首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular characterization based on 16s rDNA gene sequence analysis of bacterial colonies isolated from endosulfan contaminated soil showed the presence of Ochrobacterum sp, Burkholderia sp, Pseudomonas alcaligenes, Pseudomonas sp and Arthrobacter sp which degraded 57–90% of α-endosulfan and 74–94% of β-endosulfan after 7days. Whole cells of Pseudomonas sp and Pseudomonas alcaligenes showed 94 and 89% uptake of α-isomer and 86 and 89% of β-endosulfan respectively in 120 min. In Pseudomonas sp, endosulfan sulfate was the major metabolite detected during the degradation of α-isomer, with minor amount of endosulfan diol while in Pseudomonas alcaligenes endosulfan diol was the only product during α-endosulfan degradation. Whole cells of Pseudomonas sp also utilized 83% of endosulfan sulfate in 120 min. In situ applications of the defined consortium consisting of Pseudomonas alcaligenes and Pseudomonas sp (1:1) in plots contaminated with endosulfan showed that 80% of α-endosulfan and 65% of β-endosulfan was degraded after 12 weeks of incubation. Endosulfan sulfate formed during endosulfan degradation was subsequently degraded to unknown metabolites. ERIC-PCR analysis indicated 80% survival of introduced population of Pseudomonas alcaligenes and Pseudomonas sp in treated plots.  相似文献   

2.
Singh NS  Singh DK 《Biodegradation》2011,22(5):845-857
Endosulfan is one of the most widely used wide spectrum cyclodiene organochlorine insecticide. In environment, endosulfan can undergo either oxidation or hydrolysis reaction to form endosulfan sulfate and endosulfan diol respectively. Endosulfan sulfate is as toxic and as persistent as its parent isomers. In the present study, endosulfan degrading bacteria were isolated from soil through selective enrichment technique using sulfur free medium with endosulfan as sole sulfur source. Out of the 8 isolated bacterial strains, strain C8B was found to be the most efficient endosulfan degrader, degrading 94.12% α-endosulfan and 84.52% β-endosulfan. The bacterial strain was identified as Achromobacter xylosoxidans strain C8B on the basis of 16S rDNA sequence similarity. Achromobacter xylosoxidans strain C8B was also found to degrade 80.10% endosulfan sulfate using it as sulfur source. No known metabolites were found to be formed in the culture media during the entire course of degradation. Besides, the bacterial strain was found to degrade all the known endosulfan metabolites. There was marked increase in the quantity of released CO2 from the culture media with endosulfan as sulfur source as compared to MgSO4 suggesting that the bacterial strain, Achromobacter xylosoxidans strain C8B probably degraded endosulfan completely through the formation of endosulfan ether.  相似文献   

3.
A soil bacterium SW4, capable of degrading the sulfonylurea herbicide ethametsulfuron-methyl (ESM), was isolated from the bottom soil of a herbicide factory. Based on physiological characteristics, biochemical tests and phylogenetic analysis of the 16S rRNA gene sequence, the strain was identified as a Pseudomonas sp. The total degradation of ESM in the medium containing glucose was up to 84.6% after 6 days of inoculation with SW4 strain. The inoculation of strain SW4 to soil treated with ESM resulted in a higher degradation rate than in noninoculated soil regardless of the soil sterilized or nonsterilized. Five metabolites of ESM degradation were analyzed by liquid chromatography/mass spectrometry. Based on the identified products, strain SW4 seemed to degrade ESM after two separate and different pathways: one leads to the cleavage of the sulfonylurea bridge, whereas the other to the dealkylation and opening of the triazine ring of ESM.  相似文献   

4.
Zhang W  Xu D  Niu Z  Yin K  Liu P  Chen L 《Biodegradation》2012,23(3):431-439
Given that the intensive application of sulfonamides in aquaculture, animal husbandry and malaria treatment has lead to an increase in sulfonamide discharge into the environment, there is an increasing need to find a way to remediate sulfonamide-contaminated sites. The bacterial strain DX7 was isolated from a marine environment and is capable of degrading sulfadoxine. DX7 was identified as a Pseudomonas sp. based on 16S rRNA gene sequencing. Approximately 30% of sulfadoxine was degraded after Pseudomonas sp. DX7 was inoculated into mineral salt plus tryptone media containing 10 mg l−1 sulfadoxine for 2 days. The degradation efficiency under different environmental conditions was characterized using HPLC. The optimal temperature and pH for sulfadoxine biodegradation were around 30°C and 6.0, respectively. The optimal concentrations of sulfadoxine and tryptone for sulfadoxine biodegradation were determined to be approximately 30 mg l−1 and between 2.0 and 8.0 g l−1, respectively. Cytotoxicity analysis indicated that the metabolites of sulfadoxine generated by Pseudomonas sp. DX7 showed significantly reduced cytotoxicity to Hela cells. These results suggest that Pseudomonas sp. DX7 is a new bacterial resource for degrading sulfadoxine and indicate the potential of the isolated strain in the bioremediation of sulfadoxine-contaminated environments.  相似文献   

5.
For bioremediation of toxic endosulfan, endosulfan degradation bacteria, which do not form toxic endosulfan sulfate, were isolated from various soil samples using endosulfan as sole carbon and energy source. Among the 40 isolated bacteria, strain KE-1, which was identified as Klebsiella pneumoniae by physiological and 16S rDNA sequence analysis, showed superior endosulfan degradation activity. Analysis of culture pH, growth, free sulfate and endosulfan and its metabolites demonstrated that KE-1 biologically degrades 8.72 microg endosulfan ml(-1) day(-1) when incubated with 93.9 microg ml(-1) endosulfan for 10 days without formation of toxic endosulfan sulfate. Our results suggest that K. pneumoniae KE-1 degraded endosulfan by a non-oxidative pathway and that strain KE-1 has potential as a biocatalyst for endosulfan bioremediation.  相似文献   

6.
Zearalenone (ZEN) is a fusarotoxin converted predominantly into α‐zearalenol (α‐Zol) and β‐zearalenol (β‐Zol) by hepatic hydroxysteroid dehydrogenases. The feeding of naturally contaminated grains with ZEN was associated with hyperestrogenic and adverse effects on humans and animals. There is a lack of information on the attribution of the toxic effects of these toxins. One wonders if these effects are due to the parent molecule (ZEN) or to its major metabolites (α‐Zol and β‐Zol). Using human Caco‐2 cells, we looked for the molecular mechanisms of toxicity of ZEN, α‐Zol, and β‐Zol. Toxicity effects were studied by MTT viability assay and oxidative stress induction by measuring malondialdehyde (MDA) generation. To check whether the oxidative stress induction was associated to DNA lesions, we looked for DNA fragmentation by means of the Comet and the diphenylamine assays. To specify cell death pathway, we investigated caspase‐3 activation, confirmed by poly(ADP‐ribose) polymerase cleavage and by Bcl‐2 depletion. Our results clearly demonstrated that ZEN as well as its two metabolites presented variable toxic effects. They induced cell death and an increase in MDA generation. These effects were associated to DNA fragmentation as well as caspase‐3 activation. The observed toxic effects seem to be relieved by the metabolism of ZEN into α‐Zol and β‐Zol. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:233–243, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20284  相似文献   

7.
Aims: Isolation and characterization of nicotine‐degrading bacteria with advantages suitable for the treatment of nicotine‐contaminated water and soil and detection of their metabolites. Methods and Results: A novel nicotine‐degrading bacterial strain was isolated from tobacco field soil. Based on morphological and physiochemical properties and sequence of 16S rDNA, the isolate was identified as Pseudomonas sp., designated as CS3. The optimal culture conditions of strain CS3 for nicotine degradation were 30°C and pH 7·0. However, the strain showed broad pH adaptability with high nicotine‐degrading activity between pH 6·0 and 10·0. Strain CS3 could decompose nicotine nearly completely within 24 h in liquid culture (1000 mg L?1 nicotine) or within 72 h in soil (1000–2500 mg kg?1 nicotine) and could endure up to 4000 mg L?1 nicotine in liquid media and 5000 mg kg?1 nicotine in soil. Degradation tests in flask revealed that the strain had excellent stability and high degradation activity during the repetitive degradation processes. Additionally, three intermediates, 3‐(3,4‐dihydro‐2H‐pyrrol‐5‐yl) pyridine, 1‐methyl‐5‐(3‐pyridyl) pyrrolidine‐2‐ol and cotinine, were identified by GC/MS and NMR analyses. Conclusions: The isolate CS3 showed outstanding nicotine‐degrading characteristics such as high degradation efficiency, strong substrate endurance, broad pH adaptability, and stability and persistence in repetitive degradation processes and may serve as an excellent candidate for applications in the bioaugmentation process to treat nicotine‐contaminated water and soil. Also, detection of nicotine metabolites suggests that strain CS3 might decompose nicotine via a unique nicotine‐degradation pathway. Significance and Impact of the Study: The advantage of applying the isolated strain lies in broad pH adaptability and stability and persistence in repetitive use, the properties previously less focused in other nicotine‐degrading micro‐organisms. The strain might decompose nicotine via a nicotine‐degradation pathway different from those of other nicotine‐utilizing Pseudomonas bacteria reported earlier, another highlight in this study.  相似文献   

8.
Bacteria degrading α‐(1→3)‐glucan were sought in the gut of fungivorous insects feeding on fruiting bodies of a polypore fungus Laetiporus sulphureus, which are rich in this polymer. One isolate, from Diaperis boleti, was selected in an enrichment culture in the glucan‐containing medium. The bacterium was identified as Paenibacillus sp. based on the results of the ribosomal DNA analysis. The Paenibacillus showed enzyme activity of 4.97 mU/cm3 and effectively degraded fungal α‐(1→3)‐glucan, releasing nigerooligosaccharides and a trace amount of glucose. This strain is the first reported α‐(1→3)‐glucan‐degrading microorganism in the gut microbiome of insects inhabiting fruiting bodies of polypore fungi.  相似文献   

9.
Aim: To determine optimal environmental conditions for achieving biodegradation of α‐ and β‐endosulfan in soil slurries following inoculation with an endosulfan degrading strain of Pseudomonas aeruginosa. Methods and Results: Parameters that were investigated included soil texture, soil slurry: water ratios, initial inoculum size, pH, incubation temperature, aeration, and the use of exogenous sources of organic and amino acids. The results showed that endosulfan degradation was most effectively achieved at an initial inoculum size of 600 μl (OD = 0·86), incubation temperature of 30°C, in aerated slurries at pH 8, in loam soil. Under these conditions, the bacterium removed more than 85% of spiked α‐ and β‐endosulfan (100 mg l?1) after 16 days. Abiotic degradation in noninoculated control medium within same incubation period was about 16%. Biodegradation of endosulfan varied in different textured soils, being more rapid in course textured soil than in fine textured soil. Increasing the soil contents in the slurry above 15% resulted in less biodegradation of endosulfan. Exogenous application of organic acids (citric acid and acetic acid) and amino acids (l ‐methionine and l ‐cystein) had stimulatory and inhibitory effects, respectively, on biodegradation of endosulfan. Conclusion: The results of this study demonstrated that biodegradation of endosulfan by Ps. aeruginosa in soil sediments enhanced significantly under optimized environmental conditions. Significance and Impact of the Study: Endosulfan is a commonly used pesticide that can contaminate soil, wetlands and groundwater. Our study demonstrates that bioaugmentation of contaminated soils with an endosulfan degrading bacterium under optimized conditions provides an effective bioremediation strategy.  相似文献   

10.
Aim: To screen and identify bacteria from contaminated soil samples which can degrade hexachlorocyclohexane (HCH)‐isomers based on dechlorinase enzyme activity and characterize genes and metabolites. Methods and Results: Dechlorinase activity assays were used to screen bacteria from contaminated soil samples for HCH‐degrading activity. A bacterium able to grow on α‐, β‐, γ‐ and δ‐HCH as the sole carbon and energy source was identified. This bacterium was a novel species belonging to the Sphingomonas and harbour linABCDE genes similar to those found in other HCH degraders. γ‐Pentachlorocyclohexene 1,2,4‐trichlorobenzene and chlorohydroquinone were identified as metabolites. Conclusions: The study demonstrates that HCH‐degrading bacteria can be identified from large environmental sample‐based dehalogenase enzyme assay. This kind of screening is more advantageous compared to selective enrichment as it is specific and rapid and can be performed in a high‐throughput manner to screen bacteria for chlorinated compounds. Significance and Impact of the Study: The chlorinated pesticide HCH is a persistent and toxic environmental pollutant which needs to be remediated. Isolation of diverse bacterial species capable of degrading all the isomers of HCH will help in large‐scale bioremediation in various parts of the world.  相似文献   

11.
Pseudomonas sp. strain NGK1, a soil bacterium isolated by naphthalene enrichment from biological waste effluent treatment, capable of utilizing 2-methylnaphthalene as sole source of carbon and energy. To deduce the pathway for biodegradation of 2-methylnaphthalene, metabolites were isolated from the spent medium and identified by thin-layer chromatography and high-performance liquid chromatography. The characterization of purified metabolites, oxygen uptake studies, and enzyme activities revealed that the strain degrades 2-methylnaphthalene through more than one pathway. The growth of the bacterium, utilization of 2-methylnaphthalene, and 4-methylsalicylate accumulation by Pseudomonas sp. strain NGK1 were studied at various incubation periods. Received: 20 March 2001 / Accepted: 25 April 2001  相似文献   

12.
Biodegradation of endosulfan, a chlorinated cyclodiene insecticide, is generally accompanied by production of the more toxic and more persistent metabolite, endosulfan sulfate. Since our reported endosulfan degrader, Klebsiella pneumoniae KE-1, failed to degrade endosulfan sulfate, we tried to isolate an endosulfan sulfate degrader from endosulfan-polluted soils. Through repetitive enrichment and successive subculture using mineral salt medium containing endosulfan or endosulfan sulfate as the sole source of carbon and energy, we isolated a bacterium capable of degrading endosulfan sulfate as well as endosulfan. The bacterium KE-8 was identified as Klebsiella oxytoca from the results of 16S rDNA sequence analysis. In biodegradation assays with KE-8 using mineral salt medium containing endosulfan (150 mg l–1) or endosulfan sulfate (173 mg l–1), the biomass was rapidly increased to an optical density at 550 nm of 1.9 in 4 days and the degradation constants for - and -endosulfan, and endosulfan sulfate were 0.3084, 0.2983 and 0.2465 day–1, respectively. Analysis of the metabolites further suggested that K. oxytoca KE-8 has high potential as a biocatalyst for bioremediation of endosulfan and/or endosulfan sulfate.  相似文献   

13.
Aims: To isolate a new Halomonas sp. strain capable of degrading tyrosol, a toxic compound present in olive mill wastewater, through the homogentisic acid (HGA) pathway. Methods and Results: A moderately halophilic Gram‐negative bacterium belonging to the Halomonas genus and designated strain TYRC17 was isolated from olive processing effluents. This strain was able to completely degrade tyrosol (2‐(p‐hydroxyphenyl)‐ethanol), a toxic compound found in such effluent. Tyrosol degradation begins by an oxidation to 4‐hydroxyphenylacetic acid (HPA), which is then converted into HGA by an HPA 1‐monooxygenase, while closest Halomonas species degrade tyrosol through 3,4‐dihydroxyphenylacetic acid (DHPA). In the presence of transition metals, HGA underwent a pH‐dependent abiotic conversion into benzoquinone acetic acid, then into 2,5‐dihydroxybenzaldehyde (gentisaldehyde) and pyomelanin, by oxidative decarboxylation and polymerization, respectively. Conclusions: Tyrosol degradation via HGA by the new Halomonas sp. strain TYRC17 was complete in the absence of trace elements. In their presence, HGA was abiotically converted into gentisaldehyde and pyomelanin. Significance and Impact of the Study: This is the first report on tyrosol degradation via the HGA pathway under hypersaline conditions and on the oxidative decarboxylation of HGA into gentisaldehyde. It underlines the importance of the Halomonas genus in the bioremediation of toxic‐contaminated sites.  相似文献   

14.
While the cis‐acyltransferase modular polyketide synthase assembly lines have largely been structurally dissected, enzymes from within the recently discovered trans‐acyltransferase polyketide synthase assembly lines are just starting to be observed crystallographically. Here we examine the ketoreductase (KR) from the first polyketide synthase module of the bacillaene nonribosomal peptide synthetase/polyketide synthase at 2.35‐Å resolution. This KR naturally reduces both α‐ and β‐keto groups and is the only KR known to do so during the biosynthesis of a polyketide. The isolated KR not only reduced an N‐acetylcysteamine‐bound β‐keto substrate to a D ‐β‐hydroxy product, but also an N‐acetylcysteamine‐bound α‐keto substrate to an L ‐α‐hydroxy product. That the substrates must enter the active site from opposite directions to generate these stereochemistries suggests that the acyl‐phosphopantetheine moiety is capable of accessing very different conformations despite being anchored to a serine residue of a docked acyl carrier protein. The features enabling stereocontrolled α‐ketoreduction may not be extensive since a KR that naturally reduces a β‐keto group within a cis‐acyltransferase polyketide synthase was identified that performs a completely stereoselective reduction of the same α‐keto substrate to generate the D ‐α‐hydroxy product. A sequence analysis of trans‐acyltransferase KRs reveals that a single residue, rather than a three‐residue motif found in cis‐acyltransferase KRs, is predictive of the orientation of the resulting β‐hydroxyl group. Proteins 2014; 82:2067–2077. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
Introduction – Bioautographic assays using TLC play an important role in the search for active compounds from plants. A TLC assay has previously been established for the detection of β‐glucosidase inhibitors but not for α‐glucosidase. Nonetheless, α‐glucosidase inhibition is an important target for therapeutic agents against of type 2 diabetes and anti‐viral infections. Objective – To develop a TLC bioautographic method to detect α‐ and β‐glucosidase inhibitors in plant extracts. Methodology – The enzymes α‐ and β‐d ‐glucosidase were dissolved in sodium acetate buffer. After migration of the samples, the TLC plate was sprayed with enzyme solution and incubated at room temperature for 60 min in the case of α‐d ‐glucosidase, and 37°C for 20 min in the case of β‐d ‐glucosidase. For detection of the active enzyme, solutions of 2‐naphthyl‐α‐D‐glucopyranoside or 2‐naphthyl‐β‐D‐glucopyranoside and Fast Blue Salt were mixed at a ratio of 1 : 1 (for α‐d ‐glucosidase) or 1 : 4 (for β‐d ‐glucosidase) and sprayed onto the plate to give a purple background colouration after 2–5 min. Results – Enzyme inhibitors were visualised as white spots on the TLC plates. Conduritol B epoxide inhibited α‐d ‐glucosidase and β‐d ‐glucosidase down to 0.1 µg. Methanol extracts of Tussilago farfara and Urtica dioica after migration on TLC gave enzymatic inhibition when applied in amounts of 100 µg for α‐glucosidase and 50 µg for β‐glucosidase. Conclusion – The screening test was able to detect inhibition of α‐ and β‐glucosidases by pure reference substances and by compounds present in complex matrices, such as plant extracts. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Pseudomonas sp. strain DJ-12 is a bacterial isolate capable of degrading 4-chlorobiphenyl (4CBP) as a carbon and energy source. The catabolic degradation of 4CBP by the strain DJ-12 was studied along with the genetic organization of the genes responsible for the crucial steps of the catabolic degradation. The catabolic pathway was characterized as being conducted by consecutive reactions of themeta-cleavage of 4CBP, hydrolytic dechlorination of 4-chlorobenzoate (4CBA), hydroxylation of 4-hydroxybenzoate, andmeta-cleavage of protocatechuate. ThepcbC gene responsible for themeta-cleavage of 4CBP only showed a 30 to 40% homology in its deduced amino acid sequence compared to those of the corresponding genes from other strains. The amino acid sequence of 4CBA-CoA dechlorinase showed an 86% homology with that ofPseudomonas sp. CBS3, yet only a 50% homology with that ofArthrobacter spp. However, thefcb genes for the hydrolytic dechlorination of 4CBA inPseudomonas sp. DJ-12 showed an uniquely different organization from those of CBS3 and other reported strains. Accordingly, these results indicate that strain DJ-12 can degrade 4CBP completely viameta-cleavage and hydrolytic dechlorination using enzymes that are uniquely different in their amino acid sequences from those of other bacterial strains with the same degradation activities.  相似文献   

17.
18.
In the present study, an endosulfan degrading strain Paenibacillus sp. ISTP10 was isolated from activated sludge. Soil microcosms were set up with endosulfan (60 mg kg−1 of dry soil) to evaluate the degradation potency of the strain. Soil samples from the microcosms were collected at regular intervals and the organic compounds were extracted with hexane. GC–MS analysis of the soil extract showed the formation of metabolites of endosulfan such as endosulfan diol and endosulfan ether confirming that the strain degrades endosulfan via a hydrolytic pathway. Methyl tetrazolium (MTT) assay for cytotoxicity and alkaline comet assay for genotoxicity were carried out in human hepato-carcinoma cell line HepG2 to evaluate the toxic potential of endosulfan and its degraded metabolites. The bacterium reduced toxicity as determined by an increase in LC50 value by 75.86 fold and a reduction in Olive Tail Moment by 21 fold after 30 days of treatment. The by-products of degradation were found to be less toxic than the parent compound showing the biodegradation and detoxification potential of endosulfan by Paenibacillus sp. ISTP10.  相似文献   

19.
A bacterial consortium capable of degrading chloroaromatic compounds was isolated from pulp and paper mill effluents by selective enrichment on 4-chlorobenzoic acid as sole source of carbon and energy. The four different bacterial isolates obtained from bacterial consortium were identified as Pseudomonas aeruginosa AY792969 (A), P. aeruginosa PA01 NC (B), Pseudomonas sp. ZZ5 DQ113452 (C) and Pseudomonas sp. AY762360 (D) based on their morphological and biochemical characteristics and by phylogenetic analysis based on 16S rRNA gene sequences. These bacterial isolates were found to be versatile in degrading a variety of chloroaromatic compounds including fluoro- and iodobenzoic acids. P. aeruginosa PA01 NC utilized 4-chlorobenzoic acid at 2 g/l as growth substrate. Biodegradation studies have revealed that this organism degraded 4-chlorobenzoic acid through 4-chlorocatechol which was further metabolized by ortho-cleavage pathway and the dechlorination occurred after the ring-cleavage.  相似文献   

20.
Kinetics of endosulfan degradation by Phanerochaete chrysosporium   总被引:1,自引:0,他引:1  
The chlorinated pesticide, endosulfan, could be degraded by Phanerochaete chrysosporium under non-ligninolytic conditions, and this did not require direct contact with mycelium. The major metabolites formed were endosulfan sulfate and endosulfan diol. The rate of degradation depended on the initial concentration. With 2.5 mg endosulfan l–1, degradation was at 0.23 mg l–1 day–1. The degradation could be described using a nonlinear rate expression that was similar to the Michaelis–Menten equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号