首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
No single mechanism can provide an adequate explanation for the inhibition of photosynthesis when plants are supplied with ammonium (NH4+) as the sole nitrogen (N) source. We performed a hydroponic experiment using two N sources [5 mM NH4+ and 5 mM nitrate (NO3?)] to investigate the effects of NH4+ stress on the photosynthetic capacities of two wheat cultivars (NH4+‐sensitive AK58 and NH4+‐tolerant XM25). NH4+ significantly inhibited the growth and light‐saturated photosynthesis (Asat) of both cultivars, but the extent of such inhibition was greater in the NH4+‐sensitive AK58. The CO2 concentration did not limit CO2 assimilation under NH4+ nutrition; though both stomatal and mesophyll conductance were significantly suppressed. Carboxylation efficiency (CE), light‐saturated potential rate of electron transport (Jmax), the quantum efficiency of PSII (ΦPSII), electron transport rate through PSII [Je(PSII)], and Fv/Fm were significantly reduced by NH4+. As a result, NH4+ nutrition resulted in a significant increase in the production of hydrogen peroxide (H2O2) and superoxide anion radicals (O2??), but these symptoms were less severe in the NH4+‐tolerant XM25, which had a higher capacity of removing elevated reactive oxygen species (ROS). Thus, NH4+ N sources might decreased electron transport efficiency and increased the production of ROS, exacerbating damage to the electron transport chain, leading to a reduced plant photosynthetic capacity.  相似文献   

2.
Many plants grown with low‐millimolar concentration of NH4+ as a sole nitrogen source develop NH4+‐toxicity symptoms. To date, crucial molecular identities and a practical approach involved in the improvement of plant NH4+‐tolerance remain largely unknown. By phenotyping of upland cotton grown on varied nitrogen forms, we came across a phenomenon that caused sub‐millimolar concentrations of urea (e.g., up 50 μM) to repress the growth inhibition of roots and whole plant cultivated in a NH4+‐containing nutrient solution. A growth‐recovery assay revealed that the relief in NH4+‐inhibited growth required only a short‐term exposure (≧12 h) of the roots to urea, implying that urea could elicit an internal signaling and be involved in antagonizing NH4+‐sensitivity. Intriguingly, split‐root experiments demonstrated that low urea occurrence in one root‐half could efficaciously stimulate not only supplied root but also the root‐half grown in NH4+‐solution without urea, indicating the existence of urea‐triggered local and systemic long‐distance signaling. In the split‐root experiment we also observed high arginase activity, strong arginine reduction and remarkable upregulation of polyamine biosynthesis‐related genes (ADC1/2, SPDS and SPMS). Therefore, we suggest that external urea might serve as an effective cue (signal molecule) in an arginine‐/polyamine‐related process for ameliorating NH4+‐suppressed root growth, providing a novel aspect for deeper exploring and understanding plant NH4+‐tolerance.  相似文献   

3.
Root NO3 ? and NH4 + influx systems of two early‐successional species of temperate (trembling aspen: Populus tremuloides Michx.) and boreal (lodgepole pine: Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) forest ecosystems were characterized. NO3 ? and NH4 + influxes were biphasic, consisting of saturable high‐affinity (HATS) and constitutive non‐saturable low‐affinity transport systems (LATS) that were evident at low and relatively high N concentrations, respectively. NO3 ? influx via HATS was inducible (IHATS); nitrate pre‐treatment resulted in 8–10‐fold increases in the Vmax for influx in both species. By contrast, HATS for NH4 + were entirely constitutive. In both species, Vmax values for NH4 + influx were higher than those for NO3 ? uptake; the differences were larger in pine (6‐fold) than aspen (1·8‐fold). In aspen, the Km for NH4 + influx by HATS was approximately 3‐fold higher than for IHATS NO3 ? influx, while in pine the Km for IHATS NO3 ? influx was approximately 3‐fold higher than for NH4 + influx. The aspen IHATS for NO3 ? influx appeared to be more efficient than that of pine (Vmax values for aspen being approximately 10‐fold higher and Km values being approximately 13‐fold lower than for pine). By contrast, only small differences in values for the NH4 + HATS were evident between the two species. The kinetic parameters observed here probably result from adaptations to the N availabilities in their respective natural habitats; these may contribute to the distribution and niche separation of these species.  相似文献   

4.
We present the first characterization of K+ optimization of N uptake and metabolism in an NH4+‐tolerant species, tropical lowland rice (cv. IR‐72). 13N radiotracing showed that increased K+ supply reduces futile NH4+ cycling at the plasma membrane, diminishing the excessive rates of both unidirectional influx and efflux. Pharmacological testing showed that low‐affinity NH4+ influx may be mediated by both K+ and non‐selective cation channels. Suppression of NH4+ influx by K+ occurred within minutes of increasing K+ supply. Increased K+ reduced free [NH4+] in roots and shoots by 50–75%. Plant biomass was maximized on 10 mm NH4+ and 5 mm K+, with growth 160% higher than 10 mm NO3‐grown plants, and 220% higher than plants grown at 10 mm NH4+ and 0.1 mm K+. Unlike in NH4+‐sensitive barley, growth optimization was not attributed to a reduced energy cost of futile NH4+ cycling at the plasma membrane. Activities of the key enzymes glutamine synthetase and phosphoenolpyruvate carboxylase (PEPC) were strongly stimulated by elevated K+, mirroring plant growth and protein content. Improved plant performance through optimization of K+ and NH4+ is likely to be of substantial agronomic significance in the world's foremost crop species.  相似文献   

5.
  • 1 Insect frass has significant impacts on decomposition and soil nitrogen dynamics. Although the frass contains various forms of nitrogen that may differently influence nitrogen dynamics in the decomposition process, how the nitrogen form in the insect frass is influenced by host plant quality remains poorly understood.
  • 2 The present study examined the effects of application of fertilizer on leaf quality of Brassica rapa L. var. perviridis Bailey (Brassicaceae), and on the consumption, frass excretion and frass quality of its insect pest Mamestra brassicae (L.) (Lepidoptera: Noctuidae), with a particular focus on the dynamics of inorganic nitrogen.
  • 3 Brassica rapa increased total nitrogen concentration, and accumulated inorganic nitrogen [i.e. leaf nitrate‐nitrogen (NO3?‐N) and ammonium‐nitrogen (NH4+‐N)] in the leaves in response to the application of fertilizer.
  • 4 Although leaf consumption and frass excreted by M. brassicae was not affected by fertilizer treatment, frass quality was influenced by host plant quality as altered by fertilizer applications. Frass contained high concentrations of total nitrogen, NO3?‐N, and NH4+‐N under high fertilizer treatment. In particular, the larvae excreted much more NH4+‐N than ingested. The relationship between host plant quality and insect frass quality, as well as the potential implications for decomposition and nutrient dynamics, are discussed.
  相似文献   

6.
7.
Atmospheric CO2 enrichment is expected to often benefit plant growth, despite causing global warming and nitrogen (N) dilution in plants. Most plants primarily procure N as inorganic nitrate (NO3?) or ammonium (NH4+), using membrane‐localized transport proteins in roots, which are key targets for improving N use. Although interactive effects of elevated CO2, chronic warming and N form on N relations are expected, these have not been studied. In this study, tomato (Solanum lycopersicum) plants were grown at two levels of CO2 (400 or 700 ppm) and two temperature regimes (30 or 37°C), with NO3? or NH4+ as the N source. Elevated CO2 plus chronic warming severely inhibited plant growth, regardless of N form, while individually they had smaller effects on growth. Although %N in roots was similar among all treatments, elevated CO2 plus warming decreased (1) N‐uptake rate by roots, (2) total protein concentration in roots, indicating an inhibition of N assimilation and (3) shoot %N, indicating a potential inhibition of N translocation from roots to shoots. Under elevated CO2 plus warming, reduced NO3?‐uptake rate per g root was correlated with a decrease in the concentration of NO3?‐uptake proteins per g root, reduced NH4+ uptake was correlated with decreased activity of NH4+‐uptake proteins and reduced N assimilation was correlated with decreased concentration of N‐assimilatory proteins. These results indicate that elevated CO2 and chronic warming can act synergistically to decrease plant N uptake and assimilation; hence, future global warming may decrease both plant growth and food quality (%N).  相似文献   

8.
Alpine meadows of high ecological value could be severely endangered by anthropogenic N enrichment, modifying the relationships between species and the environment. While a constraint exerted by N availability on alpine plant development has been demonstrated by some fertilization experiments, in others no effect was observed. Basically, the problem is that mineral N absorption has not been characterized in alpine plants. In growth chamber experiments, we investigated the component fluxes of 15NO3? and 15NH4+ uptake in a tussock grass (Festuca nigrescens) very common and representative of the dominant plant growth form in European alpine meadows. Rates of influx supported data already published for low elevation herbaceous species. These rates were up to ten times higher for NH4+ than for NO3? but rates of net uptake were similar for both ions demonstrating the occurrence of elevated NH4+ efflux (80% of primary influx). An increase in external N in the range of field-relevant concentrations did not substantially enhance net uptake. Thus, the alpine plant which is assumed to be adapted to relatively high soil NH4+ responded like an NH4+-sensitive species: as if it was unable to use the incoming nitrogen. It is suggested that the ability of this typical alpine grass to respond to increasing N availability due to global changes is limited.  相似文献   

9.
Methyl jasmonate (MeJA) elicits stomatal closure in many plant species. Stomatal closure is accompanied by large ion fluxes across the plasma membrane (PM). Here, we recorded the transmembrane ion fluxes of H+, Ca2+ and K+ in guard cells of wild‐type (Col‐0) Arabidopsis, the CORONATINE INSENSITIVE1 (COI1) mutant coi1‐1 and the PM H+‐ATPase mutants aha1‐6 and aha1‐7, using a non‐invasive micro‐test technique. We showed that MeJA induced transmembrane H+ efflux, Ca2+ influx and K+ efflux across the PM of Col‐0 guard cells. However, this ion transport was abolished in coi1‐1 guard cells, suggesting that MeJA‐induced transmembrane ion flux requires COI1. Furthermore, the H+ efflux and Ca2+ influx in Col‐0 guard cells was impaired by vanadate pre‐treatment or PM H+‐ATPase mutation, suggesting that the rapid H+ efflux mediated by PM H+‐ATPases could function upstream of the Ca2+ flux. After the rapid H+ efflux, the Col‐0 guard cells had a longer oscillation period than before MeJA treatment, indicating that the activity of the PM H+‐ATPase was reduced. Finally, the elevation of cytosolic Ca2+ concentration and the depolarized PM drive the efflux of K+ from the cell, resulting in loss of turgor and closure of the stomata.  相似文献   

10.
Ammonium (NH4+) is a central intermediate in the N metabolism of plants, but the quantitative importance of NH4+ in transporting N from root to shoot and the capability of plants to store NH4+ in leaves are still matters of substantial controversy. This paper shows that some of these controversies have to be related to the use of inadequate analytical procedures used for extraction and quantification of NH4+ in plants. The most frequently used methods for determination of NH4+, viz. colorimetric methods based on the classical Berthelot reaction, suffered severely from interference caused by amino acids, amines, amides and proteins. For some of these metabolites the interference was positive, while for others it was negative, making correction impossible. Consequently, colorimetric analysis is inapplicable for determination of NH4+ in plants. Results obtained by ion chromatography may overestimate the NH4+ concentration due to co‐elution of NH4+ with amines like methylamine, ethylamine, ethanolamine and the non‐protein amino acid Γ‐aminobutyric acid. Derivatization of NH4+ with o‐phthalaldehyde at alkaline pH and subsequent quantification of NH4+ by fluorescence spectroscopy was also associated with interference. However, when pH was lowered to 6.8 during derivatization and 2‐mercaptoethanol was used as reductant, NH4+ could be determined with a high selectivity and sensitivity down to a detection limit of 3.3 μM in a 10‐μl sample volume. Derivatization was performed on‐line using a column‐less HPLC system, enabling rapid quantification of NH4+ in a few minutes. Flow injection analysis with on‐line gas dialysis was, likewise, free from interference, except when applied on highly senescent plant material containing volatile amines. Labile N metabolites in leaf tissue extract, xylem sap and apoplastic fluid were degraded to NH4+ during extraction and subsequent instrumental analysis if the samples were not stabilised. A simple and efficient stabilisation could be obtained by addition of 10 mM ice‐cold HCOOH to the plant extraction medium or to the samples of apoplastic fluid or xylem sap. We conclude that significant concentrations of NH4+, exceeding 1 mM, may occur in xylem sap, leaf apoplastic fluid and leaf tissue water of nitrate‐grown tomato and oilseed rape plants. The measured NH4+ concentrations were not a result of excessive N supplies, as even plants grown under mildly N‐deficient conditions contained NH4+.  相似文献   

11.
Our results show that AtNRT2.1 expression has a positive effect on the NH4+ ion influx, mediated by the HATS, as also occurs with AtAMT1.1 expression on the NO3 ion influx. AtNRT2.1 expression plays a key role in the regulation of AtAMT1.1 expression and in the NH4+ ion influx, differentiating the nitrogen source, and particularly, the lack of it. Nitrogen starvation produces a compensatory effect by AtAMT1.1 when there is an absence of the AtNRT2.1 gene. Our results also show that, in the atnrt2 mutant lacking both AtNRT2.1 and AtNRT2.2, gene functions present different kinetic parameters on the NH4+ ion influx mediated by the HATS, according to the source and availability of nitrogen. Finally, the absence of AMT1.1 also produces changes in the kinetic parameters of the NO3 influx, showing different Vmax values depending on the source of nitrogen available.  相似文献   

12.
Excessive use of nitrogen (N) fertilizer has increased ammonium (NH4+) accumulation in many paddy soils to levels that reduce rice vegetative biomass and yield. Based on studies of NH4+ toxicity in rice (Oryza sativa, Nanjing 44) seedlings cultured in agar medium, we found that NH4+ concentrations above 0.75 mM inhibited the growth of rice and caused NH4+ accumulation in both shoots and roots. Use of excessive NH4+ also induced rhizosphere acidification and inhibited the absorption of K, Ca, Mg, Fe and Zn in rice seedlings. Under excessive NH4+ conditions, exogenous γ‐aminobutyric acid (GABA) treatment limited NH4+ accumulation in rice seedlings, reduced NH4+ toxicity symptoms and promoted plant growth. GABA addition also reduced rhizosphere acidification and alleviated the inhibition of Ca, Mg, Fe and Zn absorption caused by excessive NH4+. Furthermore, we found that the activity of glutamine synthetase/NADH‐glutamate synthase (GS; EC 6.3.1.2/NADH‐GOGAT; EC1.4.1.14) in root increased gradually as the NH4+ concentration increased. However, when the concentration of NH4+ is more than 3 mM, GABA treatment inhibited NH4+‐induced increases in GS/NADH‐GOGAT activity. The inhibition of ammonium assimilation may restore the elongation of seminal rice roots repressed by high NH4+. These results suggest that mitigation of ammonium accumulation and assimilation is essential for GABA‐dependent alleviation of ammonium toxicity in rice seedlings.  相似文献   

13.
The effect of ectomycorrhizal association of Pinus pinaster with Hebeloma cylindrosporum was investigated in relation to the nitrogen source supplied as mineral (NH4+ or NO3?) or organic N (L ‐glutamate) and at 5 mol m?3. Plants were grown for 14 and 16 weeks with mineral and organic N, respectively, and samples were collected during the last 6 weeks of culture. Total fungal biomass was estimated using glucosamine amount and its viability was assessed using the glucosamine to ergosterol ratio. Non‐mycorrhizal plants grew better with NH4+ than with NO3? and grew very slowly when supplied with L ‐glutamate. The presence of the fungus decreased the growth of the host plant with mineral N whereas it increased it with L ‐glutamate. Whatever the N source, most of the living fungal biomass was associated with the roots, whereas the main part of the total biomass was assayed outside the root. The form of mineral N did not significantly affect N accumulation rates over the 42 d in control plants. In mycorrhizal plants grown on either N source, the fungal tissues developing outside of the root were always the main N sink. The ectomycorrhizal association did not change 15NH4+ uptake rate by roots, suggesting that the growth decrease of the host‐plant was related to the carbon cost for fungal growth and N assimilation rather than to a direct effect on NH4+ acquisition. In contrast, in NO3?‐grown plants, in addition to draining carbon for NO3? reduction the fungus competed with the root for NO3? uptake. With NH4+ or NO3? feeding, although mycorrhizal association improved N accumulation in shoots, we concluded that it was unlikely that the fungus had supplied the plant with N. In L ‐glutamate‐grown plants, the presence of the fungus increased the proportion of glutamine in the xylem sap and improved both N nutrition and the growth rate of the host plant.  相似文献   

14.
Previous data in Egeria densa leaves demonstrated a strong inhibitory effect of Cs+ on passive K+ influx and on K+-induced, ATP-dependent electrogenic proton extrusion. In this paper we analyzed, using the same material, the effects of Cs+ on ammonium (NH4+) and methylammonium (CH3NH3+) transport in order to elucidate whether a common transport system for K+ and NH4+ could be demonstrated. The effects of Cs+ on NH4+- and CH3NH3+-induced titratable H+ extrusion (–ΔH+) and on transmembrane electrical potential difference (Em) in E. densa leaves were analyzed in parallel. All experiments were run either in the absence or presence of fusicoccin, corresponding to low or high H+-ATPase activity and membrane hyperpolarization and leading, in this material, to respectively active or passive transport of K+. The results suggest the presence in E. densa leaves of two distinct pathways for NH4+ uptake: one in common with NH4+ and (with lower affinity) CH3NH3+, insensitive to Cs+, and a second system, operating at higher H+-ATPase activity and Em hyperpolarization, strongly inhibited by Cs+ and impermeable to CH3NH3+. In agreement with this hypothesis, Xenopus laevis oocytes injected with the KAT1 RNA of Arabidopsis thaliana were permeable to K+ and NH4+, but not to CH3NH3+.  相似文献   

15.
Non-linear time courses of ammonium (NH4+) depletion from the medium and internal accumulation of soluble nitrogen (N) in macroalgae imply that the rate-limiting step for ammonium uptake changes over time. We tested this hypothesis by measuring the time course of N accumulation in N-limited Ulva rigida C. Agardh. Total uptake was measured as removal of NH4+ from medium. Rates for the component processes (transport of NH4+ across the membrane = Rv assimilation of tissure NH4+ into soluble N compounds = Ra, assimilation of tissue NH4+ into soluble N compounds = Ra and incorporation of soluble N compounds into macromolecules = R1) were determined by measuring the rate of labelling of the major tissue N pools after the addition of 15N-ammonium. The results indicate that nitrogen-specific rates (mass N taken up / mass N present / unit time) are ranked in the order of Rt < Ra < R1 Absolute uptake rates (μmol N. mg dry wt?1. h?1) showed a different relationship. Membrane transport appears to be inhibited when NH4+ accumulates in the tissue. Maximum uptake rates occur when assimilation of NH4+ into soluble N compounds begins. Assimilation of NH4+ into soluble N compounds was initially faster than incorporation of soluble N compounds into macromolecules. Implications of rate limitations caused by differences in maximal rates and maximal pool sizes are discussed.  相似文献   

16.
Water stress and nitrogen (N) availability are the main constraints limiting yield in durum wheat (Triticum turgidum L. var. durum). This work investigates the combined effects of N source (ammonium–NH4+, nitrate–NO3 or a mixture of both–NH4+:NO3) and water availability (well‐watered vs. moderate water stress) on photosynthesis and water‐use efficiency in durum wheat (cv. Korifla) flag leaves grown under controlled conditions, using gas exchange, chlorophyll fluorescence and stable carbon isotope composition (δ13C). Under well‐watered conditions, NH4+‐grown plants had lower net assimilation rates (A) than those grown with the other two N forms. This effect was mainly due to lower stomatal conductance (gs). Under moderate water stress, differences among N forms were not significant, because water regime (WR) had a stronger effect on gs and A than did N source. Consistent with lower gs, δ13C and transpiration efficiency (TE) were the highest in NH4+ leaves in both water treatments. These results indicate higher water‐use efficiency in plants fertilized with NH4+ due to stomatal limitation on photosynthesis. Moreover, leaf δ13C is an adequate trait to assess differences in photosynthetic activity and water‐use efficiency caused by different N sources. Further, the effect of these growing conditions on the nitrogen isotope composition (δ15N) of flag leaves and roots was examined. Water stress increased leaf δ15N in all N forms. In addition, leaf δ15N increased as root N decreased and as leaf δ13C became less negative. Regardless of WR, the leaf δ15N of NO3‐grown plants was lowest. Based on stepwise and canonical discriminant analyses, we conclude that plant δ15N together with δ13C and other variables may reflect the conditions of N nutrition and water availability where the plants were grown. Thus well‐watered plants grown with NH4+:NO3 resembled those grown with NO3, whereas under water stress they were closer to plants grown with NH4+.  相似文献   

17.
The effect of NO2 fumigation on root N uptake and metabolism was investigated in 3-month-old spruce (Picea abics L. Karst) seedlings. In a first experiment, the contribution of NO2 to the plant N budget was measured during a 48 h fumigation with 100mm3m?3 NO2. Plants were pre-treated with various nutrient solutions containing NO2 and NH4+, NO3? only or no nitrogen source for 1 week prior to the beginning of fumigation. Absence of NH4+ in the solution for 6d led to an increased capacity for NO3? uptake, whereas the absence of both ions caused a decrease in the plant N concentration, with no change in NO3? uptake. In fumigated plants, NO2 uptake accounted for 20–40% of NO3? uptake. Root NO3? uptake in plants supplied with NH4+plus NO3? solutions was decreased by NO2 fumigation, whereas it was not significantly altered in the other treatments. In a second experiment, spruce seedlings were grown on a solution containing both NO2 and NH4+ and were fumigated or not with 100mm3m?3 NO2 for 7 weeks. Fumigated plants accumulated less dry matter, especially in the roots. Fluxes of the two N species were estimated from their accumulations in shoots and roots, xylem exudate analysis and 15N labelling. Root NH4+ uptake was approximately three times higher than NO3? uptake. Nitrogen dioxide uptake represented 10–15% of the total N budget of the plants. In control plants, N assimilation occurred mainly in the roots and organic nitrogen was the main form of N transported to the shoot. Phloem transport of organic nitrogen accounted for 17% of its xylem transport. In fumigated plants, neither NO3? nor NH4+ accumulated in the shoot, showing that all the absorbed NO2 was assimilated. Root NO3? reduction was reduced whereas organic nitrogen transport in the phloem increased by a factor of 3 in NO2-fimugated as compared with control plants. The significance of the results for the regulation of whole-plant N utilization is discussed.  相似文献   

18.
Nitrogen stable isotopes (δ15N) of dissolved inorganic nitrogen (DIN = NH4+ and NO3), dissolved organic nitrogen (DON), and particulate organic nitrogen (PON) were measured in Smith Lake, Alaska to assess their usefulness as proxies for the biological nitrogen cycling processes, nutrient concentration, and lake productivity. Large seasonal variations in δ15NH4+, δ15NO3 and δ15NPON occurred in response to different processes of nitrogen transformation that dominated a specific time period of the annual production cycle. In spring, 15N depletion in all three pools was closely related to the occurrences of a N2‐fixing cyanobacterial bloom (Anabaena flos‐aquae). In summer, δ15NPON increased as phytoplankton community shifted to use NH4+ and decreased as a brief N2‐fixing bloom (Aphanizomenon flos‐aquae) occurred in August. In early and mid‐winter, microbial nitrogen processes were dominated by nitrification that resulted in the largest isotope fractionation between NO3 and NH4+ in the annual cycle. This was followed by denitrification that led to the highest 15N enrichment in NO3. A peak of NH4+ assimilation by phytoplankton along with the elevated δ15NPON and Chl a concentration occurred just before the ice break due to increased light penetration. The δ15NDON displayed little temporal and spatial variations. This suggests that the DON pool was not altered by biological transformations of nitrogen as the results of its large size and possibly refractory nature. There was a positive correlation between Chl a concentration and δ15NPON, and a negative correlation between NH4+ and δ15NPON, suggesting that δ15NPON is a useful proxy for nitrogen productivity and ammonium concentration. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
As the preferred nitrogen (N) source, ammonium (NH4+ ) contributes to plant growth and development and fruit quality. In plants, NH4+ uptake is facilitated by a family of NH4+ transporters (AMT). However, the molecular mechanisms and functional characteristics of the AMT genes in peach have not been mentioned yet. In this present study, excess NH4+ stress severely hindered shoot growth and root elongation, accompanied with reduced mineral accumulation, decreased leaf chlorophyll concentration, and stunned photosynthetic performance. In addition, we identified 14 putative AMT genes in peach (PpeAMT). Expression analysis showed that PpeAMT genes were differently expressed in peach leaves, stems and roots, and were distinctly regulated by external NH4+ supplies. Putative cis-elements involved in abiotic stress adaption, Ca2+ response, light and circadian rhythms regulation, and seed development were observed in the promoters of the PpeAMT family genes. Phosphorylation analysis of residues within the C-terminal of PpeAMT proteins revealed many conserved phosphorylation residues in both the AMT1 and AMT2 subfamily members, which could potentially play roles in controlling the NH4+ transport activities. This study provides gene resources to study the biological function of AMT proteins in peach, and reveals molecular basis for NH4+ uptake and N nutrition mechanisms of fruit trees.  相似文献   

20.
Acid-base regulation during ammonium assimilation in Hydrodictyon africanum   总被引:1,自引:1,他引:0  
Abstract The acid-base balance during ammonium (used to mean NH 4+ and/or NH3) assimilation in Hydrodictyon africanum has been measured on cells growing with about 1 mol m?3 ammonium at an external pH of about 6.5. Measurements made included (1) ash alkalinity (corrected for intracellular ammonium) which yields net organic negative charge, (2) the accumulation of organic N in the cells and (3) the change in extracellular H+ (from the pH change and the buffer capacity). These measurements showed that some 0.25 excess organic negative charge (half in the cell wall, half inside the plasmalemma) accumulates per organic N synthesized, while some 1.25H+ accumulate in the medium per organic N synthesized. Granted a permeability (PNH3) of some 10?3 cm s?1, and a finite [NH3] in the cytoplasm of these N-assimilating cells it is likely that most of the ammonium entering these growing cells is as NH 4+. This means that most of the H + appearing in the medium must have originated from inside the cell and have been subjected to active efflux at the plasmalemma: H+ accumulates in the medium equivalent to any NH3 entry by requilibration from exogenous NH 4+. The cell composition (net organic negative charge, organic N content) is very similar in these ammonium-grown cells to that of NO3+grown cells, suggesting that there is no action of a ‘biochemical pH stat’ during longterm assimilation of NO3+in H. africanum. Short-term experiments were carried out at an external pH of 7.2 in which ammonium at various concentrations were supplied to NO3+-grown cells. There was in all cases a rapid influx followed by a slower uptake; at least at the lower concentrations (less than 100 μmol dm?3) the net influx was all attributable to NH4+influx via a uniporter, probably partly short-circuited by a passive NH3 efflux due to intrinsic membrane permeability to NH3. The net ammonium influx was in all cases associated with H+ accumulation in the medium. (1.3-1.7 H + per ammonium taken up); as in the growth experiments, most of the ammonium taken up was assimilated. Determinations of cytoplasmic pH showed either no effect on, or a slight decrease in, pH during ammonium assimilation; the changes that occurred were in the direction expected for actuating a ‘pH-regulating’ change in H+ fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号