首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been theorized that photosynthetic radiation use efficiency (PhRUE) over the course of a day is constant for leaves throughout a canopy if leaf nitrogen content and photosynthetic properties are adapted to local light so that canopy photosynthesis over a day is optimized. To test this hypothesis, 'daily' photosynthesis of individual leaves of Solanum melongena plants was calculated from instantaneous rates of photosynthesis integrated over the daylight hours. Instantaneous photosynthesis was estimated from the photosynthetic responses to photosynthetically active radiation (PAR) and from the incident PAR measured on individual leaves during clear and overcast days. Plants were grown with either abundant or scarce N fertilization. Both net and gross daily photosynthesis of leaves were linearly related to daily incident PAR exposure of individual leaves, which implies constant PhRUE over a day throughout the canopy. The slope of these relationships (i.e. PhRUE) increased with N fertilization. When the relationship was calculated for hourly instead of daily periods, the regressions were curvilinear, implying that PhRUE changed with time of the day and incident radiation. Thus, linearity (i.e. constant PhRUE) was achieved only when data were integrated over the entire day. Using average PAR in place of instantaneous incident PAR increased the slope of the relationship between daily photosynthesis and incident PAR of individual leaves, and the regression became curvilinear. The slope of the relationship between daily gross photosynthesis and incident PAR of individual leaves increased for an overcast compared with a clear day, but the slope remained constant for net photosynthesis. This suggests that net PhRUE of all leaves (and thus of the whole canopy) may be constant when integrated over a day, not only when the incident PAR changes with depth in the canopy, but also when it varies on the same leaf owing to changes in daily incident PAR above the canopy. The slope of the relationship between daily net photosynthesis and incident PAR was also estimated from the photosynthetic light response curve of a leaf at the top of the canopy and from the incident PAR above the canopy, in place of that measured on individual leaves. The slope (i.e. net PhRUE) calculated in this simple way did not differ statistically from that calculated using data from individual leaves.  相似文献   

2.
BACKGROUND AND AIMS: Kaolin applied as a suspension to plant canopies forms a film on leaves that increases reflection and reduces absorption of light. Photosynthesis of individual leaves is decreased while the photosynthesis of the whole canopy remains unaffected or even increases. This may result from a better distribution of light within the canopy following kaolin application, but this explanation has not been tested. The objective of this work was to study the effects of kaolin application on light distribution and absorption within tree canopies and, ultimately, on canopy photosynthesis and radiation use efficiency. METHODS: Photosynthetically active radiation (PAR) incident on individual leaves within the canopy of almond (Prunus dulcis) and walnut (Juglans regia) trees was measured before and after kaolin application in order to study PAR distribution within the canopy. The PAR incident on, and reflected and transmitted by, the canopy was measured on the same day for kaolin-sprayed and control trees in order to calculate canopy PAR absorption. These data were then used to model canopy photosynthesis and radiation use efficiency by a simple method proposed in previous work, based on the photosynthetic response to incident PAR of a top-canopy leaf. KEY RESULTS: Kaolin increased incident PAR on surfaces of inner-canopy leaves, although there was an estimated 20 % loss in PAR reaching the photosynthetic apparatus, due to increased reflection. Assuming a 20 % loss of PAR, modelled photosynthesis and photosynthetic radiation use efficiency (PRUE) of kaolin-coated leaves decreased by only 6.3 %. This was due to (1) more beneficial PAR distribution within the kaolin-sprayed canopy, and (2) with decreasing PAR, leaf photosynthesis decreases less than proportionally, due to the curvature of the photosynthesis response-curve to PAR. The relatively small loss in canopy PRUE (per unit of incident PAR), coupled with the increased incident PAR on the leaf surface on inner-canopy leaves, resulted in an estimated increase in modelled photosynthesis of the canopy (+9 % in both walnut and almond). The small loss in PRUE (per unit of incident PAR) resulted in an increase in radiation use efficiency per unit of absorbed PAR, which more than compensated for the minor (7 %) reduction in canopy PAR absorption. CONCLUSIONS: The results explain the apparently contradictory findings in the literature of positive or no effects of kaolin applications on canopy photosynthesis and yield, despite the decrease in photosynthesis by individual leaves when measured at the same PAR.  相似文献   

3.
Abstract. The influence of leaf age, total leaf area and its dispersion in space on canopy photosynthesis were studied using microswards of red clover ( Trifolium pratense L.) which were established in the greenhouse. Two varieties, Renova (flowering) and Molstad (non-flowering), were sown in separate plastic boxes at densities of 225, 400 and 625 plants per m2.
Vertical distribution of photosynthetically active radiation (PAR), leaf area, leaf age and 14CO2-fixation were determined periodically. Net photosynthesis and dark respiration of canopies were measured. Maximum photosynthetic capacity of individual leaves was measured on plants taken from the intact canopy or from plants where shading of the growing leaves had been prevented.
Net photosynthetic rate of canopies increased linearly with leaf area index (LAI) up to an LAI of 3.5 and then declined at higher LAI, independent of variety and sowing density. Below the optimum LAI, net photosynthesis depended mainly on interception of PAR. Decrease in canopy photosynthesis above the optimum LAI was due to a higher proportion of old leaves with decreased photosynthetic capacity, and not to an increase in respiring plant parts. It is concluded that LAI and position of leaf age categories in the canopy are more important than vertical distribution of leaf area in determining canopy photosynthesis of red clover.  相似文献   

4.
Summary A model of daily canopy photosynthesis was constructed taking light and leaf nitrogen distribution in the canopy into consideration. It was applied to a canopy of Solidago altissima. Both irradiance and nitrogen concentration per unit leaf area decreased exponentially with increasing cumulative leaf area from the top of the canopy. The photosynthetic capacity of a single leaf was evaluated in relation to irradiance and nitrogen concentration. By integration, daily canopy photosynthesis was calculated for various canopy architectures and nitrogen allocation patterns. The optimal pattern of nitrogen distribution that maximizes the canopy photosynthesis was determined. Actual distribution of leaf nitrogen in the canopy was more uniform than the optimal one, but it realized over 20% more photosynthesis than that under uniform distribution and 4.7% less photosynthesis than that under the optimal distribution. Redeployment of leaf nitrogen to the top of the canopy with ageing should be more effective in increasing total canopy photosynthesis in a stand with a dense canopy than in a stand with an open canopy.  相似文献   

5.
不同辐射条件下苹果叶片净光合速率模拟   总被引:2,自引:0,他引:2  
以富士苹果(Malus domestica Borkh.cv.‘Fuji’)为试材,将C3植物光合生化模型、气孔导度半机理模型、叶片最大光合速率和相对光合有效辐射(RPAR)之间的经验公式相耦合,能够模拟出不同RPAR(或树冠不同部位)下叶片净光合速率(Pn)对小气候因子和叶水势(Ψl)的响应,及Pn日变化。模拟表明,不同RPAR下Pn变化主要依赖于光合有效辐射(PAR)大小,并对CO2浓度有很高敏感性。不同RPAR下叶片Pn最适温度约为20—30℃,并随PAR或CO2浓度的升高而升高。相对湿度(RH)和Ψl对不同RPAR下叶片Pn影响不大,Pn只随RH和Ψl的减小而略有降低。数值模拟表明,当RPAR减小时Pn随之迅速减小,从冠层3 m到1 m处,叶片RPAR从57.18%减少到16.22%,而最大Pn从16.65μmol.m-.2s-1减小到4.24μmol.m-.2s-1。在平均气象条件下,树冠顶部单位面积叶片每天固定CO2为420 mmol.m-.2d-1,而下层叶片只有40 mmol.m-.2d-1。当苹果树冠内叶片接受RPAR低于12%时,全天净光合总量为0,这类叶片可称为无效叶,其所在树冠空间为无效光区。果树整形修剪的主要目的就是尽量减少无效枝叶,利用该模型可确定出这类枝叶在树冠中的位置。  相似文献   

6.
A canopy photosynthesis model was derived on the assumption that the light diminution within a canopy is caused by both leaves and non-photosynthetic organs. The light diminution by leaves and that by non-photosynthetic organs were taken into account separately in the Lambert-Beer equation of light extinction. The light flux density on the leaf surface at each depth was evaluated from the leaf's share of light. The light flux density on the leaf surface thus obtained was incorporated into the Monsi-Saeki model of canopy photosynthesis. The proposed model was applied for estimating gross canopy photosynthesis in a 19-year-oldLarix leptolepis plantation where 38% of the light diminution was due to non-photosynthetic organs. The daily canopy photosynthesis on one summer day calculated using the present model was about 22% less than that calculated by the conventional Monsi-Saeki model, in which light interception by non-photosynthetic organs is neglected. The degree of such reduction in canopy photosynthesis through shading by non-photosynthetic organs was assessed in relation to parameters affecting light extinction, leaf photosynthetic characteristics, and light regime above the canopy.  相似文献   

7.
Most models for canopy photosynthesis require a large number of parameters as input which have to be determined by means of direct measurements. Such measurements are usually expensive, time consuming and destructive. The objective of the present study was, therefore, to develop a simple but accurate canopy photosynthesis model based on a minimum number of parameters that can be determined non-destructively. The results from previous studies were used to derive an empirical expression which describes the variation in leaf photosynthetic capacity (Pm) as a function of the light distribution in the canopy. The light distribution itself was calculated with a simple model which assumes only three leaf angle classes (0–30°, 30–60° and 60–90°). The leaf area index was determined indirectly from measurements of direct radiation below the canopy. The result was a model for canopy photosynthesis that requires only a few parameters. These parameters are the leaf photosynthetic capacity at the top of the canopy, the relative frequency of leaves in each of the three leaf angle classes, and the fraction of direct radiation below the canopy. Each of these parameters can be determined by means of simple non-destructive measurements. The model was applied to dense stands of two monocotyledonous species: rice (Oryza sativa L.) and pearl millet (Pennisetum americanum (L.) K. Schum.). The rates of canopy photosynthesis thus calculated were compared to those obtained with a more elaborate reference model. The differences between the values obtained with the two models were small. The present photosynthesis model can, therefore, be considered to be a suitable alternative for the more elaborate model. It was further discussed that, since the model is based on purely non-destructive measurements, it will be particularly useful in cases where it is required to estimate canopy photosynthesis at regular intervals over a length of time or in stands of vegetation that cover large areas of land.  相似文献   

8.
A model of dynamics of leaves and nitrogen is developed to predict the effect of environmental and ecophysiological factors on the structure and photosynthesis of a plant canopy. In the model, leaf area in the canopy increases by the production of new leaves, which is proportional to the canopy photosynthetic rate, with canopy nitrogen increasing with uptake of nitrogen from soil. Then the optimal leaf area index (LAI; leaf area per ground area) that maximizes canopy photosynthesis is calculated. If leaf area is produced in excess, old leaves are eliminated with their nitrogen as dead leaves. Consequently, a new canopy having an optimal LAI and an optimal amount of nitrogen is obtained. Repeating these processes gives canopy growth. The model provides predictions of optimal LAI, canopy photosynthetic rates, leaf life span, nitrogen use efficiency, and also the responses of these factors to changes in nitrogen and light availability. Canopies are predicted to have a larger LAI and a higher canopy photosynthetic rate at a steady state under higher nutrient and/or light availabilities. Effects of species characteristics, such as photosynthetic nitrogen use efficiency and leaf mass per area, are also evaluated. The model predicts many empirically observed patterns for ecophysiological traits across species.  相似文献   

9.
Summary A physiologically based steady-state model of whole leaf photosynthesis (WHOLEPHOT) is used to analyze observed net photosynthesis daily time courses of soybean, Glycine max (L.) Merr., leaves. Observations during two time periods of the 1978 growing season are analyzed and compared. After adjustment of the model for soybean, net photosynthesis rates are calculated with the model in response to measured incident light intensity, leaf temperature, air carbon dioxide concentration, and leaf diffusion resistance. The steady-state calculations closely approximate observed net photosynthesis. Results of the comparison reveal a decrease in photosynthetic capacity in leaves sampled during the second time period, which is associated with decreasing ability of leaves to respond to light intensity and internal air space carbon dioxide concentration, increasing mesophyll resistance, and increasing stomatal resistance.  相似文献   

10.
Understanding the distribution of gas exchange within a plant is a prerequisite for scaling up from leaves to canopies. We evaluated whether leaf traits were reliable predictors of the effects of leaf ageing and leaf irradiance on leaf photosynthetic capacity (V(cmax) , J(max) ) in field-grown vines (Vitis vinifera L). Simultaneously, we measured gas exchange, leaf mass per area (LMA) and nitrogen content (N(m) ) of leaves at different positions within the canopy and at different phenological stages. Daily mean leaf irradiance cumulated over 10 d (PPFD(10) ) was obtained by 3D modelling of the canopy structure. N(m) decreased over the season in parallel to leaf ageing while LMA was mainly affected by leaf position. PPFD(10) explained 66, 28 and 73% of the variation of LMA, N(m) and nitrogen content per area (N(a) ), respectively. Nitrogen content per unit area (N(a) = LMA × N(m) ) was the best predictor of the intra-canopy variability of leaf photosynthetic capacity. Finally, we developed a classical photosynthesis-stomatal conductance submodel and by introducing N(a) as an input, the model accurately simulated the daily pattern of gas exchange for leaves at different positions in the canopy and at different phenological stages during the season.  相似文献   

11.
Soil and vegetative groundcovers reflect light heterogeneously in habitats lacking a continuous overhead canopy, however the effects of reflected light on vegetation in these habitats has received little attention. We test the hypothesis that reflected light flux affects leaf optical properties, anatomy, and photosynthesis of Ipomoea pes-caprae (Convolvulacae), a common sand dune vine with functionally symmetric leaves, by comparing leaves growing over patches of high and low reflected light flux. Patches of high reflected light were found directly over sand and reflected 26.0 ± 0.9% (mean ± 1 SE) of incident photosynthetically active radiation (PAR) while patches of low reflected light were found over vegetation and reflected 6.1 ± 0.7% of incident PAR. Using a novel in situ method to simultaneously illuminate and measure gas exchange of one leaf surface at a time, we show that abaxial surface photosynthetic maxima and palisade parenchyma in sand patches were, respectively, 2.6 times greater and 20% thicker than those found over vegetation patches. Our results suggest that reflected light strongly influences leaf anatomy and gas exchange of I. pes-caprae, demonstrating that reflected light can be an important component of the light environment for vegetation of habitats characterized by high-albedo substrates.  相似文献   

12.
《新西兰生态学杂志》2011,30(2):251-259
We used outputs from a model of canopy carbon uptake [Dungan et al. (2004) Functional Ecology 18: 34–42] and measurements of irradiance (PAR, 400–700 nm) intercepted by the canopy to investigate the effect of daily changes in environmental conditions on daily light use efficiency, ε, for a canopy comprising two broadleaved New Zealand tree species with contrasting leaf habit. Irradiance absorbed by the canopy was 93% of the incident irradiance, and seasonal changes in the proportion of this absorbed by leaves of each species was estimated with a detailed model of leaf area phenology. Over the year, ε for semi-deciduous wineberry (Aristotelia serrata) was 0.43 g C MJ-1 PAR, with maximum and minimum values of 0.80 g C MJ-1 PAR and 0.07 g C MJ-1 PAR in summer and winter respectively. In contrast annual ε was 0.60 g C MJ-1 PAR for winter deciduous fuchsia, with a maximum value of 0.92 g C MJ-1 PAR in spring. The most important environmental regulator of ε for both species was τ, atmospheric transmissivity. Maximum values for ε were estimated on days when τ ≈0.2, on cloudy days in mid-summer. Limits to photosynthesis from restricted root-zone water availability were also important, showing that drought limitations can restrict ε even at a field site with annual rainfall of 4800 mm. Environmental limits to photosynthesis and ε have been investigated for only a few canopy tree species. Uncertainty in models of the national carbon budget required for reporting purposes would be reduced by considering the environmental regulation of ε for a wider range of tree species.  相似文献   

13.
Photosynthetic capacity was measured on detached leaves sampled in a canopy of Solidago altissima L. Non-rectangular hyperbola fitted the light response curve of photosynthesis and significant correlations were observed between leaf nitrogen per unit area and four parameters which characterize the light-response curve. Using regressions of the parameters on leaf nitrogen, a model of leaf photosynthesis was constructed which gave the relationships between leaf nitrogen, photon flux density (PFD) and photosynthesis. Curvilinear relations were obtained between leaf nitrogen and photosynthetic rate on both an instantaneous and a daily basis. Nitrogen use efficiency (NUE, photosynthesis per unit leaf nitrogen) was calculated against leaf nitrogen under varying PFDs. The optimum nitrogen content per unit leaf area that maximizes NUE shifted to higher values with increasing PFD. Field measurements of PFD showed high positive correlations between the distribution of leaf nitrogen in the canopy and relative PFD. The predicted optimum leaf nitrogen content for each level in the canopy, to achieve maximized NUE during a clear day, was close to the actual nitrogen distribution as found through sampling.  相似文献   

14.
Light absorption and use efficiency (LAUE mol mol−1, daily gross photosynthesis per daily incident light) of each leaf depends on several factors, including the degree of light saturation. It is often discussed that upper canopy leaves exposed to direct sunlight are fully light-saturated. However, we found that upper leaves of three temperate species, a heliophytic perennial herb Helianthus tuberosus, a pioneer tree Alnus japonica, and a late-successional tree Fagus crenata, were not fully light-saturated even under full sunlight. Geometrical analysis of the photosynthetic light response curves revealed that all the curves of the leaves from different canopy positions, as well as from the different species, can be considered as different parts of a single non-rectangular hyperbola. The analysis consistently explained how those leaves were not fully light-saturated. Light use optimization models, called big leaf models, predicted that the degree of light saturation and LAUE are both independent of light environment. From these, we hypothesized that the upper leaves should not be fully light-saturated even under direct sunlight, but instead should share the light limitation with the shaded lower-canopy leaves, so as to utilize strong sunlight efficiently. Supporting this prediction, within a canopy of H. tuberosus, both the degree of light saturation and LAUE were independent of light environment within a canopy, resulting in proportionality between the daily photosynthesis and the daily incident light among the leaves.  相似文献   

15.
The increase of atmospheric CO2 concentration is indisputable. In such condition, photosynthetic response of leaf is relatively well studied, while the comparison of that between single leaf and whole canopy is less emphasized. The stimulation of elevated CO2 on canopy photosynthesis may be different from that on single leaf level. In this study, leaf and canopy photosynthesis of rice ( Oryza sativa L. ) were studied throughout the growing season. High CO2 and temperature had a synergetic stimulation on single leaf photosynthetic rate until grain filling. Photosynthesis of leaf was stimulated by high CO2, although the stimulation was decreased by higher temperature at grain filling stage. On the other hand, the simulation of elevated CO2 on canopy photosynthesis leveled off with time. Stimulation at canopy level disappeared by grain filling stage in beth temperature treatments. Green leaf area index was not significantly affected by CO2 at maturity, but greater in plants grown at higher temperature. Leaf nitrogen content decreased with the increase of CO2 concentration although it was not statistically significant at maturity. Canopy respiration rate increased at flowering stage indicating higher carbon loss. Shading effect caused by leaf development reached maximum at flowering stage. The CO2 stimulation on photosynthesis was greater in single leaf than in canopy. Since enhanced CO2 significantly increased biomass of rice stems and panicles, increase in canopy respiration caused diminishment of CO2 stimulation in canopy net photosynthesis, keaf nitrogen in the canopy level decreased with CO2 concentration and may eventually hasten CO2 stimulation on canopy photosynthesis. Early senescence of canopy leaves in high CO2 is also a possible cause.  相似文献   

16.
基于SVAT模型的冬小麦光合作用和蒸散过程研究   总被引:7,自引:0,他引:7  
在已建立的土壤-植被-大气传输(SVAT)模型中,冠层光合作用/气孔导度耦合子模型可区分遮荫叶和受光叶光合作用强度的差异;作物生长模型考虑了生长呼吸和维持呼吸,模拟与实测结果对比发现,日总蒸散量实测和模拟的根均方差(RMSD)为0.65mm,平均绝对差(MAPD)为14%;对冠层上部净光合作用率日变化过程而言,实测和模拟结果具有较好的一致性。利用模型模拟了冬小麦全生育争光合作用率和蒸散的演变过程。最后,分析了冬小麦蒸散和水分利用效率对不同最大叶面积指数,大气CO2浓度和叶片N含量的响应。  相似文献   

17.
Photosynthetic rate, ribulose 1,5-bisphosphate carboxylase activity, specific leaf weight, and leaf concentrations of carbohydrates, proteins, chlorophyll, and inorganic phosphate were determined periodically from midbloom until maturity in leaves of soybean plants (Glycine max L., var. Hodgson) from which reproductive and vegetative sinks had been removed 32 hours before measurement, or continuously since midbloom.

Leaf photosynthesis, measured in the top of the canopy, was partially inhibited by both sink removal treatments. This inhibition was of constant magnitude from midbloom until maturity.

Leaf photosynthesis in the top of the canopy declined from midbloom until maturity in the control as well as in the desinked plants. The decline in photosynthesis was gradual at first, but later became more abrupt. The photosynthetic decline was equally evident in the yellowing leaves of control plants and in the dark green leaves of the continuously desinked plants.

Neither the inhibition of photosynthesis by sink removal nor the decline in photosynthetic rate with time was clearly related to any of the measured traits.

  相似文献   

18.
The photosynthetic development of pedunculate oak ( Quercus robur L.) sun leaves in a mature woodland canopy in Oxfordshire, southern England, was investigated in situ during 3 years with contrasting weather conditions. Development of full photosynthetic capacity (indicated by light-saturated net assimilation rates, A(max), typical of the summer period) took between approximately 50 and 70 days after budbreak in different years. This slow development means that these leaves do not utilise a substantial fraction of the seasonal peak of solar irradiance. During the late autumn senscence period the photosynthetic capacity declined over a 2-week period, but as this is a time of low irradiance, the loss of potential photosynthesis was relatively small. The consequences of these developmental changes and differences in bud break dates for daily and seasonal leaf carbon balance were investigated through a simple light-response photosynthetic model. Seasonal changes in photosynthetic capacity would decrease annual carbon uptake per unit leaf area by about 23% compared to that potentially possible if leaves photosynthesised at peak rates throughout the growing season. This difference is likely to be up to 30% larger in years with late budburst and as low as 18% in years with early budburst.  相似文献   

19.
Muraoka H  Koizumi H  Pearcy RW 《Oecologia》2003,135(4):500-509
To examine a possible convergence in leaf photosynthetic characteristics and leaf display responses to light environment in seedlings of three canopy and two shrub tree species in understorey of cool-temperate deciduous broadleaf forest, relationships between light environment, leaf orientation and leaf light-photosynthetic response were measured. Light capture of the seedlings (17-24 individuals with 2-12 leaves for each species) was assessed with a three dimensional geometric modeling program Y-plant. Leaf photosynthetic characteristics of the five species were found to have acclimated to the understorey light environment, i.e., low light compensation point and high apparent quantum yield. In addition, light-saturated photosynthetic rates were higher in seedlings inhabiting microsites with higher light availability. Efficiencies of light capture and carbon gain of the leaf display were evaluated by simulating the directionalities of light capture and daily photosynthesis for each seedling using hemispherical canopy photography. The results showed that most of the seedlings orientated their leaves in a way to increase the daily photosynthesis during the direct light periods (sunflecks) rather than maximize daily photosynthesis by diffuse light. Simulations also showed that daily photosynthesis would increase only 10% of that on actual leaf display when the leaves orientated to maximize the diffuse light interception. Simulations in which leaf orientations were varied showed that when the leaf display fully maximized direct light interception, the time that leaves were exposed to excessive photon flux density of >800 mumol photons m(-2) s(-1) were doubled. The understorey seedlings studied responded to the given light environments in a way to maximize the efficiency of acquisition and use of light during their short (approximately 3 month) seasonal growth period.  相似文献   

20.
Analytical expressions for the contributions of sun and shade leaves to instantaneous canopy photosynthesis are derived. The analysis is based on four assumptions. First, that the canopy is closed in the sense that it is horizontally uniform. Secondly, that there is an exponential profile of light down the canopy with the same decay constant for light from different parts of the sky. Thirdly, that the leaf photosynthetic response to incident irradiance can be described by a three-parameter non-rectangular hyperbola (NRH). And lastly, that light acclimation at the leaf level occurs in only one parameter of the NRH, that describing the light-saturated photosynthetic rate, which is assumed to be proportional to the local averaged leaf irradiance. These assumptions have been extensively researched empirically and theoretically and their limitations are quite well understood. They have been widely used when appropriate. Combining these four assumptions permits the derivation of algebraic expressions for instantaneous canopy photosynthesis which are computationally efficient because they avoid the necessity for numerical integration down the canopy. These are valuable for modelling plant and crop ecosystems, for which canopy photosynthesis is the primary driver. Ignoring the sun/shade dichotomy can result in overestimates of canopy photosynthesis of up to 20 %, but using a rectangular hyperbola instead of a non-rectangular hyperbola to estimate canopy photosynthesis taking account of sun and shade leaves can lead to a similarly sized underestimate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号