首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The amount of button mushroom (Agaricus bisporus) harvested from compost is largely affected by the microbial processes taking place during composting and the microbes inhabiting the mature compost. In this study, the microbial changes during the stages of this specific composting process were monitored, and the dominant bacteria of the mature compost were identified to reveal the microbiological background of the favorable properties of the heat-treated phase II mushroom compost. 16S ribosomal deoxyribonucleic acid (rDNA)-based denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) molecular fingerprinting methods were used to track the succession of microbial communities in summer and winter composting cycles. DNA from individual DGGE bands were reamplified and subjected to sequence analysis. Principal component analysis of fingerprints of the composting processes showed intensive changes in bacterial community during the 22-day procedure. Peak temperature samples grouped together and were dominated by Thermus thermophilus. Mature compost patterns were almost identical by both methods (DGGE, T-RFLP). To get an in-depth analysis of the mature compost bacterial community, the sequence data from cultivation of the bacteria and cloning of environmental 16S rDNA were uniquely coupled with the output of the environmental T-RFLP fingerprints (sequence-aided T-RFLP). This method revealed the dominance of a supposedly cellulose-degrading consortium composed of phylotypes related to Pseudoxanthomonas, Thermobifida, and Thermomonospora.  相似文献   

2.
Aims: The purpose of this study was to determine whether the methods used in compost operations of small and medium‐sized poultry forms resulted in the production of an amendment free of foodborne pathogens. Methods and Results: Nine compost heaps on five South Carolina poultry farms were surveyed at different stages of the composting process. Compost samples were analysed for coliforms and enriched for Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes. The waste materials and composting practices differed among the surveyed farms. On two farms, new materials were added to heaps that had previously completed the active composting phase. Five compost heaps did not reach an internal temperature of 55°C, and c. 62% of all internal samples in the first composting phase contained moisture contents <40%. Escherichia coli was detected in 63% of the surface samples (n = 38) and 9·8% of the internal samples (n = 82) from the first composting phase, as compared with 16·7% of the surface samples (n = 12) and 0% internal samples (n = 24) from the second composting phase. Salmonella was detected in 26 and 6·1% of all surface and internal samples collected from heaps in the first composting phase, respectively, but was absent in all compost samples undergoing a second composting phase. The predominant Salmonella serotypes were Thompson, Montevideo and Anatum. Neither E. coli O157:H7 nor Lmonocytogenes was detected in any of the samples. Conclusions: Our results indicate that the conditions at the compost surface are suitable for pathogen survival, and the complete composting process can result in the elimination of pathogens in poultry wastes. Significance and Impact of the Study: This research provides information regarding the effectiveness of the composting practices and microbiological quality of poultry compost produced by small‐ and medium‐sized farms. Ensuring the safety of compost that may be applied to soils should be an integral part of preharvest food safety programme.  相似文献   

3.
Fungi are important in terrestrial decay processes. However, fungi associated with organic decay during composting are still not well known. In this study culture-independent methods were used to identify fungi associated with composting organic municipal wastes to gain a better understanding of the diversity of fungi associated with this process. Fungal communities from 0, 210, and 410 day-old compost samples were assessed with DNA fingerprinting using denaturing gradient gel electrophoresis (DGGE) and by the analysis of DNA sequences from rDNA clone libraries. From 207 rDNA sequences, 82 fungal OTU’s were detected. A disproportionate number of yeast sequences were detected in Day 0 clone libraries, including the human pathogens Candida tropicalis and Candida krusei (Saccharomycetales). Basidiomycetes accounted for over half of the clones from the Day 210 sample. Clones of Cercophora and Neurospora species accounted for most of the fungal clones of the Day 410 sample. No Zygomycetes or Aspergillus species were detected in this study. These findings call for a reassessment of long held views about the organisms involved in the composting of organic municipal wastes.  相似文献   

4.
Disturbances caused by timber harvesting have critical long‐term effects on the forest soil microbiota and alter fundamental ecosystem services provided by these communities. This study assessed the effects of organic matter removal and soil compaction on microbial community structures in different soil horizons 13 years after timber harvesting at the long‐term soil productivity site at Skulow Lake, British Columbia. A harvested stand was compared with an unmanaged forest stand. Ribosomal intergenic spacer profiles of bacteria, archaea and eukarya indicated significantly different community structures in the upper three soil horizons of the two stands, with differences decreasing with depth. Large‐scale sequencing of the ribosomal intergenic spacers coupled to small‐subunit ribosomal RNA genes allowed taxonomic identification of major microbial phylotypes affected by harvesting or varying among soil horizons. Actinobacteria and Gemmatimonadetes were the predominant phylotypes in the bacterial profiles, with the relative abundance of these groups highest in the unmanaged stand, particularly in the deeper soil horizons. Predominant eukaryal phylotypes were mainly assigned to known mycorrhizal and saprotrophic species of Basidiomycetes and Ascomycetes. Harvesting affected Basidiomycetes to a minor degree but had stronger effects on some Ascomycetes. Archaeal profiles had low diversity with only a few predominant crenarchaeal phylotypes whose abundance appeared to increase with depth. Detection of these effects 13 years after harvesting may indicate a long‐term change in processes mediated by the microbial community with important consequences for forest productivity. These effects warrant more comprehensive investigation of the effects of harvesting on the structure of forest soil microbial communities and the functional consequences.  相似文献   

5.
Aims: To (i) identify the bacterial communities in the gut of oriental fruit fly (Bactrocera dorsalis) adult and (ii) determine whether the different surroundings and diets influence the bacteria composition. Methods and Results: Polymerase chain reaction‐denaturing gradient gel electrophoresis (DGGE) fingerprinting was used to investigate bacterial diversity in the oriental fruit fly adult gut. The 16S rDNA cloned libraries from the intestinal tract of laboratory‐reared (LR), laboratory sterile sugar‐reared (LSSR) and field‐collected (FC) populations of oriental fruit fly were compared. Phylogenetic analysis of 16S rDNA revealed that Gammaproteobacteria were dominant in the all samples (73·0–98·3%). Actinobacteria and Firmicutes were judged to be major components of a given library as they constituted 10% or more of the total clones of such library. The Flavobacteria, Deltaproteobacteria, Bacteroidetes and Alphaproteobacteria were observed in small proportions in various libraries. Further phylogenetic analyses indicated common bacterial phylotypes for all three libraries, e.g. those related to Klebsiella, Citrobacter, Enterobacter, Pectobacterium and Serratia. libshuff analysis showed that the bacterial communities of B. dorsalis from the three populations were significantly different from each other (P < 0·0085). Conclusions: (i) The intestinal tract of B. dorsalis adult contains a diverse bacterial community, some of which are stable. (ii) Different environmental conditions and food supply could influence the diversity of the harboured bacterial communities and increase community variations. Significance and Impact of the Study: Comparison of the microbial compositions and common bacterial species found in this paper may be very important for the biocontrol of B. dorsalis.  相似文献   

6.
The adhesion to inert solid surfaces was explored as a novel approach for the enrichment of previously uncultured bacteria from natural microbial communities. Enrichments on solid steel, glass and synthetic polymeric surfaces were established using samples from five freshwater lakes, a marine microbial mat and an alpine soil, and were subsequently analysed by molecular fingerprinting and sequencing of their 16S rRNA gene fragments. The majority of the enriched phylotypes grouped with the Alphaproteobacteria, Betaproteobacteria or Bacteroidetes and in several cases were related to typical biofilm‐forming species and genera. Most enrichments were most closely related to previously uncultured phylotypes and none had previously been cultivated from the original environments even when applying improved high throughput liquid cultivation techniques. Of the 13 phylotypes enriched from freshwater samples, seven were previously unknown, three matched so‐far uncultured environmental clones, and three were identical to previously cultivated bacteria. Of the 17 phylotypes recovered from soil, 12 were previously unknown with five of these phylotypes representing novel genera, whereas five phylotypes were identical to previously cultured soil bacteria. The feasibility of the biofilm‐enrichment approach was exemplified by the successful isolation of a not‐yet cultured Betaproteobacterium that constituted a discernible component of the alpine soil microbial community in situ and exhibited only 93% similarity to its closest cultured relative. Based on these results, cultivation on solid surfaces represents a promising approach to recover isolates that have so far escaped cultivation as suspended cultures in liquid media.  相似文献   

7.
Communities of arbuscular mycorrhizal (AM) fungi were investigated in Stipa krylovii, Leymus chinensis (Poaceae), Allium bidentatum (Liliaceae), and Astragalus brevifolius (Fabaceae) in the Mongolian steppe to examine the effect of plant species on the communities in this study. The AM fungal communities were examined by molecular analysis based on the partial sequences of a small subunit of the ribosomal RNA gene. The sequences obtained were divided into 23 phylotypes by the sequence similarity >98%. Many of the AM fungal phylotypes included AM fungi previously detected in high-altitude regions in the Tibet and Loes plateaus, which suggested that these AM fungi may have wide distribution with stressful conditions of aridity and coldness. Among the 23 phylotypes, 12 phylotypes were found in all four plants, and 87.4% of the all obtained sequences were affiliated into these 12 types. For the distribution of the AM fungal phylotypes, overlapping of the phylotypes among the four plant species were significantly higher than that simulated by random chance. These results suggested that AM fungal communities were less diversified among the examined plant species.  相似文献   

8.

Background and aims

The effect of plant species on their root-associated arbuscular mycorrhizal (AM) fungi is well studied, but how this effect operates at the cultivar level remains poorly understood. This study investigates how wheat cultivars shape their AM fungal communities.

Methods

Twenty-one new wheat cultivars were traditionally cultivated in a dryland of northwestern China, and their agronomic traits, soil characteristics and the abundance and community composition of AM fungi were measured.

Results

Both spore community in soils and AM fungal phylotypes inside roots were significantly influenced by cultivar even though hyphal abundance, spore density and AM fungal diversity were similar across cultivars. Three out of 16 AM fungal phylotypes interacted with most cultivars, whilst some phylotypes preferred to colonize cultivars with similar agronomic traits. Six wheat cultivars, all which had hosted 6 AM fungal phylotypes, seemed to be generalists. Nestedness analysis and stochastic model fitting revealed that the AM fungal communities colonizing roots were codetermined by deterministic and stochastic processes.

Conclusions

A complex pattern of cultivar-AM fungal interactions was observed in this study, and our results highlight that the host effect on the community assembly of AM fungi could be operating on the level of plant cultivar.  相似文献   

9.
To better understand the diversity and species composition of arbuscular mycorrhizal fungi (AMF) in mangrove ecosystems, the AMF colonization and distribution in four semi-mangrove plant communities were investigated. Typical AMF hyphal, vesicle and arbuscular structures were commonly observed in all the root samples, indicating that AMF are important components on the landward fringe of mangrove habitats. AMF spores were extracted from the rhizospheric soils, and an SSU rDNA fragment from each spore morph-type was amplified and sequenced for species identification. AMF species composition and diversity in the roots of each semi-mangrove species were also analyzed based on an SSU-ITS-LSU fragment, which was amplified, cloned and sequenced from root samples. In total, 11 unique AMF sequences were obtained from spores and 172 from roots. Phylogenetic analyses indicated that the sequences from the soil and roots were grouped into 5 and 14 phylotypes, respectively. AMF from six genera including Acaulospora, Claroideoglomus, Diversispora, Funneliformis, Paraglomus, and Rhizophagus were identified, with a further six phylotypes from the Glomeraceae family that could not be identified to the genus level. The AMF genus composition in the investigated semi-mangrove communities was very similar to that in the intertidal zone of this mangrove ecosystem and other investigated mangrove ecosystems, implying possible fungal adaptation to mangrove conditions.  相似文献   

10.
Ectomycorrhizal (ECM) fungi play major ecological roles in temperate and tropical ecosystems. Although the richness of ECM fungal communities and the factors controlling their structure have been documented at local spatial scales, how they vary at larger spatial scales remains unclear. In this issue of Molecular Ecology, Tedersoo et al. (2012) present the results of a meta‐analysis of ECM fungal community structure that sheds important new light on global‐scale patterns. Using data from 69 study systems and 6021 fungal species, the researchers found that ECM fungal richness does not fit the classic latitudinal diversity gradient in which species richness peaks at lower latitudes. Instead, richness of ECM fungal communities has a unimodal relationship with latitude that peaks in temperate zones. Intriguingly, this conclusion suggests the mechanisms driving ECM fungal community richness may differ from those of many other organisms, including their plant hosts. Future research will be key to determine the robustness of this pattern and to examine the processes that generate and maintain global‐scale gradients of ECM fungal richness.  相似文献   

11.
In terrestrial ecosystems, plant roots are colonized by various clades of mycorrhizal and endophytic fungi. Focused on the root systems of an oak‐dominated temperate forest in Japan, we used 454 pyrosequencing to explore how phylogenetically diverse fungi constitute an ecological community of multiple ecotypes. In total, 345 operational taxonomic units (OTUs) of fungi were found from 159 terminal‐root samples from 12 plant species occurring in the forest. Due to the dominance of an oak species (Quercus serrata), diverse ectomycorrhizal clades such as Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus, and Cenococcum were observed. Unexpectedly, the root‐associated fungal community was dominated by root‐endophytic ascomycetes in Helotiales, Chaetothyriales, and Rhytismatales. Overall, 55.3% of root samples were colonized by both the commonly observed ascomycetes and ectomycorrhizal fungi; 75.0% of the root samples of the dominant Q. serrata were so cocolonized. Overall, this study revealed that root‐associated fungal communities of oak‐dominated temperate forests were dominated not only by ectomycorrhizal fungi but also by diverse root endophytes and that potential ecological interactions between the two ecotypes may be important to understand the complex assembly processes of belowground fungal communities.  相似文献   

12.
Environmental degradation may have strong effects on community assembly processes. We examined the assembly of bacterial and fungal communities in anthropogenically altered and near‐pristine streams. Using pyrosequencing of bacterial and fungal DNA from decomposed alder Alnus incana leaves, we specifically examined if environmental degradation deterministically decreases or increases the compositional turnover of bacterial and fungal communities. Our results showed that near‐pristine streams and anthropogenically altered streams supported distinct fungal and bacterial communities. The mechanisms assembling these communities were different in near‐pristine and altered environments. Environmental disturbance homogenized bacterial communities, whereas fungal communities were more dissimilar in disturbed sites than in near‐pristine sites. Compositional variation of both bacteria and fungi was related to water chemistry variables in disturbed sites, further implying the influence of environmental degradation on community assembly. Bacterial and fungal communities in near‐pristine streams were weakly controlled by environmental factors, suggesting that the relative importance of niche‐based versus neutral processes in assembling microbial communities may strongly depend on the spatial scale and local environmental context. Our results thus suggest that environmental degradation may strongly affect the composition and β‐diversity of stream microbial communities colonizing leaf litter, and that the direction of the change can be different between bacteria and fungi. A better understanding of the environmental tolerances of microbes and the mechanisms assembling microbial communities in natural environmental settings is needed to predict how environmental alteration is likely to affect microbial communities.  相似文献   

13.
Wood ash for application in municipal biowaste composting   总被引:1,自引:0,他引:1  
This study aimed to clarify the impacts of pH control by wood ash amendment on biowaste composting processes. To achieve this, fresh source separated municipal biowaste was mixed with low doses (2-8% wt/vol) of wood ash and processed in a pilot and large-scale composting systems. The results indicated a correlation between a low initial pH and delay in the early rise of the process temperature. Wood ash elevated the composting temperatures and pH, and stimulated the mineralisation both in the pilot scale and the industrial large-scale processes. According to the results addition of amounts of 4-8% wood ash is sufficient for efficient biowaste composting process and yields a safe end product. However, to minimise the environmental risk for heavy metal contamination, and meet the criteria for the limit values of the impurities in wood ash, strict quality control of the applied wood ashes should be implemented.  相似文献   

14.
Plants producing dust seeds often meet their carbon demands by exploiting fungi at the seedling stage. This germination strategy (i.e. mycoheterotrophic germination) has been investigated among orchidaceous and ericaceous plants exploiting Ascomycota or Basidiomycota. Although several other angiosperm lineages have evolved fully mycoheterotrophic relationships with Glomeromycota, the fungal identities involved in mycoheterotrophic germination remain largely unknown. Here, we conducted in situ seed baiting and high-throughput DNA barcoding to identify mycobionts associated with seedlings of Burmannia championii (Burmanniaceae: Dioscoreales) and Sciaphila megastyla (Triuridaceae: Pandanales), which have independently evolved full mycoheterotrophy. Subsequently, we revealed that both seedlings and adults in B. championii and S. megastyla predominantly associate with Glomeraceae. However, mycorrhizal communities are somewhat distinct between seedling and adult stages, particularly in S. megastyla. Notably, the dissimilarity of mycorrhizal communities between S. megastyla adult samples and S. megastyla seedling samples is significantly higher than that between B. championi adult samples and S. megastyla adult samples, based on some indices. This pattern is possibly due to both mycorrhizal shifts during ontogenetic development and convergent recruitment of cheating-susceptible fungi. The extensive fungal overlap in two unrelated mycoheterotrophic plants indicates that both species convergently exploit specific AM fungal phylotypes.  相似文献   

15.
The Antarctic Dry Valleys are unable to support higher plant and animal life and so microbial communities dominate biotic ecosystem processes. Soil communities are well characterized, but rocky surfaces have also emerged as a significant microbial habitat. Here, we identify extensive colonization of weathered granite on a landscape scale by chasmoendolithic microbial communities. A transect across north-facing and south-facing slopes plus valley floor moraines revealed 30–100 % of available substrate was colonized up to an altitude of 800 m. Communities were assessed at a multidomain level and were clearly distinct from those in surrounding soils and other rock-inhabiting cryptoendolithic and hypolithic communities. All colonized rocks were dominated by the cyanobacterial genus Leptolyngbya (Oscillatoriales), with heterotrophic bacteria, archaea, algae, and fungi also identified. Striking patterns in community distribution were evident with regard to microclimate as determined by aspect. Notably, a shift in cyanobacterial assemblages from Chroococcidiopsis-like phylotypes (Pleurocapsales) on colder–drier slopes, to Synechococcus-like phylotypes (Chroococcales) on warmer–wetter slopes. Greater relative abundance of known desiccation-tolerant bacterial taxa occurred on colder–drier slopes. Archaeal phylotypes indicated halotolerant taxa and also taxa possibly derived from nearby volcanic sources. Among the eukaryotes, the lichen photobiont Trebouxia (Chlorophyta) was ubiquitous, but known lichen-forming fungi were not recovered. Instead, fungal assemblages were dominated by ascomycetous yeasts. We conclude that chasmoendoliths likely constitute a significant geobiological phenomenon at lower elevations in granite-dominated Antarctic Dry Valley systems.  相似文献   

16.
Microbial communities transform nitrogen (N) compounds, thereby regulating the availability of N in soil. The N cycle is defined by interacting microbial functional groups, as inorganic N‐products formed in one process are the substrate in one or several other processes. The nitrification pathway is often a two‐step process in which bacterial or archaeal communities oxidize ammonia to nitrite, and bacterial communities further oxidize nitrite to nitrate. Little is known about the significance of interactions between ammonia‐oxidizing bacteria (AOB) and archaea (AOA) and nitrite‐oxidizing bacterial communities (NOB) in determining the spatial variation of overall nitrifier community structure. We hypothesize that nonrandom associations exist between different AO and NOB lineages that, along with edaphic factors, shape field‐scale spatial patterns of nitrifying communities. To address this, we sequenced and quantified the abundance of AOA, AOB, and Nitrospira and Nitrobacter NOB communities across a 44‐hectare site with agricultural fields. The abundance of Nitrobacter communities was significantly associated only with AOB abundance, while that of Nitrospira was correlated to AOA. Network analysis and geostatistical modelling revealed distinct modules of co‐occurring AO and NOB groups occupying disparate areas, with each module dominated by different lineages and associated with different edaphic factors. Local communities were characterized by a high proportion of module‐connecting versus module‐hub nodes, indicating that nitrifier assemblages in these soils are shaped by fluctuating conditions. Overall, our results demonstrate the utility of network analysis in accounting for potential biotic interactions that define the niche space of nitrifying communities at scales compatible to soil management.  相似文献   

17.
The community structure of arbuscular mycorrhizal (AM) fungi associated with Ixeris repens was studied in coastal vegetation near the Tottori sand dunes in Japan. I. repens produces roots from a subterranean stem growing near the soil surface which provides an opportunity to examine the effects of an environmental gradient related to distance from the sea on AM fungal communities at a regular soil depth. Based on partial sequences of the nuclear large subunit ribosomal RNA gene, AM fungi in root samples were divided into 17 phylotypes. Among these, five AM fungal phylotypes in Glomus and Diversispora were dominant near the seaward forefront of the vegetation. Redundancy analysis of the AM fungal community showed significant relationships between the distribution of phylotypes and environmental variables such as distance from the sea, water-soluble sodium in soil, and some coexisting plant species. These results suggest that environmental gradients in the coastal vegetation can be determinants of the AM fungal community.  相似文献   

18.
Aims: Comparison of the microbial composition and process performance between laboratory scale processes treating domestic and vegetable oil wastewaters. Methods and Results: Two laboratory scale modified Ludzack–Ettinger processes were operated under similar operating conditions. One process was fed domestic wastewater and the other an industrial wastewater, vegetable oil effluent. Nitrogen removal capacities of the processes were similar. The industrial process exhibited a lower COD removal capacity and oxygen utilization rate, although a greater mixed liquor volatile suspended solids concentration was observed in the industrial process. Fluorescent in situ hybridization (FISH) with probes EUBmix, ALF1b, BET42a, GAM42a and HGC69a revealed that 81% and 72% of total cells stained with 4′, 6‐diamidino‐2‐phenylindole (DAPI) within the domestic and industrial processes respectively bound to EUBmix. This indicated a slightly lower Eubacterial population within the industrial process. The alpha‐proteobacteria was the dominant community in the industrial process (31% of EUBmix), while the beta‐proteobacteria dominated the domestic process (33% of EUBmix). Conclusions: The findings served to establish a difference in the microbial population between the processes. Therefore, the class alpha‐proteobacteria could play a primary role in the degradation of vegetable oil effluent. Significance and Impact of the Study: This research will aid in process design and retrofitting of biological processes treating vegetable oil effluent.  相似文献   

19.
Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed to generate compost with the desired properties.  相似文献   

20.
Several recent studies suggest local adaptation in multiple taxa across Hawaii's steep environmental gradients. Restoration efforts in devastated tropical island ecosystems may be deficient if we lack an understanding of the interactions and dependencies in communities that occur along these gradients. Endangered Hawaiian tree snails are part of a snail–epiphyte–plant system where they graze fungi and other microbes on the leaf surface, a process difficult to observe using conventional techniques. Tree snails have undergone catastrophic decline due to introduced predators, removal by shell collectors, and human‐influenced habitat degradation. Prior to this study, little was known about the relationship among tree‐snails, their host plants, and the epiphytic microbes on which they feed. In this study, we identified scale‐dependent selection of substrates in Achatinella sowerbyana and Achatinella lila across the species’ ranges. We assessed: (1) within‐plant diet selection using high‐throughput DNA sequencing (micro‐scale); (2) among‐plant selection of tree host species (small‐scale); (3) and the influence of climate on this system (macro‐scale). Selection of substrates occurred at two scales: fungal communities in fecal samples differed in composition from those available on leaf surfaces; and at all sites, snail occurrence on Metrosideros polymorpha, a foundational forest plant, was significantly higher than expected based on availability. Habitat restoration efforts should focus on out‐planting of M. polymorpha, the preferred snail host tree, in degraded habitat. Fungal differences across sites suggest relocation efforts to predator‐free enclosures may be hindered by microbial shifts associated with geographic distance or differing environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号