首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have monitored the changes in antioxidant enzyme activities and H2O2 concentrations in roots of rice (Oryza sativa L., cv. Taichung Native 1) seedlings treated with exogenous abscisic acid(ABA). Decrease in superoxide dismutase (SOD) and catalase (CAT) activities was observed in rice roots in the presence of ABA. However, ascorbate peroxide (APX) and glutathione reductase (GR) activities were increased after the ABA treatment. ABA treatment resulted in an increase in H2O2 concentrations in rice roots. Pre-treatment with dimethylthiourea, a chemical trap for H2O2, and diphenyleneiodonium chloride (DPI), a well known inhibitor of NADPH oxidase, inhibited ABA-induced accumulation of H2O2 and ABA-induced activities of APX and GR. ABA-induced accumulation of H2O2 was found to be prior to ABA-induced activities of APX and GR. Our results suggest that H2O2 is involved in ABA-induced APX and GR activities in rice roots.  相似文献   

2.
Using confocal microscopy, X‐ray microanalysis and the scanning ion‐selective electrode technique, we investigated the signalling of H2O2, cytosolic Ca2+ ([Ca2+]cyt) and the PM H+‐coupled transport system in K+/Na+ homeostasis control in NaCl‐stressed calluses of Populus euphratica. An obvious Na+/H+ antiport was seen in salinized cells; however, NaCl stress caused a net K+ efflux, because of the salt‐induced membrane depolarization. H2O2 levels, regulated upwards by salinity, contributed to ionic homeostasis, because H2O2 restrictions by DPI or DMTU caused enhanced K+ efflux and decreased Na+/H+ antiport activity. NaCl induced a net Ca2+ influx and a subsequent rise of [Ca2+]cyt, which is involved in H2O2‐mediated K+/Na+ homeostasis in salinized P. euphratica cells. When callus cells were pretreated with inhibitors of the Na+/H+ antiport system, the NaCl‐induced elevation of H2O2 and [Ca2+]cyt was correspondingly restricted, leading to a greater K+ efflux and a more pronounced reduction in Na+/H+ antiport activity. Results suggest that the PM H+‐coupled transport system mediates H+ translocation and triggers the stress signalling of H2O2 and Ca2+, which results in a K+/Na+ homeostasis via mediations of K+ channels and the Na+/H+ antiport system in the PM of NaCl‐stressed cells. Accordingly, a salt stress signalling pathway of P. euphratica cells is proposed.  相似文献   

3.
This study aimed to investigate the inhibitory mechanism of root growth and to compare antioxidative responses in two wheat cultivars, drought-tolerant Ningchun and drought-sensitive Xihan, exposed to different NaCl concentrations. Ningchun exhibited lower germination rate, seedling growth, and lipid peroxidation than Xihan when exposed to salinity. The loss of cell viability was correlated with the inhibition of root growth induced by NaCl stress. Moreover, treatments with H2O2 scavenger dimethylthiourea and catalase (CAT) partly blocked salinity-induced negative effects on root growth and cell viability. Besides, the enhancement of superoxide radical and H2O2 levels, and the stimulation of CAT and diamine oxidase (DAO) as well as the inhibition of glutathione reductase (GR) were observed in two wheat roots treated with salinity. However, hydroxyl radical content increased only in Xihan roots under NaCl treatment, and the changes of soluble peroxidase (POD), ascorbate peroxidase (APX), superoxide dismutase (SOD), and cell-wall-bound POD activities were different in drought-tolerant Ningchun and drought-sensitive Xihan exposed to different NaCl concentrations. In conclusion, salinity might induce the loss of cell viability via a pathway associated with extracellular H2O2 generation, which was the primary reason leading to the inhibition of root growth in two wheat cultivars. Here, it was also suggested that increased H2O2 accumulation in the roots of drought-tolerant Ningchun might be due to decreased POD and GR activities as well as enhanced cell-wall-bound POD and DAO ones, while the inhibition of APX and GR as well as the stimulation of SOD and DAO was responsible for the elevation of H2O2 level in drought-sensitive Xihan roots.  相似文献   

4.
5.
Li J  Wang X  Zhang Y  Jia H  Bi Y 《Planta》2011,234(4):709-722
3′,5′-cyclic guanosine monophosphate (cGMP) is an important second messenger in plants. In the present study, roles of cGMP in salt resistance in Arabidopsis roots were investigated. Arabidopsis roots were sensitive to 100 mM NaCl treatment, displaying a great increase in electrolyte leakage and Na+/K+ ratio and a decrease in gene expression of the plasma membrane (PM) H+-ATPase. However, application of exogenous 8Br-cGMP (an analog of cGMP), H2O2 or CaCl2 alleviated the NaCl-induced injury by maintaining a lower Na+/K+ ratio and increasing the PM H+-ATPase gene expression. In addition, the inhibition of root elongation and seed germination under salt stress was removed by 8Br-cGMP. Further study indicated that 8Br-cGMP-induced higher NADPH levels for PM NADPH oxidase to generate H2O2 by regulating glucose-6-phosphate dehydrogenase (G6PDH) activity. The effect of 8Br-cGMP and H2O2 on ionic homeostasis was abolished when Ca2+ was eliminated by glycol-bis-(2-amino ethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA, a Ca2+ chelator) in Arabidopsis roots under salt stress. Taken together, cGMP could regulate H2O2 accumulation in salt stress, and Ca2+ was necessary in the cGMP-mediated signaling pathway. H2O2, as the downstream component of cGMP signaling pathway, stimulated PM H+-ATPase gene expression. Thus, ion homeostasis was modulated for salt tolerance.  相似文献   

6.
Li J  Chen G  Wang X  Zhang Y  Jia H  Bi Y 《Physiologia plantarum》2011,141(3):239-250
Glucose‐6‐phosphate dehydrogenase (G6PDH) is important for the activation of plant resistance to environmental stresses, and ion homeostasis is the physiological foundation for living cells. In this study, we investigated G6PDH roles in modulating ion homeostasis under salt stress in Carex moorcroftii callus. G6PDH activity increased to its maximum in 100 mM NaCl treatment and decreased with further increased NaCl concentrations. K+/Na+ ratio in 100 mM NaCl treatment did not exhibit significant difference compared with the control; however, in 300 mM NaCl treatment, it decreased. Low‐concentration NaCl (100 mM) stimulated plasma membrane (PM) H+‐ATPase and NADPH oxidase activities as well as Na+/H+ antiporter protein expression, whereas high‐concentration NaCl (300 mM) decreased their activity and expression. When G6PDH activity and expression were reduced by glycerol treatments, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio dramatically decreased. Simultaneously, NaCl‐induced hydrogen peroxide (H2O2) accumulation was abolished. Exogenous application of H2O2 increased G6PDH, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein expression and K+/Na+ ratio in the control and glycerol treatments. Diphenylene iodonium (DPI), the NADPH oxidase inhibitor, which counteracted NaCl‐induced H2O2 accumulation, decreased G6PDH, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio. Western blot result showed that G6PDH expression was stimulated by NaCl and H2O2, and blocked by DPI. Taken together, G6PDH is involved in H2O2 accumulation under salt stress. H2O2, as a signal, upregulated PM H+‐ATPase activity and Na+/H+ antiporter protein level, which subsequently resulted in the enhanced K+/Na+ ratio. G6PDH played a central role in the process.  相似文献   

7.
Wang X  Ma Y  Huang C  Wan Q  Li N  Bi Y 《Planta》2008,227(3):611-623
In the present study, we investigated the role of glucose-6-phosphate dehydrogenase (G6PDH) in regulating the levels of reduced form of glutathione (GSH) to the tolerance of calli from two reed ecotypes, Phragmites communis Trin. dune reed (DR) and swamp reed (SR), in a long-term salt stress. G6PDH activity was higher in SR callus than that of DR callus under 50–150 mM NaCl treatments. In contrast, at higher NaCl concentrations (300–600 mM), G6PDH activity was lower in SR callus. A similar profile was observed in GSH contents, glutathione reductase (GR) and glutathione peroxidase (GPX) activities in both salt-stressed calli. After G6PDH activity and expression were reduced in glycerol treatments, GSH contents and GR and GPX activity decreased strongly in both calli. Simultaneously, NaCl-induced hydrogen peroxide (H2O2) accumulation was also abolished. Exogenous application of H2O2 increased G6PDH, GR, and GPX activities and GSH contents in the control conditions and glycerol treatment. Diphenylene iodonium (DPI), a plasma membrane (PM) NADPH oxidase inhibitor, which counteracted NaCl-induced H2O2 accumulation, decreased these enzymes activities and GSH contents. Furthermore, exogenous application of H2O2 abolished the N-acetyl-l-cysteine (NAC)-induced decrease in G6PDH activity, and DPI suppressed the effect of buthionine sulfoximine (BSO) on induction of G6PDH activity. Western-blot analyses showed that G6PDH expression was stimulated by NaCl and H2O2, and blocked by DPI in DR callus. Taken together, G6PDH activity involved in GSH maintenance and H2O2 accumulation under salt stress. And H2O2 regulated G6PDH, GR, and GPX activities to maintain GSH levels. In the process, G6PDH plays a central role.  相似文献   

8.
The uptake of nitrate by plant roots causes a pH increment in rhizosphere and leads to iron (Fe) deficiency in rice. However, little is known about the mechanism how the nitrate uptake‐induced high rhizosphere pH causes Fe deficiency. Here, we found that rice showed severe leaf chlorosis and large amounts of Fe plaque were aggregated on the root surface and intercellular space outside the exodermis in a form of ferrihydrite under alkaline conditions. In this case, there was significantly decreased Fe concentration in shoots, and the Fe deficiency responsive genes were strongly induced in the roots. The high rhizosphere pH induced excess hydrogen peroxide (H2O2) production in the epidermis due to the increasing expression of NADPH‐oxidase respiratory burst oxidase homolog 1, which enhanced root oxidation ability and improved the Fe plaque formation in rhizosphere. Further, the concentrated H2O2 regulated the phenylpropanoid metabolism with increased lignin biosynthesis and decreased phenolics secretion, which blocked apoplast Fe mobilization efficiency. These factors coordinately repressed the Fe utilization in rhizosphere and led to Fe deficiency in rice under high pH. In conclusion, our results demonstrate that nitrate uptake‐induced rhizosphere alkalization led to Fe deficiency in rice, through H2O2‐dependent manners of root oxidation ability and phenylpropanoid metabolism.  相似文献   

9.
Here we examined whether Ca2+/Calmodulin (CaM) is involved in abscisic acid (ABA)-induced antioxidant defense and the possible relationship between CaM and H2O2 in ABA signaling in leaves of maize (Zea mays L.) plants exposed to water stress. An ABA-deficient mutant vp5 and its wild type were used for the experimentation. We found that water stress enhanced significantly the contents of CaM and H2O2, and the activities of chloroplastic and cytosolic superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR), and the gene expressions of the CaM1, cAPX, GR1 and SOD4 in leaves of wild-type maize. However, the increases mentioned above were almost arrested in vp5 plants and in the wild-type plants pretreated with ABA biosynthesis inhibitor tungstate (T), suggesting that ABA is required for water stress-induced H2O2 production, the enhancement of CaM content and antioxidant defense. Besides, we showed that the up-regulation of water stress-induced antioxidant defense was almost completely blocked by pretreatment with Ca2+ inhibitors, CaM antagonists and reactive oxygen (ROS) manipulators. Moreover, the analysis of time course of CaM and H2O2 production under water stress showed that the increase in CaM content preceded that of H2O2. These results suggested that Ca2+/CaM and H2O2 were involved in the ABA-induced antioxidant defense under water stress, and the increases of Ca2+/CaM contents triggered H2O2 production, which inversely affected the contents of CaM. Thus, a cross-talk between Ca2+/CaM and H2O2 may play a pivotal role in the ABA signaling.  相似文献   

10.
Lin  Chuan Chi  Kao  Ching Huei 《Plant and Soil》2001,230(1):135-143
The changes in cell-wall peroxidase (POD) activity and H2O2 level in roots of NaCl-stressed rice seedlings and their correlation with root growth were investigated. Increasing concentrations of NaCl from 50 to 150 mM progressively reduced root growth and increased ionically bound cell-wall POD activity. NaCl had no effect on covalently bound cell-wall POD activities. The reduction of root growth by NaCl is closely correlated with the increase in H2O2 level. Exogenous H2O2 was found to inhibit root growth of rice seedlings. Since ammonium and proline accumulation are associated with root growth inhibition caused by NaCl, we determined the effects of NH4Cl or proline on root growth, cell-wall POD activity and H2O2level in roots. External application of NH4Cl or proline markedly inhibited root growth, increased cell-wall POD activity and increased H2O2 level in roots of rice seedlings in the absence of NaCl. An increase in cell-wall POD activity and H2O2 level preceded inhibition of root growth caused by NaCl, NH4Cl or proline. NaCl or proline treatment also increased NADH-POD and diamine oxidase (DAO) activities in roots of rice seedlings, suggesting that NADH-POD and DAO contribute to the H2O2 generation in the cell wall of NaCl- or proline-treated roots. NH4Cl treatment increased NADH-POD activity but had no effect on DAO activity, suggesting that NADH-POD but not DAO is responsible for H2O2 generation in cell wall of NH4Cl-treated roots.  相似文献   

11.
Thermotolerance is improved by heat stress (HS) acclimation, and the thermotolerance level is “remembered” by plants. However, the underlying signalling mechanisms remain largely unknown. Here, we showed NADPH oxidase‐mediated H2O2 (NADPH‐H2O2), and chloroplast‐H2O2 promoted the sustained expression of HS‐responsive genes and programmed cell death (PCD) genes, respectively, during recovery after HS acclimation. When spraying the NADPH oxidase inhibitor, diphenylene iodonium, after HS acclimation, the NADPH‐H2O2 level significantly decreased, resulting in a decrease in the expression of HS‐responsive genes and the loss of maintenance of acquired thermotolerance (MAT). In contrast, compared with HS acclimation, NADPH‐H2O2 declined but chloroplast‐H2O2 further enhanced during recovery after HS over‐acclimation, resulting in the reduced expression of HS‐responsive genes and substantial production of PCD. Notably, the further inhibition of NADPH‐H2O2 after HS over‐acclimation also inhibited chloroplast‐H2O2, alleviating the severe PCD and surpassing the MAT of HS over‐acclimation treatment. Due to the change in subcellular H2O2 after HS acclimation, the tomato seedlings maintained a constant H2O2 level during recovery, resulting in stable and lower total H2O2 levels during a tester HS challenge conducted after recovery. We conclude that tomato seedlings increase their MAT by enhancing NADPH‐H2O2 content and controlling chloroplast‐H2O2 production during recovery, which enhances the expression of HS‐responsive genes and balances PCD levels, respectively.  相似文献   

12.
Salinity is among the environmental factors that affect plant growth and development and constrain agricultural productivity. Salinity stress triggers increases in cytosolic free Ca2+ concentration ([Ca2+]i) via Ca2+ influx across the plasma membrane. Salinity stress, as well as other stresses, induces the production of reactive oxygen species (ROS). It is well established that ROS also triggers increases in [Ca2+]i. However, the relationship and interaction between salinity stress-induced [Ca2+]i increases and ROS-induced [Ca2+]i increases remain poorly understood. Using an aequorin-based Ca2+ imaging assay we have analyzed [Ca2+]i changes in response to NaCl and H2O2 treatments in Arabidopsis thaliana. We found that NaCl and H2O2 together induced larger increases in [Ca2+]i in Arabidopsis seedlings than either NaCl or H2O2 alone, suggesting an additive effect on [Ca2+]i increases. Following a pre-treatment with either NaCl or H2O2, the subsequent elevation of [Ca2+]i in response to a second treatment with either NaCl or H2O2 was significantly reduced. Furthermore, the NaCl pre-treatment suppressed the elevation of [Ca2+]i seen with a second NaCl treatment more than that seen with a second treatment of H2O2. A similar response was seen when the initial treatment was with H2O2; subsequent addition of H2O2 led to less of an increase in [Ca2+]i than did addition of NaCl. These results imply that NaCl-gated Ca2+ channels and H2O2-gated Ca2+ channels may differ, and also suggest that NaCl- and H2O2-evoked [Ca2+]i may reduce the potency of both NaCl and H2O2 in triggering [Ca2+]i increases, highlighting a feedback mechanism. Alternatively, NaCl and H2O2 may activate the same Ca2+ permeable channel, which is expressed in different types of cells and/or activated via different signaling pathways.  相似文献   

13.
14.
To explore the mechanisms of 5‐aminolevulinic acid (ALA)‐improved plant salt tolerance, strawberries (Fragaria × ananassa Duch. cv. ‘Benihoppe’) were treated with 10 mg l?1 ALA under 100 mmol l?1 NaCl stress. We found that the amount of Na+ increased in the roots but decreased in the leaves. Laser scanning confocal microscopy (LSCM) observations showed that ALA‐induced roots had more Na+ accumulation than NaCl alone. Measurement of the xylem sap revealed that ALA repressed Na+ concentrations to a large extent. The electron microprobe X‐ray assay also confirmed ALA‐induced Na+ retention in roots. qRT‐PCR showed that ALA upregulated the gene expressions of SOS1 (encoding a plasma membrane Na+/H+ antiporter), NHX1 (encoding a vacuolar Na+/H+ antiporter) and HKT1 (encoding a protein of high‐affinity K+ uptake), which are associated with Na+ exclusion in the roots, Na+ sequestration in vacuoles and Na+ unloading from the xylem vessels to the parenchyma cells, respectively. Furthermore, we found that ALA treatment reduced the H2O2 content in the leaves but increased it in the roots. The exogenous H2O2 promoted plant growth, increased root Na+ retention and stimulated the gene expressions of NHX1, SOS1 and HKT1. Diphenyleneiodonium (DPI), an inhibitor of H2O2 generation, suppressed the effects of ALA or H2O2 on Na+ retention, gene expressions and salt tolerance. Therefore, we propose that ALA induces H2O2 accumulation in roots, which mediates Na+ transporter gene expression and more Na+ retention in roots, thereby improving plant salt tolerance.  相似文献   

15.
The expression and activity of NADPH oxidase increase when HL‐60 cells are induced into terminally differentiated cells. However, the function of NADPH oxidase in differentiation is not well elucidated. With 150–500 μM H2O2 inducing differentiation of HL‐60 cells, we measured phagocytosis of latex beads and investigated cell electrophoresis. Two inhibitors of NADPH oxidase, DPI (diphenyleneiodonium) and APO (apocynin), blocked the differentiation potential of cells induced by 200 μM H2O2. However, H2O2 stimulated the generation of intracellular superoxide (O2 ? ?), which decreased in the presence of the two inhibitors. DPI also inhibited H2O2‐induced ERK (extracellular‐signal‐regulated kinase) activation, as detected by Western blotting. Furthermore, PD98059, the inhibitor of the ERK pathway, inhibited the differentiation of HL‐60 cells induced by H2O2. This shows that H2O2 can activate NADPH oxidase, leading to O2 ? ? production, followed by ERK activation and ultimately resulting in the differentiation of HL‐60 cells. The data indicate that NADPH oxidase is an important cell signal regulating cell differentiation.  相似文献   

16.
17.
18.
Cadmium is a toxic metal that produces disturbances in plant antioxidant defences giving rise to oxidative stress. The effect of this metal on H2O2 and O2·? production was studied in leaves from pea plants growth for 2 weeks with 50 µm Cd, by histochemistry with diaminobenzidine (DAB) and nitroblue tetrazolium (NBT), respectively. The subcellular localization of these reactive oxygen species (ROS) was studied by cytochemistry with CeCl3 and Mn/DAB staining for H2O2 and O2·?, respectively, followed by electron microscopy observation. In leaves from pea plants grown with 50 µm CdCl2 a rise of six times in the H2O2 content took place in comparison with control plants, and the accumulation of H2O2 was observed mainly in the plasma membrane of transfer, mesophyll and epidermal cells, as well as in the tonoplast of bundle sheath cells. In mesophyll cells a small accumulation of H2O2 was observed in mitochondria and peroxisomes. Experiments with inhibitors suggested that the main source of H2O2 could be a NADPH oxidase. The subcellular localization of O2·? production was demonstrated in the tonoplast of bundle sheath cells, and plasma membrane from mesophyll cells. The Cd‐induced production of the ROS, H2O2 and O2·?, could be attributed to the phytotoxic effect of Cd, but lower levels of ROS could function as signal molecules in the induction of defence genes against Cd toxicity. Treatment of leaves from Cd‐grown plants with different effectors and inhibitors showed that ROS production was regulated by different processes involving protein phosphatases, Ca2+ channels, and cGMP.  相似文献   

19.
In the present study, we investigated the salt tolerance mechanism of two rice cultivars (Zhenghan-2 and Yujing-6), which show different tolerance to drought and disease. NaCl induced higher extent of lipid peroxide and ion leakage in Yujing-6 roots than those in Zhenghan-2 roots. H2O2 accumulation in Zhenghan-2 roots was lower than that in Yujing-6 roots under salt stress. Comparatively, NaCl treatment did not increase O2 ? contents in both rice roots, however, O2 ? level in Yujing-6 roots was higher than that in Zhenghan-2 roots under both control and salt stress conditions. Ascorbate peroxidases (APX) activity increased more significantly in Zhenghan-2 roots than that in Yujing-6 roots. The activity of catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and glucose-6-phosphate dehydrogenase (G6PDH) was similarly enhanced in both rice roots under salt stress; however, they showed higher levels in Zhenghan-2 roots than in Yujing-6 roots. Exogenous H2O2 could enhance APX, CAT, POD, SOD and G6PDH activities in a concentration-dependent manner in both rice roots. Diphenylene iodonium (DPI), a plasma membrane (PM) NADPH oxidase inhibitor, which counteracted the NaCl-induced H2O2 accumulation, markedly decreased the activity of above enzymes. Moreover, ion leakage increased dramatically in Zhenghan-2 roots and reached to the similar level of Yujing-6 roots under NaCl+DPI treatment. Taken together, H2O2, which is mainly generated from PM NADPH oxidase, is involved in Zhenghan-2 rice tolerance to salt stress by enhancing the cellular antioxidant level.  相似文献   

20.
Recent findings have suggested that H2O2 is an important signaling molecule for regulating plant responses to abiotic stress. H2O2 plays a critical role in NaCl stress. Heme oxygenase (HO) is known to play a protective role against oxidative stress. In this study, we examined the possible involvement of H2O2 in regulating NaCl-promoted HO activity in rice roots. Treatment with NaCl increased HO activity and H2O2 content in rice roots. As well, NaCl could induce OsHO1 mRNA expression. NaCl (150 mM) and NaNO3 (150 mM) were equally effective in inducing HO activity. However, mannitol at the concentration (276 mM) iso-osmotic with 150 mM NaCl had no effect on HO activity. NaCl-promoted HO activity and OsHO1 expression in rice roots was reduced by NADPH oxidase inhibitors i.e. dipehnyleneiodonium and imidazole. Moreover, exogenous application of H2O2 enhanced the activity of HO and the mRNA level of OsHO1. Our data suggest that H2O2 production plays a positive role in NaCl- induced HO activity by enhancing its mRNA level in rice roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号