首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ammonium (NH4+) represents a primary nitrogen source for many plants, its effective transport into and between tissues and further assimilation in cells determine greatly plant nitrogen use efficiency. However, biological components involved in NH4+ movement in woody plants are unclear. Here, we report kinetic evidence for cotton NH4+ uptake and molecular identification of certain NH4+ transporters (AMTs) from cotton (Gossypium hirustum). A substrate‐influx assay using 15N‐isotope revealed that cotton possessed a high‐affinity transport system with a Km of 58 μM for NH4+. Sequence analysis showed that GhAMT1.1–1.3 encoded respectively a membrane protein containing 485, 509 or 499 amino acids. Heterologous functionality test demonstrated that GhAMT1.1–1.3 expression mediated NH4+ permeation across the plasma membrane (PM) of yeast and/or Arabidopsis qko‐mutant cells, allowing a growth restoration of both mutants on NH4+. Quantitative PCR measurement showed that GhAMT1.3 was expressed in roots and leaves and markedly up‐regulated by N‐starvation, repressed by NH4+ resupply and regulated diurnally and age‐dependently, suggesting that GhAMT1.3 should be a N‐responsive gene. Importantly, GhAMT1.3 expression in Arabidopsis improved plant growth on NH4+ and enhanced total nitrogen accumulation (~50% more), conforming with the observation of 2‐fold more NH4+ absorption by GhAMT1.3‐transformed qko plant roots during a 1‐h root influx period. Together with its targeting to the PM and saturated transport kinetics with a Km of 72 μM for NH4+, GhAMT1.3 is suggested to be a high‐affinity NH4+ permease that may play a significant role in cotton NH4+ acquisition and utilization, adding a new member in the plant AMT family.  相似文献   

2.
Fungal is a physiological trail and its understanding in the assimilation with the transfer of carbon (C) cum nitrogen (N) or (C/N) to orchid-seedlings have not been determined. Labelled stable isotopes 13C and 15N were used to plan the flow of C and N between orchid plants and mycorrhizal connotations in-terms of bulk transfer for C/N. This study attends to comprehend the mechanism, supporting mycorrhizal fungi which influences on orchid-seedling growth. Determined integration and transfer of C/N from amino acids (AA), ammonium nitrate (NH4NO3) and sugar for orchid-plant may lead to understand these mechanisms. This current study tries to estimate the importance of organic compounds as a source for C/N over the inorganic-NH4NO3. Generally, after begging of germination and when it is found to be associated to the nutrient resource, organic compound enhance the biomass accumulation of two orchid species. AA significantly increase the mass of 13C assimilated by two species. With amino acids the concentration of 13C in two species was greater than with NH4NO3 and sugar. At another phase, amount of 15N content shoots was a higher value in Anacamptis laxiflora shoots assimilated substantially additional of 15N with NH4NO3 plus sugar compared with ammonium nitrate only. This study showed that two terrestrial orchids species are reliant on organic compounds as a source of carbon and nitrogen more than inorganic compounds.  相似文献   

3.
An understanding of the mechanisms underlying ammonium (NH4+) toxicity in plants requires prior knowledge of the metabolic uses for nitrogen (N) and carbon (C). We have recently shown that pea plants grown at high NH4+ concentrations suffer an energy deficiency associated with a disruption of ionic homeostasis. Furthermore, these plants are unable to adequately regulate internal NH4+ levels and the cell‐charge balance associated with cation uptake. Herein we show a role for an extra‐C application in the regulation of C–N metabolism in NH4+‐fed plants. Thus, pea plants (Pisum sativum) were grown at a range of NH4+ concentrations as sole N source, and two light intensities were applied to vary the C supply to the plants. Control plants grown at high NH4+ concentration triggered a toxicity response with the characteristic pattern of C‐starvation conditions. This toxicity response resulted in the redistribution of N from amino acids, mostly asparagine, and lower C/N ratios. The C/N imbalance at high NH4+ concentration under control conditions induced a strong activation of root C metabolism and the upregulation of anaplerotic enzymes to provide C intermediates for the tricarboxylic acid cycle. A high light intensity partially reverted these C‐starvation symptoms by providing higher C availability to the plants. The extra‐C contributed to a lower C4/C5 amino acid ratio while maintaining the relative contents of some minor amino acids involved in key pathways regulating the C/N status of the plants unchanged. C availability can therefore be considered to be a determinant factor in the tolerance/sensitivity mechanisms to NH4+ nutrition in plants.  相似文献   

4.
Scott EE  Rothstein DE 《Oecologia》2011,167(2):547-557
The relationship between inorganic nitrogen (N) cycling and plant productivity is well established. However, recent research has demonstrated the ability of plants to take up low molecular weight organic N compounds (i.e., amino acids) at rates that often rival those of inorganic N forms. In this study, we hypothesize that temperate forest tree species characteristic of low-fertility habitats will prefer amino acids over species characteristic of high-fertility habitats. We measured the uptake of 15N-labeled amino acids (glycine, glutamine, arginine, serine), ammonium (NH4 +), and nitrate (NO3 ) by four tree species that commonly occur in eastern North America, where their abundances have been correlated with inorganic N availability. Specific uptake rates of amino acids were largely similar for all tree species; however, high-fertility species took up NH4 + at rates more than double those of low-fertility species, rendering amino acid N relatively more important to the N nutrition of low-fertility species. Low-fertility species acquired over four times more total N from arginine compared to NH4 + and NO3 ; high-fertility species acquired the most N from NH4 +. Arginine had the highest uptake rates of any amino acid by all species; there were no significant differences in uptake rates of the remaining amino acids. Our results support the idea that the dominant species in a particular habitat are those best able to utilize the most available N resources.  相似文献   

5.
Herbivore damage by chewing insects activates jasmonate (JA) signalling that can elicit systemic defense responses in rice. Few details are known, however, concerning the mechanism, whereby JA signalling modulates nutrient status in rice in response to herbivory. (15NH4)2SO4 labelling experiments, proteomic surveys, and RT‐qPCR analyses were used to identify the roles of JA signalling in nitrogen (N) uptake and allocation in rice plants. Exogenous applications of methyl jasmonate (MeJA) to rice seedlings led to significantly reduced N uptake in roots and reduced translocation of recently‐absorbed 15N from roots to leaves, likely occurring as a result of down‐regulation of glutamine synthetase cytosolic isozyme 1–2 and ferredoxin–nitrite reductase. Shoot MeJA treatment resulted in a remobilization of endogenous unlabelled 14N from leaves to roots, and root MeJA treatment also increased 14N accumulation in roots but did not affect 14N accumulation in leaves of rice. Additionally, proteomic and RT‐qPCR experiments showed that JA‐mediated plastid disassembly and dehydrogenases GDH2 up‐regulation contribute to N release in leaves to support production of defensive proteins/compounds under N‐limited condition. Collectively, our results indicate that JA signalling mediates large‐scale systemic changes in N uptake and allocation in rice plants.  相似文献   

6.
Direct uptake of organic nitrogen (ON) compounds, rather than inorganic N, by plant roots has been hypothesized to constitute a significant pathway for plant nutrition. The aim of this study was to test whether tomatoes (Solanum lycopersicum cv. Huying932) can take up ON directly from the soil by using 15NH4Cl, K15NO3, 1, 2-13C215N-glycine labeling techniques. The 13C and 15N in the plants increased significantly indicating that a portion of the glycine-N was taken up in the form of intact amino acids by the tomatoes within 48 h after injection into the soil. Regression analysis of excess 13C against excess 15N showed that approximately 21% of the supplied glycine-N was taken up intact by the tomatoes. Atom% excesses of 15N and 13C in the roots were higher than in any shoots. Results also indicated rapid turnover of amino acids (e.g., glycine) by soil microorganisms, and the poor competitive ability of tomatoes in absorbing amino acids from the soil solution. This implies that tomatoes can take up ON in an intact form from the soil despite the rapid turnover of organic N usually found under such conditions. Given the influence of climatic change and N pollution, further studies investigating the functional ecological implications of ON in horticultural ecosystems are warranted.  相似文献   

7.
  • Amino acids represent an important component in the diet of the Venus flytrap (Dionaea muscipula), and supply plants with much needed nitrogen resources upon capture of insect prey. Little is known about the significance of prey‐derived carbon backbones of amino acids for the success of Dionaea's carnivorous life‐style.
  • The present study aimed at characterizing the metabolic fate of 15N and 13C in amino acids acquired from double‐labeled insect powder. We tracked changes in plant amino acid pools and their δ13C‐ and δ15N‐signatures over a period of five weeks after feeding, as affected by contrasting feeding intensity and tissue type (i.e., fed and non‐fed traps and attached petioles of Dionaea).
  • Isotope signatures (i.e., δ13C and δ15N) of plant amino acid pools were strongly correlated, explaining 60% of observed variation. Residual variation was related to contrasting effects of tissue type, feeding intensity and elapsed time since feeding. Synthesis of nitrogen‐rich transport compounds (i.e., amides) during peak time of prey digestion increased 15N‐ relative to 13C‐ abundances in amino acid pools. After completion of prey digestion, 13C in amino acid pools was progressively exchanged for newly fixed 12C. The latter process was most evident for non‐fed traps and attached petioles of plants that had received ample insect powder.
  • We argue that prey‐derived amino acids contribute to respiratory energy gain and loss of 13CO2 during conversion into transport compounds (i.e., 2 days after feeding), and that amino‐nitrogen helps boost photosynthetic carbon gain later on (i.e., 5 weeks after feeding).
  相似文献   

8.
Conventional studies of nitrogen (N) cycling in forest ecosystems have focused on inorganic N uptake as the primary source of N for plant metabolism. More recently, however, alternative sources of N for plant nutrition, such as free amino acids, have gained attention, particularly in nutrient-limited systems. Using a multiple stable isotope (13C and 15N) design, that allowed us to simultaneously assess root uptake of ammonium (NH4 +) and glycine, we compared the cycling dynamics of NH4 + and amino acid N within the soils of several interior Alaskan floodplain balsam poplar stands. Our design included multiple sampling periods extending from 45 min to 14 days, which permitted us to study interpool transfers of our carbon (C) and N isotopes over time. Microbial biomass N was the largest sink of both 15N-ammonium and glycine. Percent recovery of 15N for this pool was an order of magnitude larger than fine-root 15N uptake for most sampling periods. Although recovery of 15N in fine-root biomass was small, amino acid N and NH4 + were assimilated at approximately the same rate irrespective of sampling period, and total recovery was still increasing 2 weeks after application. Recovery of 15N in bulk soil samples did not vary significantly over time for either treatment. However, bulk soil 13C declined steadily during the experiment, measuring less than 30% recovery of added label after 14 days. We suspect that the majority of 13C lost from our soils was respired. Soil microorganisms strongly outcompeted plants in the short term for both NH4 + and amino acid N. However, amino acid N appears to cycle through soil N pools at approximately the same rate as inorganic N forms. The similarity in uptake patterns for inorganic and organic N suggests that these stands are meeting part of their N requirements directly from amino acids.  相似文献   

9.
The origin of cell nitrogen and amino acid nitrogen during growth of ruminal cellulolytic bacteria in different growth media was investigated by using 15NH3. At high concentrations of peptides (Trypticase, 10 g/liter) and amino acids (15.5 g/liter), significant amounts of cell nitrogen of Fibrobacter succinogenes BL2 (51%), Ruminococcus flavefaciens 17 (43%), and Ruminococcus albus SY3 (46%) were derived from non-NH3-N. With peptides at 1 g/liter, a mean of 80% of cell nitrogen was from NH3. More cell nitrogen was formed from NH3 during growth on cellobiose compared with growth on cellulose in all media. Phenylalanine was essential for F. succinogenes, and its 15N enrichment declined more than that of other amino acids in all species when amino acids were added to the medium.  相似文献   

10.
The in vivo effects of nociceptin (N/OFQ(1–13)NH2) and its structural analogues ([Dab9]N/OFQ(1–13)NH2, [Dap9]N/OFQ(1–13)NH2 and [Cav9]N/OFQ(1–13)NH2) on the levels of lipid peroxidation and cell antioxidants (enzyme and non‐enzyme) in brain of control and kainic acid (KA)‐treated rats were studied. In control animals, [Dab9]N/OFQ(1–13)NH2 and [Dap9]N/OFQ(1–13)NH2, unlike N/OFQ(1–13)NH2 and [Cav9]N/OFQ(1–13)NH2, slightly increased the brain lipid peroxidation; the rest of the parameters were unchanged by all neuropeptides tested. KA (0.25 µg in 0.5 µl, i.c.v) increased the lipid peroxidation (4 and 24 h after KA‐injection) and decreased the glutathione level (1 h after KA‐administration). One hour after KA‐administration, the neuropeptides (2 µg in 0.5 µl, injected 30 min before KA) showed the following effects: a slight decrease in the KA‐induced lipid peroxidation by all nociceptin analogues and an enhancement of the KA‐decreased GSH level, but by [Cav9]N/OFQ(1–13)NH2 only. The brain antioxidant enzyme activities were unchanged in all used experimental groups. In addition, the nociceptin analogues, especially [Can9]N/OFQ(1–13)NH2, showed a good antioxidant capacity in chemical systems, generating reactive oxygen species. In conclusion, the substitution of lysin (Lys) in N/OFQ(1–13)NH2 molecule with other amino acids might contribute to changes in its antioxidant properties. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
裴广廷  马红亮  林伟  高人  尹云锋  杨柳明 《生态学报》2015,35(23):7774-7784
为探究氨基酸氮形态对亚热带土壤氮素含量及转化的影响,选择建瓯市万木林保护区的山地红壤为对象,采用室内培养实验法,通过设计60%和90%WHC两种土壤含水量并添加不同性质氨基酸,测定了土壤中铵态氮、硝态氮、可溶性有机氮的含量和氧化亚氮的释放量,分析了可溶性有机碳、土壤p H值的大小变化及其与氮素的相互关系。结果表明:与对照处理相比,氨基酸添加显著增加了土壤NH_4~+-N含量并使土壤p H值升高,且在一定程度上解除了高含水量(90%WHC)对NH_4~+-N产生的抑制,其中甲硫氨基酸的效果最为明显。酸性、碱性、中性氨基酸对土壤NO_3~--N含量和N_2O释放影响不显著,但甲硫氨基酸可显著抑制土壤硝化从而导致NH_4~+-N的积累,并在培养前期抑制土壤N_2O产生而在培养后期促进N_2O释放,总体上促进N_2O释放。60%WHC的氨基酸添加处理较90%WHC条件下降低土壤可溶性有机氮的幅度更大。氨基酸对土壤氮素转化的影响与带电性关系较小,而可能与其分解产物密切相关。可见,不同性质氨基酸处理对森林土壤氮素含量及转化存在不同程度的影响,且甲硫氨基酸对土壤氮素转化的影响机理值得深入研究。  相似文献   

12.
Past research strongly indicates the importance of amino acids in the N economy of the Arctic tundra, but little is known about the seasonal dynamics of amino acids in tundra soils. We repeatedly sampled soils from tussock, shrub, and wet sedge tundra communities in the summers of 2000 and 2001 and extracted them with water (H2O) and potassium sulfate (K2SO4) to determine the seasonal dynamics of soil amino acids, ammonium (NH4+), nitrate (NO3), dissolved organic nitrogen (DON), dissolved organic carbon (DOC), and phosphate (PO42–). In the H2O extractions mean concentrations of total free amino acids (TFAA) were higher than NH4+ in all soils but shrub. TFAA and NH4+ were highest in wet sedge and tussock soils and lowest in shrub soil. The most predominant amino acids were alanine, arginine, glycine, serine, and threonine. None of the highest amino acids were significantly different than NH4+ in any soil but shrub, in which NH4+ was significantly higher than all of the highest individual amino acids. Mean NO3 concentrations were not significantly different from mean TFAA and NH4+ concentrations in any soil but tussock, where NO3 was significantly higher than NH4+. In all soils amino acid and NH4+ concentrations dropped to barely detectable levels in the middle of July, suggesting intense competition for N at the height of the growing season. In all soils but tussock, amino acid and NH4+ concentrations rebounded in August as the end of the Arctic growing season approached and plant N demand decreased. This pattern suggests that low N concentrations in tundra soils at the height of the growing season are likely the result of an increase in soil N uptake associated with the peak in plant growth, either directly by roots or indirectly by microbes fueled by increased root C inputs in mid-July. As N availability decreased in July, PO42– concentrations in the K2SO4 extractions increased dramatically in all soils but shrub, where there was a comparable increase in PO42– later in the growing season. Previous research suggests that these increases in PO42– concentrations are due to the mineralization of organic phosphorus by phosphatase enzymes associated with soil microbes and plant roots, and that they may have been caused by an increase in organic P availability.  相似文献   

13.
  • 1 Insect frass has significant impacts on decomposition and soil nitrogen dynamics. Although the frass contains various forms of nitrogen that may differently influence nitrogen dynamics in the decomposition process, how the nitrogen form in the insect frass is influenced by host plant quality remains poorly understood.
  • 2 The present study examined the effects of application of fertilizer on leaf quality of Brassica rapa L. var. perviridis Bailey (Brassicaceae), and on the consumption, frass excretion and frass quality of its insect pest Mamestra brassicae (L.) (Lepidoptera: Noctuidae), with a particular focus on the dynamics of inorganic nitrogen.
  • 3 Brassica rapa increased total nitrogen concentration, and accumulated inorganic nitrogen [i.e. leaf nitrate‐nitrogen (NO3?‐N) and ammonium‐nitrogen (NH4+‐N)] in the leaves in response to the application of fertilizer.
  • 4 Although leaf consumption and frass excreted by M. brassicae was not affected by fertilizer treatment, frass quality was influenced by host plant quality as altered by fertilizer applications. Frass contained high concentrations of total nitrogen, NO3?‐N, and NH4+‐N under high fertilizer treatment. In particular, the larvae excreted much more NH4+‐N than ingested. The relationship between host plant quality and insect frass quality, as well as the potential implications for decomposition and nutrient dynamics, are discussed.
  相似文献   

14.
Plant and microbial use of nitrogen (N) can be simultaneously mutualistic and competitive, particularly in ecosystems dominated by mycorrhizal fungi. Our goal was to quantify plant uptake of organic and inorganic N across a broad latitudinal gradient of forest ecosystems that varied with respect to overstory taxon, edaphic characteristics, and dominant mycorrhizal association. Using 13C and 15N, we observed in situ the cycling dynamics of NH4 + and glycine through various soil pools and fine roots over 14 days. Recovery of 15N as soil N varied with respect to N form, forest type, and sampling period; however, there were similarities in the cycling dynamics of glycine and NH4 + among all forest types. Microbial immobilization of 15N was immediately apparent for both treatments and represented the largest sink (~25%) for 15N among extractable soil N pools during the first 24 h. In contrast, fine roots were a relatively small sink (<10%) for both N forms, but fine root 13C enrichment indicated that plants in all forest types absorbed glycine intact, suggesting that plants and microbes effectively target the same labile soil N pools. Relative uptake of amino acid-N versus NH4 + varied significantly among sites and approximately half of this variation was explained by mycorrhizal association. Estimates of plant uptake of amino acid-N relative to NH4 + were 3× higher in ectomycorrhizal-dominated stands (1.6 ± 0.2) than arbuscular mycorrhizae-dominated stands (0.5 ± 0.1). We conclude that free amino acids are an important component of the N economy in all stands studied; however, in these natural environments plant uptake of organic N relative to inorganic N is explained as much by mycorrhizal association as by the availability of N forms per se.  相似文献   

15.
The objective of this study was to assess whether a whole plant N‐feedback regulation impact on nitrogen fixation in Medicago truncatula would manifest itself in shifts of the composition of the amino acid flow from shoots to nodules. Detected shifts in the phloem amino acid composition were supposed to be mimicked through artificial phloem feeding and concomitant measurement of nodule activity. The amino acid composition of the phloem exudates was analyzed from plants grown under the influence of treatments (limiting P supply or application of combined nitrogen) known to reduce nodule nitrogen fixation activity. Plants in nutrient solution were supplied with sufficient (9 µM) control, limiting (1 µM) phosphorus or 3 mM NH4NO3 (downregulated nodule activity). Low phosphorus and the application of NH4NO3 reduced per plant and specific nitrogenase activity (H2 evolution). At day 64 of growth, phloem exudates were collected from cuts of the shoot base. The amount of amino acids was strongly increased in both phloem exudates and nodules of the treatments with downregulated nodule activity. The increase in the downregulated treatments was almost exclusively the result of a higher proportion of asparagine in both phloem exudates and nodules. Leaf labeling with 15N showed that nitrogen from the leaves is retranslocated to nodules. An artificial phloem feeding with asparagine resulted in an increased concentration of asparagine in nodules and a decreased nodule activity. A possible role of asparagine in an N‐feedback regulation of nitrogen fixation in M. truncatula is discussed.  相似文献   

16.
Nitrogenase biosynthesis in Klebsiella pneumoniae including mutant strains, which produce nitrogenase in the presence of NH4+ (Shanmugam, K.T., Chan, Irene, and Morandi, C. (1975) Biochim. Biophys. Acta 408, 101–111) is repressed by a mixture of L-amino acids. Biochemical analysis shows that glutamine synthetase activity in strains SK-24, SK-28, and SK-29 is also repressed by amino acids, with no detectable effect on glutamate dehydrogenase. Among the various amino acids, L-glutamine in combination with L-aspartate was found to repress nitrogenase biosynthesis completely. In the presence of high concentrations of glutamine (1 mg/ml) even NH4+ repressed nitrogenase biosynthesis in the strains SK-27, SK-37, SK-55 and SK-56. Under these conditions, increased glutamate dehydrogenase activity was also detected. Physiological studies show that nitrogenase derepressed strains are unable to utilize NH4+ as sole source of nitrogen for biosynthesis of glutamate, whereas back mutations leading to NH4+ utilization results in sensitivity to repression by NH4+. These findings suggest that amino acids play an important role as regulators of nitrogen fixation.  相似文献   

17.
Wild Type (WT) and transgenic tobacco plants expressing isopentenyltransferase (IPT), a gene encoding the enzyme regulating the rate-limiting step in cytokinins (CKs) synthesis, were grown under limited nitrogen (N) conditions. We analyzed nitrogen forms, nitrogen metabolism related-enzymes, amino acids and photorespiration related-enzymes in WT and PSARK∷IPT tobacco plants. Our results indicate that the WT plants subjected to N deficiency displayed reduced nitrate (NO3) assimilation. However, an increase in the production of ammonium (NH4+), by the degradation of proteins and photorespiration led to an increase in the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle in WT plants. In these plants, the amounts of amino acids decreased with N deficiency, although the relative amounts of glutamate and glutamine increased with N deficiency. Although the transgenic plants expressing PSARK∷IPT and growing under suboptimal N conditions displayed a significant decline in the N forms in the leaf, they maintained the GS/GOGAT cycle at control levels. Our results suggest that, under N deficiency, CKs prevented the generation and assimilation of NH4+ by increasing such processes as photorespiration, protein degradation, the GS/GOGAT cycle, and the formation of glutamine.  相似文献   

18.
We investigated the effects of nitrogen (N) availability during the vegetative phase on (a) post‐anthesis N uptake and (b) its translocation into ears in barley plants grown in a greenhouse at two levels of N: low (50 mg N kg?1 sand) and optimal N supply (150 mg N kg?1 sand). Plants in the two N treatments were fertilised with the same amount of labelled 15N [50 mg 15N kg?1 sand at 10% 15Nexc (Nexcess, i.e. Nexc, is defined as the abundance of enriched stable isotope minus the natural abundance of the isotope) applied as 15NH415NO3] 10 days after anthesis (daa). In a separate experiment, the uptake and transport into ears of proteinogenic and non‐proteinogenic amino acids were studied to determine whether a relationship exists between amino acid transport into ears and their proteinogenic nature. Plants were fed with either 15N‐α‐alanine, a proteinogenic amino acid, or 15N‐α‐aminoisobutyric acid, a non‐proteinogenic amino acid. Both these amino acids were labelled at 95.6% 15Nexc. Results showed that N accumulations in stems, leaves and especially in ears were correlated with their dry matter (dm) weights. The application of 150 mg N kg?1 sand significantly increased plant dm weight and total N accumulation in plants. During their filling period, ears absorbed N from both external (growth substrate) and internal (stored N in plants) sources. Nitrogen concentration in ears was higher in optimal N‐fed plants than in low N‐fed plants until 10 daa, but from 21 to 35 daa, differences were not detected. Conversely, 15Nexc in ears, leaves and stems was higher in low N‐fed plants than in optimal N‐fed plants. Ears acted as strong sink organ for the post‐anthesis N taken up from the soil independently of pre‐anthesis N nutrition: on average, 87% of the N taken up from the soil after anthesis was translocated and accumulated in ears. Low N‐fed plants continued to take up N from the post‐anthesis N fertiliser during the later grain‐filling period. The increase of pre‐anthesis N supply rate led to a decrease in the contribution of nitrogen derived from post‐anthesis 15N‐labelled fertiliser (Ndff) to total N in all aboveground organs, especially in ears where 44% and 22% of total N originated from post‐anthesis N uptake in low N‐fed and optimal N‐fed plants, respectively. The experiment with labelled amino acids showed that there was greater transport of proteinogenic amino acid into the ear (50% of total 15N) than non‐proteinogenic amino acid (39%). However, this transport of the non‐proteinogenic amino acids into ear suggested that the transport of N compounds from source (leaves) to sink organs (ear) might not be intrinsically regulated by their ability to be incorporated into storage protein of ears.  相似文献   

19.
Interactions between the root‐knot nematode Meloidogyne incognita and three isogenic tomato (Lycopersicon esculentum) genotypes were examined when plants were grown under ambient (370 ppm) and elevated (750 ppm) CO2. We tested the hypothesis that, defence‐recessive genotypes tend to allocate ‘extra’ carbon (relative to nitrogen) to growth under elevated CO2, whereas defence‐dominated genotypes allocate extra carbon to defence, and thereby increases the defence against nematodes. For all three genotypes, elevated CO2 increased height, biomass, and root and leaf total non‐structural carbohydrates (TNC):N ratio, and decreased amino acids and proteins in leaves. The activity of anti‐oxidant enzymes (superoxide dismutase and catalase) was enhanced by nematode infection in defence‐recessive genotypes. Furthermore, elevated CO2 and nematode infection did not qualitatively change the volatile organic compounds (VOC) emitted from plants. Elevated CO2 increased the VOC emission rate only for defence‐dominated genotypes that were not infected with nematodes. Elevated CO2 increased the number of nematode‐induced galls on defence‐dominated genotypes but not on wild‐types or defence‐recessive genotypes roots. Our results suggest that CO2 enrichment may not only increase plant C : N ratio but can disrupt the allocation of plant resources between growth and defence in some genetically modified plants and thereby reduce their resistance to nematodes.  相似文献   

20.
Water stress and nitrogen (N) availability are the main constraints limiting yield in durum wheat (Triticum turgidum L. var. durum). This work investigates the combined effects of N source (ammonium–NH4+, nitrate–NO3 or a mixture of both–NH4+:NO3) and water availability (well‐watered vs. moderate water stress) on photosynthesis and water‐use efficiency in durum wheat (cv. Korifla) flag leaves grown under controlled conditions, using gas exchange, chlorophyll fluorescence and stable carbon isotope composition (δ13C). Under well‐watered conditions, NH4+‐grown plants had lower net assimilation rates (A) than those grown with the other two N forms. This effect was mainly due to lower stomatal conductance (gs). Under moderate water stress, differences among N forms were not significant, because water regime (WR) had a stronger effect on gs and A than did N source. Consistent with lower gs, δ13C and transpiration efficiency (TE) were the highest in NH4+ leaves in both water treatments. These results indicate higher water‐use efficiency in plants fertilized with NH4+ due to stomatal limitation on photosynthesis. Moreover, leaf δ13C is an adequate trait to assess differences in photosynthetic activity and water‐use efficiency caused by different N sources. Further, the effect of these growing conditions on the nitrogen isotope composition (δ15N) of flag leaves and roots was examined. Water stress increased leaf δ15N in all N forms. In addition, leaf δ15N increased as root N decreased and as leaf δ13C became less negative. Regardless of WR, the leaf δ15N of NO3‐grown plants was lowest. Based on stepwise and canonical discriminant analyses, we conclude that plant δ15N together with δ13C and other variables may reflect the conditions of N nutrition and water availability where the plants were grown. Thus well‐watered plants grown with NH4+:NO3 resembled those grown with NO3, whereas under water stress they were closer to plants grown with NH4+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号