首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 545 毫秒
1.
The biodegradation of hexadecane by five biosurfactant-producing bacterial strains (Pseudomonas aeruginosa UG2, Acinetobacter calcoaceticus RAG1, Rhodococcus erythropolis DSM 43066, R. erythropolis ATCC 19558, and strain BCG112) was determined in the presence and absence of exogenously added biosurfactants. The degradation of hexadecane by P. aeruginosa was stimulated only by the rhamnolipid biosurfactant produced by the same organism. This rhamnolipid did not stimulate the biodegradation of hexadecane by the four other strains to the same extent, nor was degradation of hexadecane by these strains stimulated by addition of their own biosurfactants. This suggests that P. aeruginosa has a mode of hexadecane uptake different from those of the other organisms. Rhamnolipid also enhanced the rate of epoxidation of the aliphatic hydrocarbon alpha,omega-tetradecadiene by a cell suspension of P. aeruginosa. Furthermore, the uptake of the hydrophobic probe 1-naphthylphenylamine by cells of P. aeruginosa was enhanced by rhamnolipid, as indicated by stopped-flow fluorescence experiments. Rhamnolipid did not stimulate the uptake rate of this probe in de-energized cells. These results indicate that an energy-dependent system is present in P. aeruginosa strain UG2 that mediates fast uptake of hydrophobic compounds in the presence of rhamnolipid.  相似文献   

2.
The biodegradation of hexadecane by five biosurfactant-producing bacterial strains (Pseudomonas aeruginosa UG2, Acinetobacter calcoaceticus RAG1, Rhodococcus erythropolis DSM 43066, R. erythropolis ATCC 19558, and strain BCG112) was determined in the presence and absence of exogenously added biosurfactants. The degradation of hexadecane by P. aeruginosa was stimulated only by the rhamnolipid biosurfactant produced by the same organism. This rhamnolipid did not stimulate the biodegradation of hexadecane by the four other strains to the same extent, nor was degradation of hexadecane by these strains stimulated by addition of their own biosurfactants. This suggests that P. aeruginosa has a mode of hexadecane uptake different from those of the other organisms. Rhamnolipid also enhanced the rate of epoxidation of the aliphatic hydrocarbon α,ω-tetradecadiene by a cell suspension of P. aeruginosa. Furthermore, the uptake of the hydrophobic probe 1-naphthylphenylamine by cells of P. aeruginosa was enhanced by rhamnolipid, as indicated by stopped-flow fluorescence experiments. Rhamnolipid did not stimulate the uptake rate of this probe in de-energized cells. These results indicate that an energy-dependent system is present in P. aeruginosa strain UG2 that mediates fast uptake of hydrophobic compounds in the presence of rhamnolipid.  相似文献   

3.
Aims:  To isolate and characterize an efficient hydrocarbon-degrading bacterium under hypersaline conditions, from a Tunisian off-shore oil field.
Methods and Results:  Production water collected from 'Sercina' petroleum reservoir, located near the Kerkennah island, Tunisia, was used for the screening of halotolerant or halophilic bacteria able to degrade crude oil. Bacterial strain C2SS100 was isolated after enrichment on crude oil, in the presence of 100 g l−1 NaCl and at 37°C. This strain was aerobic, Gram-negative, rod-shaped, motile, oxidase + and catalase +. Phenotypic characters and phylogenetic analysis based on the 16S rRNA gene of the isolate C2SS100 showed that it was related to members of the Halomonas genus. The degradation of several compounds present in crude oil was confirmed by GC–MS analysis. The use of refined petroleum products such as diesel fuel and lubricating oil as sole carbon source, under the same conditions of temperature and salinity, showed that significant amounts of these heterogenic compounds could be degraded. Strain C2SS100 was able to degrade hexadecane (C16). During growth on hexadecane, cells surface hydrophobicity and emulsifying activity increased indicating the production of biosurfactant by strain C2SS100.
Conclusions:  A halotolerant bacterial strain Halomonas sp. C2SS100 was isolated from production water of an oil field, after enrichment on crude oil. This strain is able to degrade hydrocarbons efficiently. The mode of hydrocarbon uptake is realized by the production of a biosurfactant which enhances the solubility of hydrocarbons and renders them more accessible for biodegradation.
Significance and Impact of the Study:  The biodegradation potential of the Halomonas sp. strain C2SS100 gives it an advantage for possibly application on bioremediation of water, hydrocarbon-contaminated sites under high-salinity level.  相似文献   

4.
Biodegradation and hydrophobicity of Pseudomonas spp. and Bacillus spp. strains were tested at different concentrations of the biosurfactant Quillaya saponin. A model mixture of hydrocarbon (dodecane and hexadecane) was used for estimating the influence of surfactants on biodegradation. The bacterial adhesion to hydrocarbon method for determination of bacterial cell surface hydrophobicity was exploited. Among the tested bacterial strains the higher hydrophobicity was noticed for Pseudomonas aeruginosa TK. The hydrophobicity of this strain was 84%. The highest hydrocarbon biodegradation was observed for P. aeruginosa TK (49%) and Bacillus subtilis (35%) strains after 7 days of experiments. Generally the addition of Quillaya saponin increased hydrocarbon biodegradation remarkably. The optimal concentration proved to be 80 mg l−1. The degree of hydrocarbon biodegradation was 75% for P. aeruginosa TK after the addition of saponin. However the most significant increase in biodegradation after addition of Quillaya saponin was in the case of P. aeruginosa 25 and Pseudomonas putida (the increase of biodegradation from 21 to 52% and from 31 to 66%, respectively). It is worth mentioning that decrease of hydrophobicity is correlated with the best biodegradation by P. aeruginosa strain. For the remaining strains, no significant hydrophobicity changes in relation to the system without surfactant were noticed.  相似文献   

5.
Hydrocarbon-utilizing microorganisms were enumerated from Alaskan continental shelf areas by using plate counts and a new most-probable-number procedure based on mineralization of 14C-labeled hydrocarbons. Hydrocarbon utilizers were ubiquitously distributed, with no significant overall concentration differences between sampling regions or between surface water and sediment samples. There were, however, significant seasonal differences in numbers of hydrocarbon utilizers. Distribution of hydrocarbon utilizers within Cook Inlet was positively correlated with occurrence of hydrocarbons in the environment. Hydrocarbon biodegradation potentials were measured by using 14C-radiolabeled hydrocarbon-spiked crude oil. There was no significant correlation between numbers of hydrocarbon utilizers and hydrocarbon biodegradation potentials. The biodegradation potentials showed large seasonal variations in the Beaufort Sea, probably due to seasonal depletion of available nutrients. Non-nutrient-limited biodegradation potentials followed the order hexadecane > naphthalene pristane > benzanthracene. In Cook Inlet, biodegradation potentials for hexadecane and naphthalene were dependent on availability of inorganic nutrients. Biodegradation potentials for pristane and benzanthracene were restricted, probably by resistance to attack by available enzymes in the indigenous population.  相似文献   

6.
Zhao  Dahe  Kumar  Sumit  Zhou  Jian  Wang  Rui  Li  Ming  Xiang  Hua 《Extremophiles : life under extreme conditions》2017,21(6):1081-1090

Bioremediation in hypersaline environments is particularly challenging since the microbes that tolerate such harsh environments and degrade pollutants are quite scarce. Haloarchaea, however, due to their inherent ability to grow at high salt concentrations, hold great promise for remediating the contaminated hypersaline sites. This study aimed to isolate and characterize novel haloarchaeal strains with potentials in hydrocarbon degradation. A haloarchaeal strain IM1011 was isolated from Changlu Tanggu saltern near Da Gang Oilfield in Tianjin (China) by enrichment culture in hypersaline medium containing hexadecane. It could degrade 57 ± 5.2% hexadecane (5 g/L) in the presence of 3.6 M NaCl at 37 °C within 24 days. To get further insights into the mechanisms of petroleum hydrocarbon degradation in haloarchaea, complete genome (3,778,989 bp) of IM1011 was sequenced. Phylogenetic analysis of 16S rRNA gene, RNA polymerase beta-subunit (rpoB’) gene and of the complete genome suggested IM1011 to be a new species in Halorientalis genus, and the name Halorientalis hydrocarbonoclasticus sp. nov., is proposed. Notably, with insights from the IM1011 genome sequence, the involvement of diverse alkane hydroxylase enzymes and an intact β-oxidation pathway in hexadecane biodegradation was predicted. This is the first hexadecane-degrading strain from Halorientalis genus, of which the genome sequence information would be helpful for further dissecting the hydrocarbon degradation by haloarchaea and for their application in bioremediation of oil-polluted hypersaline environments.

  相似文献   

7.
Branched alkanes including 2,6,10,14-tetramethylpentadecane (pristane) are more resistant to biological degradation than straight-chain alkanes especially under low-temperature conditions, such as 10 degrees C. Two bacterial strains, TMP2 and T12, that are capable of degrading pristane at 10 degrees C were isolated and characterized. Both strains grew optimally at 30 degrees C and were identified as Rhodococcus sp. based on the 16S rRNA gene sequences. Strain T12 degraded comparable amounts of pristane in a range of temperatures from 10 to 30 degrees C and strain TMP2 degraded pristane similarly at 10 and 20 degrees C but did not degrade it at 30 degrees C. These data suggest that the strains have adapted their pristane degradation system to moderately low-temperature conditions.  相似文献   

8.
Summary A laboratory study was undertaken to assess the effect of adding eitherPseudomonas aeruginosa UG2 cells or the biosurfactants produced by this m microorganism on the biodegradation of a hydrocarbon mixture in soil at 20°C over a 2-month incubation period. The addition of 100 g of UG2 biosurfactants per g soil significantly enhanced the degradation of tetradecane, hexadecene and pristane but not 2-methylnaphthalene, the most water-soluble of the hydrocarbons. Addition of UG2 cells at densities of 106, 107, and 108 per g soil did not have a significant effect on biodegradation of the hydrocarbon mixture.  相似文献   

9.
Abstract Successful stimulation of N2 fixation and petroleum hydrocarbon degradation in indigenous microbial consortia may decrease exogenous N requirements and reduce environmental impacts of bioremediation following petroleum pollution. This study explored the biodegradation of petroleum pollution by indigenous N2 fixing marine microbial consortia. Particulate organic carbon (POC) in the form of ground, sterile corn-slash (post-harvest leaves and stems) was added to diesel fuel amended coastal water samples to stimulate biodegradation of petroleum hydrocarbons by native microorganisms capable of supplying a portion of their own N. It was hypothesized that addition of POC to petroleum amended water samples from N-limited coastal waters would promote the growth of N2 fixing consortia and enhance biodegradation of petroleum. Manipulative experiments were conducted using samples from coastal waters (marinas and less polluted control site) to determine the effects of POC amendment on biodegradation of petroleum pollution by native microbial consortia. Structure and function of the microbial consortia were determined by measurement of N2 fixation (acetylene reduction), hydrocarbon biodegradation (14C hexadecane mineralization), bacterial biomass (AODC), number of hydrocarbon degrading bacteria (MPN), and bacterial productivity (3H-thymidine incorporation). Throughout this study there was a consistent enhancement of petroleum hydrocarbon degradation in response to the addition of POC. Stimulation of diesel fuel biodegradation following the addition of POC was likely attributable to increases in bacterial N2 fixation, diesel fuel bioavailability, bacterial biomass, and metabolic activity. Toxicity of the bulk phase water did not appear to be a factor affecting biodegradation of diesel fuel following POC addition. These results indicate that the addition of POC to diesel-fuel-polluted systems stimulated indigenous N2 fixing microbial consortia to degrade petroleum hydrocarbons. Received: 29 December 1998; Accepted: 6 April 1999  相似文献   

10.
Aliphatic hydrocarbons are one of the main components of oil contamination. Bioremediation is considered to be a cost-effective treatment option among the conventional treatment methods with bioavailability being the limitation. Chemical surfactants could be used to increase the bioavailability of the hydrocarbons but they showed marked toxicity and environmental pollution. Cyclodextrins are cyclic oligosaccharides which can alter the solubility of the hydrocarbons by incorporating suitably sized hydrophobic molecules into their hydrophobic cavities. This paper focuses on studying the degradation of hydrocarbons by Pseudomonas like species named as Vid1 isolated previously from bilge oil contaminated waters in the presence of cyclodextrins. Among the three cyclodextrins (α, β and γ) tested at different concentrations, 2.5 mM of β-cyclodextrin showed higher amount of biodegradation when n-hexadecane was used as a model hydrocarbon compound. The percentage of residual hexadecane remaining in the 2.5 mM β-cyclodextrin supplied medium at 120 h was found to be 15% in comparison with the biotic control which was 43%. In the next experimental setup, degradation of mixture of hydrocarbons (tetradecane, hexadecane and octadecane) by Vid1 (Pseudomonas like species) was studied at a concentration of 2.5 mM β-cyclodextrin. The residual percentage of tetradecane, hexadecane and octadecane at 120 h was found to be 32, 43 and 61% in comparison with the biotic control 50, 58 and 67%, respectively. Our studies show that among a mixture of hydrocarbons (tetradecane, hexadecane and octadecane) in the presence of β-cyclodextrin, the highest concentration of hydrocarbon degradation was found in tetradecane, hexadecane and octadecane, respectively.  相似文献   

11.
Various microorganisms were screened for their ability to degrade poly(tetramethylene succinate)-co-(tetramethylene adipate) (PBSA). Strain BS-3, which was newly isolated from a soil sample, was selected as the best strain. From taxonomical studies, the strain was tentatively ascribed to belong to the genus Acidovorax, most probably to the species A. delafieldii. Strain BS-3 could degrade both solid and emulsified PBSA, and also emulsified poly(tetramethylene succinate). During the degradation, a lipase activity was observed in the culture broth. This lipase activity was induced more strongly by PBSA than by tributyrin or triolein which are typical substrates of lipase. These observations strongly suggest that this lipase was involved in the PBSA biodegradation in strain BS-3.  相似文献   

12.
13.
三唑磷降解菌株GS-1的分离鉴定及其降解特性的研究   总被引:4,自引:0,他引:4  
从有机磷农药污水处理池污泥中分离到一株能高效降解三唑磷的菌株GS-1, 通过生理生化实验和16S rDNA序列同源性分析, 将该菌株鉴定为Diaphorobacter sp.。菌株GS-1能以三唑磷为唯一碳源生长, 能在12 h内降解100 mg/L的三唑磷至检测不出的水平。菌株GS-1降解三唑磷的过程中会产生中间代谢产物苯唑醇(1-苯基-3-羟基-1,2,4-三唑), 36 h后苯唑醇被完全转化。菌株GS-1降解三唑磷的最适pH值为8.0, 最适温度为30°C, 且对杀螟硫磷、辛硫磷、毒死蜱和甲基对硫磷  相似文献   

14.
The fate of benzene, ethylbenzene, toluene, xylenes (BTEX) compounds through biodegradation was investigated using two different bacteria, Ralstonia picketti (BP-20) and Alcaligenes piechaudii (CZOR L-1B). These bacteria were isolated from extremely polluted soils contaminated with petroleum hydrocarbons. PCR and Fatty Acid Methyl Ester (FAME) were used to identify the isolates. In this study, BTEX biodegradation, applied as a mixture or as individual compounds by the bacteria was evaluated. Both bacteria were shown to degrade each of the BTEX compounds individually and in mixture. However, Alcaligenes piechaudii was a better degrader of BTEXs both in the mixture and individually. Differences between BTEX biodegradation in the mixture and individually were observed, especially in the case of benzene. The degradation of all BTEXs in the mixture was lower than the degradation of individual compounds for both bacteria tested. In the all experiments, toluene and m + p- xylenes were better removed than the other BTEXs. No intermediates of biodegradation were detected. Biosurfactant production was observed by culture techniques. In addition, 3-hydroxy fatty acids, important in biosurfactant production, were observed by FAME analysis. The test results indicate that the bacteria could contribute to bioremediation of aromatic hydrocarbon pollution.  相似文献   

15.
Twelve hydrocarbons which singly support no growth or little growth of Cladosporium resinae were examined for their effects on utilization of four substrates which do support growth of the fungus. Of the 48 combinations of an oxidizable substrate with a potential hydrocarbon substrate, 8 combinations supported increased oxygen consumption above the level obtained with the oxidizable substrate alone. There was no evidence of co-oxidation of the potential co-substrates toluene or p -xylene; their effects on increasing O2-uptake appear to be due to permeability changes. With hexadecane alone, the ratio hexadecane oxidized to CO2: hexadecane taken up by cells was 97:3. Addition of p -xylene or toluene decreased that ratio slightly to 96:4 and 89:11, respectively. These high ratios of hydrocarbon oxidized to hydrocarbon taken up may be advantageous during degradation of petroleum in the natural environment, since petroleum components could be degraded without formation of a large biomass.  相似文献   

16.
Diazinon is a widely used organophosphorus insecticide often detected in the environment. A highly effective diazinon-degrading Ralstonia sp. strain DI-3 was isolated from agricultural soil. Strain DI-3 can utilize dimethoate as its sole carbon source for growth and degrade an initial concentration of 100 mg·L?1 diazinon to non-detectable levels within 60 h in liquid culture. A small amount of second carbon source as co-substrate could slightly enhance the biodegradation of diazinon. In addition, a less toxic metabolic intermediate formed during the degradation of diazinon mediated by strain DI-3 was purified using thin-layer chromatography (TLC) and identified based on single-crystal X-ray diffraction analysis, allowing a degradation pathway for diazinon by pure culture to be proposed. Finally, this is the first providing authentic evidence to describe the metabolite.  相似文献   

17.
Summary The hydrocarbon degradation rate could be doubled by the addition of sophorose lipids as biosurfactants in a model system containing 10% soil and a 1.35% hydrocarbon mixture of tetradecane, pentadecane, hexadecene, 1,2,4-trimethylcyclohexane, pristane (2,6,10,14-tetramethylpentadecane) phenyldecane and naphthalene suspended in mineral salts medium. The adaptation phases for two degradation phases were shortened, and the extent of degradation and final biomass were increased. The added biosurfactants were degraded after they had facilitated degradation of all hydrocarbon components.  相似文献   

18.
Aims: To study the bacterial diversity associated with hydrocarbon biodegradation potentiality and biosurfactant production of Tunisian oilfields bacteria. Methods and Results: Eight Tunisian hydrocarbonoclastic oilfields bacteria have been isolated and selected for further characterization studies. Phylogenetic analysis revealed that three thermophilic strains belonged to the genera Geobacillus, Bacillus and Brevibacillus, and that five mesophilic strains belonged to the genera Pseudomonas, Lysinibacillus, Achromobacter and Halomonas. The bacterial strains were cultivated on crude oil as sole carbon and energy sources, in the presence of different NaCl concentrations (1, 5 and 10%, w/v), and at 37 or 55°C. The hydrocarbon biodegradation potential of each strain was quantified by GC–MS. Strain C450R, phylogenetically related to the species Pseudomonas aeruginosa, showed the maximum crude oil degradation potentiality. During the growth of strain C450R on crude oil (2%, v/v), the emulsifying activity (E24) and glycoside content increased and reached values of 77 and 1·33 g l?1, respectively. In addition, the surface tension (ST) decreased from 68 to 35·1 mN m?1, suggesting the production of a rhamnolipid biosurfactant. Crude biosurfactant had been partially purified and characterized. It showed interest stability against temperature and salinity increasing and important emulsifying activity against oils and hydrocarbons. Conclusions: The results of this study showed the presence of diverse aerobic bacteria in Tunisian oilfields including mesophilic, thermophilic and halotolerant strains with interesting aliphatic hydrocarbon degradation potentiality, mainly for the most biosurfactant produced strains. Significance and Impact of the Study: It may be suggested that the bacterial isolates are suitable candidates for practical field application for effective in situ bioremediation of hydrocarbon‐contaminated sites.  相似文献   

19.
This study focuses on the biodegradation of difluorobenzenes (DFBs), compounds commonly used as intermediates in the industrial synthesis of various pharmaceutical and agricultural chemicals. A previously isolated microbial strain (strain F11), identified as Labrys portucalensis, able to degrade fluorobenzene (FB) as sole carbon and energy source, was tested for its capability to degrade 1,2-, 1,3- and 1,4-DFB in batch cultures. Strain F11 could use 1,3-DFB as a sole carbon and energy source, with quantitative release of fluoride, but 1,4-DFB was only degraded and defluorinated when FB was supplied simultaneously. Growth of strain F11 with 0.5 mM of 1,3-DFB led to stoichiometric release of fluoride ion. The same result was obtained in cultures fed with 1 mM of 1,3-DFB or 0.5 mM of 1,4-DFB, in the presence of 1 mM of FB. No growth occurred with 1,2-DFB as substrate, and degradation of FB was inhibited when supplied simultaneously with 1,2-DFB. To our knowledge, this is the first time biodegradation of 1,3-DFB as a sole carbon and energy source, and cometabolic degradation of 1,4-DFB, by a single bacterium, is reported.  相似文献   

20.
Biodegradation of hydrocarbon cuts used for diesel oil formulation   总被引:4,自引:0,他引:4  
The biodegradability of various types of diesel oil (DO), such as straight-run DO, light-cycle DO, hydrocracking DO, Fischer–Tropsch DO and commercial DO, was investigated in biodegradation tests performed in closed-batch systems using two microflorae. The first microflora was an activated sludge from an urban wastewater treatment plant as commonly used in biodegradability tests of commercial products and the second was a microflora from a hydrocarbon-polluted soil with possible specific capacities for hydrocarbon degradation. Kinetics of CO2 production and extent of DO biodegradation were obtained by chromatographic procedures. Under optimised conditions, the polluted-soil microflora was found to extensively degrade all the DO types tested, the degradation efficiencies being higher than 88%. For all the DOs tested, the biodegradation capacities of the soil microflora were significantly higher than those of the activated sludge. Using both microflora, the extent of biodegradation was highly dependent upon the type of DO used, especially its hydrocarbon composition. Linear alkanes were completely degraded in each test, whereas identifiable branched alkanes such as farnesane, pristane or phytane were degraded to variable extents. Among the aromatics, substituted mono-aromatics were also variably biodegraded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号