首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
While oyster mushroom (Pleurotus spp.) is one of the most popular cultivated edible mushrooms, there is scanty information about the microbial community taking part in mushroom substrate production. In this study, an improved sequence-aided terminal restriction fragment length polymorphism (T-RFLP) was used to identify and (semi-)quantify the dominant bacteria of oyster mushroom substrate preparation. The main features of the improved T-RFLP data analysis were the alignment of chromatograms with variable clustering thresholds, the visualization of data matrix with principal component analysis ordination superimposed with cluster analysis, and the search for stage-specific peaks (bacterial taxa) with similarity percentage (analysis of similarity) analysis, followed by identification with clone libraries. By applying this method, the dominance of the following bacterial genera was revealed during oyster mushroom substrate preparation: Pseudomonas and Sphingomonas at startup, Bacillus, Geobacillus, Ureibacillus, Pseudoxanthomonas, and Thermobispora at the end of partial composting, and finally several genera of Actinobacteria, Thermus, Bacillus, Geobacillus, Thermobacillus, and Ureibacillus in the mature substrate. As the proportion of uncultured bacteria increased during the process, it is worth establishing strain collections from partial composting and from mature substrate for searching new species.  相似文献   

2.
Rice straw (RS) is an important raw material for the preparation of Agaricus bisporus compost in China. In this study, the characterization of composting process from RS and wheat straw (WS) was compared for mushroom production. The results showed that the temperature in RS compost increased rapidly compared with WS compost, and the carbon (C)/nitrogen (N) ratio decreased quickly. The microbial changes during the Phase I and Phase II composting process were monitored using denaturing gradient gel electrophoresis (DGGE) and phospholipid fatty acid (PLFA) analysis. Bacteria were the dominant species during the process of composting and the bacterial community structure dramatically changed during heap composting according to the DGGE results. The bacterial community diversity of RS compost was abundant compared with WS compost at stages 4–5, but no distinct difference was observed after the controlled tunnel Phase II process. The total amount of PLFAs of RS compost, as an indicator of microbial biomass, was higher than that of WS. Clustering by DGGE and principal component analysis of the PLFA compositions revealed that there were differences in both the microbial population and community structure between RS- and WS-based composts. Our data indicated that composting of RS resulted in improved degradation and assimilation of breakdown products by A. bisporus, and suggested that the RS compost was effective for sustaining A. bisporus mushroom growth as well as conventional WS compost.  相似文献   

3.
Both composting and earthworm treatment can degrade potassium rock powders and bacteria play a key role during the bio-processings. To understand the dominant bacteria and bacterial profile in biological conversion of the ore including compost and earthworm treatment, the bacterial communities in the compost were studied by using the method of denaturing gradient gel electrophoresis (DGGE) after ore powder was co-composted with organic wastes and then treated with earthworms. Results showed bacterial community structure changed very quickly during the early stages of solid-state fermentation, but relatively stable in the later stages of fermentation and during earthworm treatment. The dominant species of bacteria largely varied in the earlier stage of composting, but they were stable in the latter stage and during earthworm treatment. Two classes of bacteria, represented by band 12 (likely Alteromonas) and band 14 (likely Firmicutes) in DGGE profile, were found to be dominant species over the entire solid-state fermentation period. No special dominant bacterial species appeared during earthworm treatment. Phylogenetic studies of the bacteria based on 16S rRNA sequences indicate that major 13 bands came from phyla Proteobacteria and Firmicutes, suggesting that bacteria in these phyla played an important role during the compost treatment.  相似文献   

4.
高通量测序技术分析猪粪堆肥过程中微生物群落结构变化   总被引:4,自引:0,他引:4  
为了解猪粪堆肥过程中微生物群落结构组成及多样性的变化,采集猪粪堆肥过程的三个代表性样品—新鲜猪粪、高温堆肥、腐熟堆肥,利用Illumina Miseq高通量测序技术对16S rRNA V4~V5可变区序列进行测序,分别获得37 009、42 470、36 713条有效序列及328、280、160个操作分类单元(OTU)。Alpha多样性分析表明,在堆肥过程中微生物群落丰富度呈现降低趋势,而多样性呈现先上升后下降趋势。随着堆肥的进行,在门水平上,厚壁菌门、拟杆菌门和软壁菌门相对丰度降低,而变形菌门和放线菌门相对丰度升高;在属水平上,Turicibacter、Terrisporobacter、Parabacteroides、Clostridium sensu stricto、Corynebacterium等来自动物肠道的微生物相对丰度明显下降,Thermopolyspora、Thermomonospora、Thermobifida、Halocella等耐热耐盐微生物成为最主要优势菌。堆肥过程不同菌群优势度的变化是微生物与堆肥中各理化因子相互作用的结果。  相似文献   

5.
Although oyster mushroom (Pleurotus spp.) is a valuable food, cultivated worldwide on an industrial scale, still very little is known about the microbial dynamics during oyster mushroom substrate preparation. Therefore, the characterization of the microbial dynamics by chemical and biological tools was the objective of this study. During substrate preparation, enzymatic digestibility of the substrate improved by 77%, whereas the cellulose and hemicellulose to lignin ratios decreased by 9% and 19%, respectively. Fluorescein diacetate hydrolysis reached its minimum value at the temperature maximum of the process during the composting phase and exceeded the initial level at the end of the process. Fungal species played part in the initial mesophilic phase of the substrate preparation process, but they disappeared after pasteurization in tunnels at constant elevated temperatures. Changes in the microbiota showed a marked bacterial community succession during substrate preparation investigated by 16S ribosomal deoxyribonucleic acid-based terminal restriction fragment length polymorphism (T-RFLP). Mature samples represented the least variance, which indicated the effect of the standardized preparation protocol. The relation between mushroom yield and the bacterial community T-RFLP fingerprints was investigated, but the uniformity of mushroom yields did not support any significant correlation.  相似文献   

6.
Xiao Y  Zeng GM  Yang ZH  Ma YH  Huang C  Shi WJ  Xu ZY  Huang J  Fan CZ 《Microbial ecology》2011,62(3):599-608
The method of continuous thermophilic composting (CTC) remarkably shortened the active composting cycle and enhanced the compost stability. Effects of CTC on the quantities of bacteria, with a comparison to the traditional composting (TC) method, were explored by plate count with incubation at 30, 40 and 50°C, respectively, and by quantitative PCR targeting the universal bacterial 16S rRNA genes and the Bacillus 16S rRNA genes. The comparison of cultivatable or uncultivatable bacterial numbers indicated that CTC might have increased the biomass of bacteria, especially Bacillus spp., during the composting. Denaturing gradient gel electrophoresis (DGGE) analysis was employed to investigate the effects of CTC on bacterial diversity, and a community dominated by fewer species was detected in a typical CTC run. The analysis of sequence and phylogeny based on DGGE indicated that the continuously high temperature had changed the structure of bacterial community and strengthened the mainstay role of the thermophilic and spore-forming Bacillus spp. in CTC run.  相似文献   

7.
Denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) were used to characterise the changes that occurred in Bacillus cereus group strains present in the phylloplane of clover Trifolium hybridum over 4 months. These strains had previously been analysed by multiple locus sequence typing (MLST). DGGE displayed many equally intense bands which indicated many equally abundant ribotypes. The bacterial community composition was variable and the leaves sampled as little as a week apart were found to have some temporal variability, indicating that diverse phylloplane bacterial communities follow sequential patterns from time to time. The B. cereus group community clearly clustered into early, mid and late branches, possibly due to multiple successional sequences occurring during growing seasons. The functionally and phylogenetically diverse microbial communities appeared to exhibit predictable successional patterns over shorter time scales. DGGE analysis with the molecular marker rpoB gave better resolution than 16S rRNA amplicons. There were no strong similarities between the dendrograms produced by DGGE, MLST and T-RFLP and the clustering produced by the automated T-RFLP method was variable even between the three restriction enzymes used. The DGGE–MLST method emerged as a superior method to T-RFLP–MLST for rapid typing of bacterial communities.  相似文献   

8.
Wetlands are major sources of carbon dioxide, methane, and other greenhouse gases released during microbial degradation. Despite the fact that decomposition is mainly driven by bacteria and fungi, little is known about the taxonomic diversity of bacterial communities in wetlands, particularly Sphagnum bogs. To explore bacterial community composition, 24 bogs in Vermont and Massachusetts were censused for bacterial diversity at the surface (oxic) and 1 m (anoxic) regions. Bacterial diversity was characterized by a terminal restriction fragment length (T-RFLP) fingerprinting technique and a cloning strategy that targeted the 16S rRNA gene. T-RFLP analysis revealed a high level of diversity, and a canonical correspondence analysis demonstrated marked similarity among bogs, but consistent differences between surface and subsurface assemblages. 16S rDNA sequences derived from one of the sites showed high numbers of clones belonging to the Deltaproteobacteria group. Several other phyla were represented, as well as two Candidate Division-level taxonomic groups. These data suggest that bog microbial communities are complex, possibly stratified, and similar among multiple sites.  相似文献   

9.
The long-term application of excessive chemical fertilizers has resulted in the degeneration of soil quality parameters such as soil microbial biomass, communities, and nutrient content, which in turn affects crop health, productivity, and soil sustainable productivity. The objective of this study was to develop a rapid and efficient solution for rehabilitating degraded cropland soils by precisely quantifying soil quality parameters through the application of manure compost and bacteria fertilizers or its combination during maize growth. We investigated dynamic impacts on soil microbial count, biomass, basal respiration, community structure diversity, and enzyme activity using six different treatments [no fertilizer (CK), N fertilizer (N), N fertilizer + bacterial fertilizer (NB), manure compost (M), manure compost + bacterial fertilizer (MB), and bacterial fertilizer (B)] in the plowed layer (0–20 cm) of potted soil during various maize growth stages in a temperate cropland of eastern China. Denaturing gradient electrophoresis (DGGE) fingerprinting analysis showed that the structure and composition of bacterial and fungi communities in the six fertilizer treatments varied at different levels. The Shannon index of bacterial and fungi communities displayed the highest value in the MB treatments and the lowest in the N treatment at the maize mature stage. Changes in soil microorganism community structure and diversity after different fertilizer treatments resulted in different microbial properties. Adding manure compost significantly increased the amount of cultivable microorganisms and microbial biomass, thus enhancing soil respiration and enzyme activities (p<0.01), whereas N treatment showed the opposite results (p<0.01). However, B and NB treatments minimally increased the amount of cultivable microorganisms and microbial biomass, with no obvious influence on community structure and soil enzymes. Our findings indicate that the application of manure compost plus bacterial fertilizers can immediately improve the microbial community structure and diversity of degraded cropland soils.  相似文献   

10.
The effect of long-term (8 years) compost treatments (compost or compost plus mineral fertilizer) on genetic structure of bacterial and fungal populations in both bulk soil and rhizosphere of grapevine (Vitis vinifera) was analyzed in respect to a control constituted by the soil treated with mineral fertilization. Soils were sampled in early summer (July), mid-summer (August), and before harvest (October). Bacterial and fungal populations were characterized by genetic fingerprints generated by the application of 16S rDNA and ITS rDNA Multiplex Terminal Fragment Length Polymorphism (M-TRFLP) technique. Compost induced no significant differences at any time on microbial communities from bulk soil samples, whereas seasonal variations significantly affected both bacterial and fungal populations as indicated by the Multi Dimensional Scaling (MDS) ordination method of the M-TRFLPs results. MDS analysis of grapevine rhizosphere M-TRFLPs showed that temporal separation was significant for the bacterial population only. Results suggested that soil microbial populations in vineyard productive ecosystems may be sensitive to environmental changes induced by seasonal variations and show a certain degree of resilience to different agricultural practices.  相似文献   

11.
The bacterial community in a partial nitrification reactor was analyzed on the basis of 16S rRNA gene by cloning–sequencing method, and the percentages of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the activated sludge were quantified by three independent methods, namely, denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphism (T-RFLP) and Double Monod modeling. The clone library results suggested that there were only a dominant AOB and a dominant NOB species in the reactor, belonging to Nitrosomonas genus and Nitrospira genus, respectively. The percentages of NOB in total bacterial community increased from almost 0% to 30% when dissolved oxygen (DO) levels were changed from 0.15 mg/L to 0.5 mg/L, coinciding with the accumulation and conversion of nitrite, while the percentages of AOB changed little in the two phases. The results confirmed the importance of low DO level for inhibiting NOB to achieve partial nitrification. Furthermore, the percentages of AOB and NOB in the total bacteria community were estimated based on the results of batch experiments using Double Monod model, and the results were comparable with those determined according to profiles of DGGE and T-RFLP.  相似文献   

12.
We analyzed bacterial communities in two cow manure composts derived from the same feed manure and composted in the same location, but composted with different carbon amendments, and in peat-based potting mixes amended with these composts. Bacterial communities were characterized by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of extracted DNAs, and population fingerprints generated for each sample were compared. Sequence analyses of dominant DGGE bands revealed that members of the phylum Bacteroidetes were the most dominant bacteria detected in this study (19 of 31 clones). These analyses demonstrate that bacterial community profiles of individual composts were highly similar, as were profiles of compost-amended potting mixes. However, potting mix profiles differed substantially from the original compost profiles and from that of the peat base. These data indicate that highly similar bacterial populations were active in the two composts, and suggest that the effects of the initial carbon amendment on the mature compost bacterial communities were minor, while factors such as the feed manure and composting location may have been more influential.  相似文献   

13.
Systemic acquired resistance (SAR) is an inducible systemic plant defense against a broad spectrum of plant pathogens, with the potential to secrete antimicrobial compounds into the soil. However, its impact on rhizosphere bacteria is not known. In this study, we examined fingerprints of bacterial communities in the rhizosphere of the model plant Arabidopsis thaliana to determine the effect of SAR on bacterial community structure and diversity. We compared Arabidopsis mutants that are constitutive and non-inducible for SAR and verified SAR activation by measuring pathogenesis-related protein activity via a β-glucoronidase (GUS) reporter construct driven by the β-1-3 glucanase promoter. We used terminal restriction fragment length polymorphism (T-RFLP) analysis of MspI- and HaeIII-digested 16S rDNA to estimate bacterial rhizosphere community diversity, with Lactobacillus sp. added as internal controls. T-RFLP analysis showed a clear rhizosphere effect on community structure, and diversity analysis of both rhizosphere and bulk soil operational taxonomic units (as defined by terminal restriction fragments) using richness, Shannon–Weiner, and Simpson’s diversity indices and evenness confirmed that the presence of Arabidopsis roots significantly altered bacterial communities. This effect of altered soil microbial community structure by plants was also seen upon multivariate cluster analysis of the terminal restriction fragments. We also found visible differences in the rhizosphere community fingerprints of different Arabidopsis SAR mutants; however, there was no clear decrease of rhizosphere diversity because of constitutive SAR expression. Our study suggests that SAR can alter rhizosphere bacterial communities, opening the door to further understanding and application of inducible plant defense as a driving force in structuring soil bacterial assemblages.  相似文献   

14.
The bacterial community in soil was screened by using various molecular approaches for bacterial populations that were activated upon addition of different supplements. Plasmodiophora brassicae spores, chitin, sodium acetate, and cabbage plants were added to activate specific bacterial populations as an aid in screening for novel antagonists to plant pathogens. DNA from growing bacteria was specifically extracted from the soil by bromodeoxyuridine immunocapture. The captured DNA was fingerprinted by terminal restriction fragment length polymorphism (T-RFLP). The composition of the dominant bacterial community was also analyzed directly by T-RFLP and by denaturing gradient gel electrophoresis (DGGE). After chitin addition to the soil, some bacterial populations increased dramatically and became dominant both in the total and in the actively growing community. Some of the emerging bands on DGGE gels from chitin-amended soil were sequenced and found to be similar to known chitin-degrading genera such as Oerskovia, Kitasatospora, and Streptomyces species. Some of these sequences could be matched to specific terminal restriction fragments on the T-RFLP output. After addition of Plasmodiophora spores, an increase in specific Pseudomonads could be observed with Pseudomonas-specific primers for DGGE. These results demonstrate the utility of microbiomics, or a combination of molecular approaches, for investigating the composition of complex microbial communities in soil.  相似文献   

15.
Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed to generate compost with the desired properties.  相似文献   

16.
Interpreting the large amount of data generated by rapid profiling techniques, such as T-RFLP, DGGE, and DNA arrays, is a difficult problem facing microbial ecologists. This study compares the ability of two very different ordination methods, principal component analysis (PCA) and self-organizing map neural networks (SOMs), to analyze 16S-DNA terminal restriction-fragment length polymorphism (T-RFLP) profiles from microbial communities in glucose-fed methanogenic bioreactors during startup and changes in operational parameters. Our goal was not only to identify which samples were similar, but also to decipher community dynamics and describe specific phylotypes, i.e., phylogenetically similar organisms, that behaved similarly in different reactors. Fifteen samples were taken over 56 volume changes from each of two bioreactors inoculated from river sediment (S2) and anaerobic digester sludge (M3) and from a well-established control reactor (R1). PCA of bacterial T-RFLP profiles indicated that both the S2 and M3 communities changed rapidly during the first nine volume changes, and then became relatively stable. PCA also showed that an HRT of 8 or 6 days had no effect on either reactor communtity, while an HRT of 2 days changed community structure significantly in both reactors. The SOM clustered the terminal restriction fragments according to when each fragment was most abundant in a reactor community, resulting in four clearly discernible groups. Thirteen fragments behaved similarly in both reactors, eight of which composed a significant proportion of the microbial community as judged by the relative abundance of the fragment in the T-RFLP profiles. Six Bacteria terminal restriction fragments shared between the two communities matched cloned 16S rDNA sequences from the reactors related to Spirochaeta, Aminobacterium, Thermotoga, and Clostridium species. Convergence also occurred within the acetoclastic methanogen community, resulting in a predominance of Methanosarcina siciliae-related organisms. The results demonstrate that both PCA and SOM analysis are useful in the analysis of T-RFLP data; however, the SOM was better at resolving patterns in more complex and variable data than PCA ordination.  相似文献   

17.
This article outlines a comprehensive analysis of the microbial diversity of aerosols produced during screening in a green waste composting plant using both culture and molecular techniques. Bacteria, thermophilic actinomycetes and fungi were quantified in the aerosols. The structure of the microbial community was examined using a fingerprint technique and DNA libraries. The results show: (i) the very high diversity of bacteria and fungi in aerosols produced during the composting screening stage, (ii) the low percentage of cultivability for bacteria in aerosols, (iii) the abundance of Thermoactinomyces spp. and Aspergillus spp. in compost aerosols.  相似文献   

18.
接种微生物菌剂对猪粪堆肥过程中细菌群落多样性的影响   总被引:10,自引:1,他引:9  
利用PCR-DGGE方法研究了接种外源微生物菌剂对鲜猪粪高温好氧堆肥过程中细菌群落多样性的影响.结果表明:接种外源微生物菌剂可以促进堆肥的顺利进行,比不接种处理的高温期提前2 d.DGGE图谱分析表明,堆肥中优势细菌群落组成发生了明显的更迭现象,不同堆肥时期细菌群落的Shannon-Wiener指数呈显著差异.目的条带克隆测序结果表明,整个堆肥过程Clostridium stercorarium subsp. thermolacticum sp.一直是优势菌属,不经培养细菌、Bacillus coagulans sp.、Clostridium thermocellum sp.在接种外源微生物菌剂处理的第10、16天成为优势菌属,不经培养的Firmicutes sp.和不经培养的 delta proteobacterium分别在未接种外源微生物菌剂处理堆肥发酵的第5天和第16天成为优势菌属.非优势菌属Ureibacillus thermosphaericus、不经培养的Silvimonas sp.出现在堆肥腐熟后期,不经培养的土壤细菌主要出现在堆肥初期和高温初期.UPGMC聚类分析表明,接种外源微生物菌剂明显影响了堆肥不同时期的细菌群落结构组成.堆肥化过程中细菌DGGE图谱主成分分析表明,细菌群落变化主要受外源接种微生物菌剂的影响.  相似文献   

19.
In this study, physico-chemical modifications and community dynamics and functional role of the resident microbiota during composting of humid husk from a two-phase extraction system (TPOMW) were investigated. High mineralization and humification of carbon, low loss of nitrogen and complete degradation of polyphenols led to the waste biotransformation into a high-quality compost. Viable cell counts and denaturing gradient gel electrophoresis (DGGE) profiling of the 16S rRNA genes showed that the thermophilic phase was characterized by the strongest variations of cell number, the highest biodiversity and the most variable community profiles. The isolation of tannin-degrading bacteria (e.g. Lysinibacillus fusiformis, Kocuria palustris, Tetrathiobacter kashmirensis and Rhodococcus rhodochrous) suggested a role of this enzymatic activity during the process. Taken together, the results indicated that the composting process, particularly the thermophilic phase, was characterized by a rapid succession of specialized bacterial populations with key roles in the organic matter biotransformation.  相似文献   

20.
Composting is the degradation of organic materials through the activities of diverse microorganisms. This research examined microbial community dynamics, population levels and identification of bacteria throughout the composting process and in storage. In addition, an evaluation was performed to determine the potential for dominant bacterial isolates to suppress selected turfgrass pathogens: Sclerotinia homoeocarpa, Pythium graminicola, Typhula ishikariensis, and Microdochium nivale, responsible for causing the turfgrass diseases dollar spot, pythium blight, typhula blight, and fusarium patch, respectively. Composts supported high population levels of bacteria with 78% of cultures tested being Gram-negative. Proteolytic activity, found in 29% of cultures tested is a potential mechanism of suppression or competition with other microorganisms. Although the Biolog system did not identify a wide range of bacteria, the main Gram-negative genera identified in mature compost were Pseudomonas (28%), Serratia (20%), Klebsiella (11%), and Enterobacter (5%). Twenty-one percent of isolates tested were not identified by Biolog, and many more had similarity indexes < 0.50. The microbial identification system, based on whole cell fatty acid analysis, identified a wide range of bacteria, with a higher proportion of similarities than the Biolog system. Genera common to both testing procedures included Pseudomonas, Serratia, and Enterobacter. All Gram-positives were identified as Bacillus spp. Phospholipid fatty acid analysis, used to estimate the diversity of microbial communities, was useful in monitoring changes in microbial population in storage and during composting, as well as estimating levels of compost maturity. Plate challenge experiments revealed a number of cultures with antagonistic activity against turfgrass pathogens. There were 52, 31, 32 and 19% of the bacterial isolates tested that exhibited antagonistic activity against S. homoeocarpa, P. graminicola, T. ishikariensis, and M. nivale, respectively. Improved understanding of microbial populations and their dynamics in composts will expand their potential to act as suppressants on pathogenic fungi or turfgrass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号