首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The possibility that simultaneous expansion of T regulatory cells (Treg) and T effector cells early postinfection can confer some immunological benefits has not been studied. In this study, we tested the hypothesis that early, simultaneous cytokine expansion of Treg and T effector cells in a tissue infection site can allow these T cell populations to act in concert to control tissue inflammation/damage while containing infection. IL-2 treatments early after Mycobacterium tuberculosis infection of macaques induced simultaneous expansion of CD4(+)CD25(+)Foxp3(+) Treg, CD8(+)CD25(+)Foxp3(+) T cells, and CD4(+) T effector/CD8(+) T effector/Vγ2Vδ2 T effector populations producing anti-M. tuberculosis cytokines IFN-γ and perforin, and conferred resistance to severe TB inflammation and lesions. IL-2-expanded Foxp3(+) Treg readily accumulated in pulmonary compartment, but despite this, rapid pulmonary trafficking/accumulation of IL-2-activated T effector populations still occurred. Such simultaneous recruitments of IL-2-expanded Treg and T effector populations to pulmonary compartment during M. tuberculosis infection correlated with IL-2-induced resistance to TB lesions without causing Treg-associated increases in M. tuberculosis burdens. In vivo depletion of IL-2-expanded CD4(+)Foxp3(+) Treg and CD4(+) T effectors during IL-2 treatment of M. tuberculosis-infected macaques significantly reduced IL-2-induced resistance to TB lesions, suggesting that IL-2-expanded CD4(+) T effector cells and Treg contributed to anti-TB immunity. Thus, IL-2 can simultaneously activate and expand T effector cells and Foxp3(+) Treg populations and confer resistance to severe TB without enhancing M. tuberculosis infection.  相似文献   

2.
T cell activation is controlled by incompletely defined opposing stimulation and suppression signals that together sustain the balance between optimal host defense against infection and peripheral tolerance. In this article, we explore the impacts of Foxp3(+) regulatory T cell (Treg) suppression in priming Ag-specific T cell activation under conditions of noninfection and infection. We find the transient ablation of Foxp3(+) Tregs unleashes the robust expansion and activation of peptide-stimulated CD8(+) T cells that provide protection against Listeria monocytogenes infection in an Ag-specific fashion. By contrast, Treg ablation had nonsignificant impacts on the CD8(+) T cell response primed by infection with recombinant L. monocytogenes. Similarly, nonrecombinant L. monocytogenes administered with peptide stimulated the expansion and activation of CD8(+) T cells that paralleled the response primed by Treg ablation. Interestingly, these adjuvant properties of L. monocytogenes did not require CD8(+) T cell stimulation by IL-12 produced in response to infection, but instead were associated with sharp reductions in Foxp3(+) Treg suppressive potency. Therefore, Foxp3(+) Tregs impose critical barriers that, when overcome naturally during infection or artificially with ablation, allow the priming of protective Ag-specific CD8(+) T cells.  相似文献   

3.
Dendritic cells (DCs) induce immunity and immunological tolerance as APCs. It has been shown that DCs secreting IL-10 induce IL-10(+) Tr1-type regulatory T (Treg) cells, whereas Foxp3-positive Treg cells are expanded from naive CD4(+) T cells by coculturing with mature DCs. However, the regulatory mechanism of expansion of Foxp3(+) Treg cells by DCs has not been clarified. In this study, we demonstrated that suppressors of cytokine signaling (SOCS)-3-deficient DCs have a strong potential as Foxp3(+) T cell-inducing tolerogenic DCs. SOCS3(-/-) DCs expressed lower levels of class II MHC, CD40, CD86, and IL-12 than wild-type (WT)-DCs both in vitro and in vivo, and showed constitutive activation of STAT3. Foxp3(-) effector T cells were predominantly expanded by the priming with WT-DCs, whereas Foxp3(+) Treg cells were selectively expanded by SOCS3(-/-) DCs. Adoptive transfer of SOCS3(-/-) DCs reduced the severity of experimental autoimmune encephalomyelitis. Foxp3(+) T cell expansion was blocked by anti-TGF-beta Ab, and SOCS3(-/-) DCs produced higher levels of TGF-beta than WT-DCs, suggesting that TGF-beta plays an essential role in the expansion of Foxp3(+) Treg cells. These results indicate an important role of SOCS3 in determining on immunity or tolerance by DCs.  相似文献   

4.
Foxp3(+) regulatory T (Treg) cells are a critical cell population that suppresses T cell activation in response to microbial and viral pathogens. We identify a cell-intrinsic mechanism by which effector CD4(+) T cells overcome the suppressive effects of Treg cells in the context of three distinct infections: Toxoplasma gondii, Listeria monocytogenes, and vaccinia virus. The acute responses to the parasitic, bacterial, and viral pathogens resulted in a transient reduction in frequency and absolute number of Treg cells. The infection-induced partial loss of Treg cells was essential for the initiation of potent Th1 responses and host protection against the pathogens. The observed disappearance of Treg cells was a result of insufficiency in IL-2 caused by the expansion of pathogen-specific CD4(+) T cells with a limited capacity of IL-2 production. Exogenous IL-2 treatment during the parasitic, bacterial, and viral infections completely prevented the loss of Treg cells, but restoration of Treg cells resulted in a greatly enhanced susceptibility to the pathogens. These results demonstrate that the transient reduction in Treg cells induced by pathogens via IL-2 deprivation is essential for optimal T cell responses and host resistance to microbial and viral pathogens.  相似文献   

5.
In a murine model of invasive pulmonary aspergillosis, dendritic cells (DCs) pulsed with Aspergillus antigens induced the activation of CD4(+) Th1 cells capable of conferring resistance to the infection. Here we show that the combined, local delivery of unmethylated CpG oligodeoxynucleotides (ODNs) and the Asp f 16 Aspergillus allergen resulted in the functional maturation and activation of airway DCs capable of inducing Th1 priming and resistance to the fungus. Therefore, ODNs act as a potent adjuvant for the vaccine-induced protection against the fungus by promoting dominant Th1 response to Aspergillus antigens and allergens.  相似文献   

6.
The ability to tolerate Candida albicans, a human commensal of the gastrointestinal tract and vagina, implicates that host defense mechanisms of resistance and tolerance cooperate to limit fungal burden and inflammation at the different body sites. We evaluated resistance and tolerance to the fungus in experimental and human vulvovaginal candidiasis (VVC) as well as in recurrent VVC (RVVC). Resistance and tolerance mechanisms were both activated in murine VVC, involving IL-22 and IL-10-producing regulatory T cells, respectively, with a major contribution by the enzyme indoleamine 2,3-dioxygenase 1 (IDO1). IDO1 was responsible for the production of tolerogenic kynurenines, such that replacement therapy with kynurenines restored immunoprotection to VVC. In humans, two functional genetic variants in IL22 and IDO1 genes were found to be associated with heightened resistance to RVVC, and they correlated with increased local expression of IL-22, IDO1 and kynurenines. Thus, IL-22 and IDO1 are crucial in balancing resistance with tolerance to Candida, their deficiencies are risk factors for RVVC, and targeting tolerance via therapeutic kynurenines may benefit patients with RVVC.  相似文献   

7.
Rapamycin (Rapa), an immunosuppressive drug that acts through mammalian target of Rapa inhibition, broadly synergizes with tolerogenic agents in animal models of transplantation and autoimmunity. Rapa preferentially inhibits conventional CD4(+) Foxp3(-) T cells (Tconv) and promotes outgrowth of CD4(+)Foxp3(+) regulatory T cells (Treg) during in vitro expansion. Moreover, Rapa is widely perceived as augmenting both expansion and conversion of Treg in vivo. However, most quantitative studies were performed in lymphopenic hosts or in graft-versus-host disease models. We show in this study that in replete wild-type mice, Rapa significantly inhibits both homeostatic and alloantigen-induced proliferation of Treg, and promotes their apoptosis. Together, these lead to significant Treg depletion. Tconv undergo depletion to a similar degree, resulting in no change in the percent of Treg among CD4 cells. Moreover, in this setting, there was no evidence of conversion of Tconv into Treg. However, after withdrawal of Rapa, Treg recover Ag-induced proliferation more quickly than Tconv, leading to recovery to baseline numbers and an increase in the percent of Treg compared with Tconv. These findings suggest that the effects of Rapa on Treg survival, homeostasis, and induction, depend heavily on the cellular milieu and degree of activation. In vivo, the resistance of Treg to mammalian target of Rapa inhibition is relative and results from lymphopenic and graft-versus-host disease models cannot be directly extrapolated to settings more typical of solid organ transplantation or autoimmunity. Moreover, these results have important implications for the timing of Rapa therapy with tolerogenic agents designed to increase the number of Treg in vivo.  相似文献   

8.
Naturally occurring CD4(+)CD25(+) regulatory T cells (Treg) are crucial in immunoregulation and have great therapeutic potential for immunotherapy in the prevention of transplant rejection, allergy, and autoimmune diseases. The efficacy of Treg-based immunotherapy critically depends on the Ag specificity of the regulatory T cells. Moreover, the use of Ag-specific Treg as opposed to polyclonal expanded Treg will reduce the total number of Treg necessary for therapy. Hence, it is crucial to develop ex vivo selection procedures that allow selection and expansion of highly potent, Ag-specific Treg. In this study we describe an ex vivo CFSE cell sorter-based isolation method for human alloantigen-specific Treg. To this end, freshly isolated CD4(+)CD25(+) Treg were labeled with CFSE and stimulated with (target) alloantigen and IL-2 plus IL-15 in short-term cultures. The alloantigen-reactive dividing Treg were characterized by low CFSE content and could be subdivided by virtue of CD27 expression. CD27/CFSE cell sorter-based selection of CD27(+) and CD27(-) cells resulted in two highly suppressive Ag-specific Treg subsets. Each subset suppressed naive and Ag-experienced memory T cells, and importantly, CD27(+) Treg also suppressed ongoing T cell responses. Summarizing, the described procedure enables induction, expansion, and especially selection of highly suppressive, Ag-specific Treg subsets, which are crucial in Ag-specific, Treg-based immunotherapy.  相似文献   

9.
Ex vivo treatment of bone marrow-derived dendritic cells (DCs) with TNF-alpha has been previously shown to induce partial maturation of DCs that are able to suppress autoimmunity. In this study, we demonstrate that i.v. administration of TNF-alpha-treated, semimature DCs pulsed with thyrogloblin (Tg), but not with OVA Ag, inhibits the subsequent development of Tg-induced experimental autoimmune thyroiditis (EAT) in CBA/J mice. This protocol activates CD4(+)CD25(+) T cells in vivo, which secrete IL-10 upon specific recognition of Tg in vitro and express regulatory T cell (Treg)-associated markers such as glucocorticoid-induced TNFR, CTLA-4, and Foxp3. These CD4(+)CD25(+) Treg cells suppressed the proliferation and cytokine release of Tg-specific, CD4(+)CD25(-) effector cells in vitro, in an IL-10-independent, cell contact-dependent manner. Prior adoptive transfer of the same CD4(+)CD25(+) Treg cells into CBA/J hosts suppressed Tg-induced EAT. These results demonstrate that the tolerogenic potential of Tg-pulsed, semimature DCs in EAT is likely to be mediated through the selective activation of Tg-specific CD4(+)CD25(+) Treg cells and provide new insights for the study of Ag-specific immunoregulation of autoimmune diseases.  相似文献   

10.
Inadequate local cell-mediated immunity appears crucial for the establishment of chronic HIV infection. Accumulation of regulatory T cells (Treg) at the site of HIV replication, the lymphoid organs, may influence the outcome of HIV infection. Our data provide the first evidence that chronic HIV infection changes Treg tissue distribution. Several molecules characteristics of Treg (FoxP3, CTLA-4, glucocorticoid-induced TNFR family-related receptor, and CD25) were expressed more in tonsils of untreated patients compared with antiretroviral-treated patients. Importantly, most FoxP3+ cells expressed CTLA-4, but not CD69. Furthermore, a direct correlation between FoxP3 levels and viral load was evident. In contrast, FoxP3 expression was decreased in circulating T cells from untreated patients, but normalized after initiation of treatment. Functional markers of Treg activity (indoleamine 2,3-dioxygenase, TGF-beta, and CD80) were markedly increased in the tonsils of untreated patients. Our data could provide a new basis for immune-based therapies that counteract in vivo Treg and thereby reinforce appropriate antiviral immunity.  相似文献   

11.
Previously, oral administration of nickel to C57BL/6 wild-type (WT) mice was shown to render both their splenic T cells and APCs (i.e., T cell-depleted spleen cells) capable of transferring nickel tolerance to naive syngeneic recipients. Moreover, sequential adoptive transfer experiments revealed that on transfer of tolerogenic APCs and immunization, the naive T cells of the recipients differentiated into regulatory T (Treg) cells. Here, we demonstrate that after oral nickel treatment Jalpha18(-/-) mice, which lack invariant NKT (iNKT) cells, were not tolerized and failed to generate Treg cells. However, transfer of APCs from those Jalpha18(-/-) mice did tolerize WT recipients. Hence, during oral nickel administration, tolerogenic APCs are generated that require iNKT cell help for the induction of Treg cells. To obtain this help, the tolerogenic APCs must address the iNKT cells in a CD1-restricted manner. When Jalpha18(-/-) mice were used as recipients of cells from orally tolerized WT donors, the WT Treg cells transferred the tolerance, whereas WT APCs failed to do so, although they proved tolerogenic on transfer to WT recipients. However, Jalpha18(-/-) recipients did become susceptible to the tolerogenicity of transferred WT APCs when they were reconstituted with IL-4- and IL-10-producing CD4(+) iNKT cells. We conclude that CD4(+) iNKT cells are required for the induction of oral nickel tolerance and, in particular, for the infectious spread of tolerance from APCs to T cells. Once induced, these Treg cells, however, can act independently of iNKT cells.  相似文献   

12.
Breast cancer resistance protein (ABCG2), a member of the ATP-binding cassette transporters has been identified as a major determinant of multidrug resistance (MDR) in cancer cells, but ABC transporter inhibition has limited therapeutic value in vivo. In this research, we demonstrated that inhibition of efflux transporters ABCG2 induced the generation of tolerogenic DCs from human peripheral blood myeloid DCs (mDCs). ABCG2 expression was present in mDCs and was further increased by LPS stimulation. Treatment of CD1c+ mDCs with an ABCG2 inhibitor, Ko143, during LPS stimulation caused increased production of IL-10 and decreased production of pro-inflammatory cytokines and decreased expression of CD83 and CD86. Moreover, inhibition of ABCG2 in monocyte-derived DCs (MDDCs) abrogated the up-regulation of co-stimulatory molecules and production of pro-inflammatory cytokines in these cells in response to LPS. Furthermore, CD1c+ mDCs stimulated with LPS plus Ko143 inhibited the proliferation of allogeneic and superantigen-specific syngenic CD4+ T cells and promoted expansion of CD25+FOXP3+ regulatory T (Treg) cells in an IL-10-dependent fashion. These tolerogenic effects of ABCG2 inhibition could be abolished by ERK inhibition. Thus, we demonstrated that inhibition of ABCG2 in LPS-stimulated mDCs can potently induce tolerogenic potentials in these cells, providing crucial new information that could lead to development of better strategies to combat MDR cancer.  相似文献   

13.
Allergen-specific immunotherapy using peptides is an efficient treatment for allergic diseases. Recent studies suggest that the induction of CD4+ regulatory T (Treg) cells might be associated with the suppression of allergic responses in patients after allergen-specific immunotherapy. Our aim was to identify MHC class II promiscuous T cell epitopes for the birch pollen allergen Bet v 1 capable of stimulating Treg cells with the purpose of inhibiting allergic responses. Ag-reactive CD4+ T cell clones were generated from patients with birch pollen allergy and healthy volunteers by in vitro vaccination of PBMC using Bet v 1 synthetic peptides. Several CD4+ T cell clones were induced by using 2 synthetic peptides (Bet v 1(141-156) and Bet v 1(51-68)). Peptide-reactive CD4+ T cells recognized recombinant Bet v 1 protein, indicating that these peptides are produced by the MHC class II Ag processing pathway. Peptide Bet v 1(141-156) appears to be a highly MHC promiscuous epitope since T cell responses restricted by numerous MHC class II molecules (DR4, DR9, DR11, DR15, and DR53) were observed. Two of these clones functioned as typical Treg cells (expressed CD25, GITR, and Foxp3 and suppressed the proliferation and IL-2 secretion of other CD4+ T cells). Notably, the suppressive activity of these Treg cells required cell-cell contact and was not mediated through soluble IL-10 or TGF-beta. The identified promiscuous MHC class II epitope capable of inducing suppressive Treg responses may have important implication for the development of peptide-based Ag-specific immunotherapy to birch pollen allergy.  相似文献   

14.
15.
Different functions have been attributed to natural regulatory CD4+CD25+FOXP+ (Treg) cells during malaria infection. Herein, we assessed the role for Treg cells during infections with lethal (DS) and non-lethal (DK) Plasmodium chabaudi adami parasites, comparing the levels of parasitemia, inflammation and anaemia. Independent of parasite virulence, the population of splenic Treg cells expanded during infection, and the absolute numbers of activated CD69+ Treg cells were higher in DS-infected mice. In vivo depletion of CD25+ T cells, which eliminated 80% of CD4+FOXP3+CD25+ T cells and 60-70% of CD4+FOXP3+ T cells, significantly decreased the number of CD69+ Treg cells in mice with lethal malaria. As a result, higher parasite burden and morbidity were measured in the latter, whereas the kinetics of infection with non-lethal parasites remained unaffected. In the absence of Treg cells, parasite-specific IFN-gamma responses by CD4+ T cells increased significantly, both in mice with lethal and non-lethal infections, whereas IL-2 production was only stimulated in mice with non-lethal malaria. Following the depletion of CD25+ T cells, the production of IL-10 by CD90(-) cells was also enhanced in infected mice. Interestingly, a potent induction of TNF-alpha and IFN-gamma production by CD4+ and CD90(-) lymphocytes was measured in DS-infected mice, which also suffered severe anaemia earlier than non-depleted infected controls. Taken together, our data suggest that the expansion and activation of natural Treg cells represent a counter-regulatory response to the overwhelming inflammation associated with lethal P.c. adami. This response to infection involves TH1 lymphocytes as well as cells from the innate immune system.  相似文献   

16.
Regulation of CD8 T cell expansion and contraction is essential for successful immune defense against intracellular pathogens. IL-10 is a regulatory cytokine that can restrict T cell responses by inhibiting APC functions. IL-10, however, can also have direct effects on T cells. Although blockade or genetic deletion of IL-10 enhances T cell-mediated resistance to infections, the extent to which IL-10 limits in vivo APC function or T cell activation/proliferation remains unknown. Herein, we demonstrate that primary and memory CD8 T cell responses following Listeria monocytogenes infection are enhanced by the absence of IL-10. Surface expression of the IL-10R is transiently up-regulated on CD8 T cells following activation, suggesting that activated T cells can respond to IL-10 directly. Consistent with this notion, CD8 T cells lacking IL-10R2 underwent greater expansion than wild-type T cells upon L. monocytogenes infection. The absence of IL-10R2 on APCs, in contrast, did not enhance T cell responses following infection. Our studies demonstrate that IL-10 produced during bacterial infection directly limits expansion of pathogen-specific CD8 T cells and reveal an extrinsic regulatory mechanism that modulates the magnitude of memory T cell responses.  相似文献   

17.
Several evidences suggest that regulatory T cells (Treg) promote Th17 differentiation. Based on this hypothesis, we tested the effect of IL-17A neutralization in a model of skin transplantation in which long-term graft survival depends on a strong in vivo Treg expansion induced by transient exogenous IL-2 administration. As expected, IL-2 supplementation prevented rejection of MHC class II disparate skin allografts but, surprisingly, not in IL-17A-deficient recipients. We attested that IL-17A was not required for IL-2-mediated Treg expansion, intragraft recruitment or suppressive capacities. Instead, IL-17A prevented allograft rejection by inhibiting Th1 alloreactivity independently of Tregs. Indeed, T-bet expression of naive alloreactive CD4+ T cells and the subsequent Th1 immune response was significantly enhanced in IL-17A deficient mice. Our results illustrate for the first time a protective role of IL-17A in CD4+-mediated allograft rejection process.  相似文献   

18.
CD1d-restricted NKT cells and CD4+CD25+ regulatory T (Treg) cells are thymus-derived subsets of regulatory T cells that have an important role in the maintenance of self-tolerance. Whether NKT cells and Treg cells cooperate functionally in the regulation of autoimmunity is not known. We have explored this possibility in experimental autoimmune myasthenia gravis (EAMG), an animal model of human myasthenia gravis, induced by immunization of C57BL/6 mice with the autoantigen acetylcholine receptor. We have demonstrated that activation of NKT cells by a synthetic glycolipid agonist of NKT cells, alpha-galactosylceramide (alpha-GalCer), inhibits the development of EAMG. alpha-GalCer administration in EAMG mice increased the size of the Treg cell compartment, and augmented the expression of foxp3 and the potency of CD4+CD25+ cells to inhibit proliferation of autoreactive T cells. Furthermore, alpha-GalCer promoted NKT cells to transcribe the IL-2 gene and produce IL-2 protein. Depletion of CD25+ cells or neutralization of IL-2 reduced the therapeutic effect of alpha-GalCer in this model. Thus, alpha-GalCer-activated NKT cells can induce expansion of CD4+CD25+ Treg cells, which in turn mediate the therapeutic effects of alpha-GalCer in EAMG. Induced cooperation of NKT cells and Treg cells may serve as a superior strategy to treat autoimmune disease.  相似文献   

19.
Xenotransplantation is a potential solution to the organ donor shortage. Immunosuppression is required for successful application of xenotransplantation but may lead to infection and cancer. Thus, strategies for immune tolerance induction need to be developed. Polyclonal regulatory T cells (Treg) play a central role in the induction and maintenance of immune tolerance and have been shown to protect against islet xenograft rejection in vivo. However, global immune suppression may be mediated by polyclonal Treg immunotherapy and a simple method for in vitro expansion of xenoantigen-specific Treg for efficient Treg application becomes necessary. Human Treg isolated from peripheral blood mononuclear cells (PBMCs) were initially cultured with anti-CD3/CD28 beads, rapamycin and IL-2 for 7 days as polyclonal expansion. Expanded Treg were then cocultured with irradiated porcine PBMC as xenoantigen stimulation for three subsequent cycles with 7 days for each cycle in the presence of IL-2 and anti-CD3/CD28 beads. Treg phenotype and suppressive capacity were assessed after each cycle of xenoantigen stimulation. Treg expanded with one cycle of xenoantigen stimulation retained Treg suppressive phenotype but acquired no xenoantigen specificity along with poor expansion efficiency, whereas expansion with two-cycle xenoantigen stimulation resulted in not only more than 800-fold Treg expansion but highly suppressive xenoantigen-specific Treg with effector Treg phenotype. However further increase of stimulation cycles resulted in reduced Treg suppressive potency. This study provides a simple approach to obtain high numbers of xenoantigen-specific Treg for immune tolerance induction in xenotransplantation.  相似文献   

20.
Dendritic cells (DC) are key regulators of immune responses. Mature DC are traditionally considered to be immunogenic, although there is accumulating evidence that they can also be tolerogenic and induce Ag-specific regulatory T cells (Tregs). However, the mechanism of this Treg induction and the site of Treg action in vivo are yet to be defined. In this study, using the experimental model of interphotoreceptor retinoid-binding protein peptide (1-20)-induced experimental autoimmune uveoretinitis, we show that s.c. inoculation of IRBP-peptide-pulsed IL-10-producing LPS-activated mature DC (IL-10-DC) at one site (the cervical region) suppresses autoimmunity induced at a separate site (the inguinal region). Our data show that s.c. IL-10-DC correlates with an increase in the number of CD4(+)CD25(+)Foxp3(+) Tregs at the DC-draining lymph nodes (DC-dLN). However, although MHCII(-/-) IL-10-DC also induces Treg expansion at this DC-dLN, they failed to suppress experimental autoimmune uveoretinitis. Furthermore, unlike wild-type IL-10-DC, MHCII(-/-) IL-10-DC did not correlate with an increase in the percentage of Tregs expressing CD62L at the DC-dLN, nor did they associate with an increase in Treg number at a distal site. Similar effects were also observed after s.c. hen egg lysozyme-pulsed IL-10-DC, which produced a strong reduction in the number and activation of proliferating Ag-specific CD4(+) 3A9 T effector cells. We therefore propose that IL-10-DC require MHCII-dependent Ag presentation, and hence TCR ligation, to promote CD62L-mediated trafficking of Tregs to the site of T effector cell priming, where they suppress autoimmunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号