tiburo comprises a species complex and supports previous research indicating fine population structure, which has implications for fisheries management and biodiversity conservation.  相似文献   

20.
Rhododendron simsii Planch. (Ericaceae) is a valuable horticultural and medicinal plant species. In this study, the genetic diversity of eight wild R. simsii populations from the Dabie Mountains (central China) was investigated with 29 microsatellite markers. The results showed that R. simsii harbored a high level of genetic diversity (HE: 0.64–0.79; HO: 0.71–0.94; I = 1.917; h = 0.826), and 84.34% of this genetic variation was maintained within populations, while variation among populations only accounted for 15.66%. The number of alleles ranged from 6 to 11, with an average of 9.069. Heterozygote excess was found, with the mean FIS and FIT values of ?0.1739 and 0.0092, respectively. The average value of gene flow (Nm) was 1.3525. Within‐population, genetic diversity (I) ranged from 1.131 to 1.681. Cluster analyses divided the eight populations into two clades: the ‘Ltjiuzihe’ population formed its own cluster, while the other seven populations clustered together. There was a weak negative correlation between genetic and geographic distance. The results are highly relevant for the conservation and sustainable utilization of wild R. simsii germplasm resources in central China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号