首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
筛选环孢霉素A适体的SELEX技术的建立   总被引:2,自引:0,他引:2  
体外合成一个全长78个核苷酸,中间含35个随机序列的随机单链寡核苷酸序列(ssDNA)文库,运用指数富集的配体系统进化(SELEX)技术,以环孢霉素A(CsA)为靶目标,以磁珠作为筛选介质,利用生物素 链酶抗生物素 辣根过氧化物酶系统,检测每轮ssDNA文库与CsA的亲和力,筛选并鉴定CsA特异性的适体.经过11轮的筛选,ssDNA文库与CsA的亲和力呈上升趋势.将第10轮筛选产物克隆测序并运用相关软件进行一级结构和二级结构分析.随机挑选的19个克隆适体,根据一级结构的同源性可分为5个家族,二级结构预测以茎环(发夹)为主,这可能是适体与CsA作用的部位. CsA特异性的适体将用于酶联法、免疫荧光法等对CsA进行检测.  相似文献   

2.
SELEX stands for systematic evolution of ligands by exponential enrichment. This method, described primarily in 1990 [Ellington, A.D., Szostak, J.W., 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818-822; Tuerk, C., Gold, L., 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505-510] aims at the development of aptamers, which are oligonucleotides (RNA or ssDNA) binding to their target with high selectivity and sensitivity because of their three-dimensional shape. Aptamers are all new ligands with a high affinity for considerably differing molecules ranging from large targets as proteins over peptides, complex molecules to drugs and organic small molecules or even metal ions. Aptamers are widely used, including medical and pharmaceutical basic research, drug development, diagnosis, and therapy. Analytical and separation tools bearing aptamers as molecular recognition and binding elements are another big field of application. Moreover, aptamers are used for the investigation of binding phenomena in proteomics. The SELEX method was modified over the years in different ways to become more efficient and less time consuming, to reach higher affinities of the aptamers selected and for automation of the process. This review is focused on the development of aptamers by use of SELEX and gives an overview about technologies, advantages, limitations, and applications of aptamers.  相似文献   

3.
Single stranded DNA aptamers that bind with high affinity and specificity to the oxytetracycline (OTC) were identified by selection from an oligonucleotide library of 10(15) molecules. The binding affinities of four aptamers were in nanomolar range. The aptamers were highly selective in that, lack of -OH group at 5-position in tetracycline and -H group in place of -OH at 6-position in doxycycline determined the specificity of these aptamers to bind OTC. Three aptamers designated as No. 4, 5, and 20 shared strong affinities with K(d)=9.61, 12.08, and 56.84 nM, respectively, as well as selectivity to bind OTC (72-76%). Aptamer No. 4 had strong affinity among all with high selectivity, whereas No. 2 had relatively weak affinity (K(d)=121.1 nM) and moderate selectivity (52%). Our results indicated that the aptamers No. 4, 5, and 20 with variable 40-base oligonucleotides can be good candidates for selectively binding to OTC with high molecular discrimination over its analogs such as tetracycline and doxycycline.  相似文献   

4.
灭活铜绿假单胞菌适体的筛选   总被引:1,自引:0,他引:1  
利用指数富集配基的系统进化(SELEX)技术,以灭活的铜绿假单胞菌为靶标,从体外合成的96 nt随机ssDNA文库中筛选与铜绿假单胞菌特异结合的适体.在第12轮和第14轮与其它假单胞菌属进行反筛策略,并进行了适体的结合亲和力的测定,再分别利用ClustalX、Mega2和Mfold sever软件分析适体的一级和二级结构.研究结果表明,经过15轮筛选,随机ssDNA文库与铜绿假单胞菌结合的A值从0.022上升到0.448.反筛与未反筛的结合A比值最高比为53倍.经过第15轮反筛后的24个阳性克隆子测序,根据软件分析,其可分成10个家族.每个家族都有其共同的保守序列(除第10个家族),其中有2条序列几乎完全一致(F23和F47),同源性达到97%,A值分别高达1.598和1.508,Kd为14.55和77.46 nmol/L,间接说明适体与铜绿假单胞菌的结合力明显增高.  相似文献   

5.
The human receptor tyrosine kinase c-Met plays an important role in the control of critical cellular processes. Since c-Met is frequently over expressed or deregulated in human malignancies, blocking its activation is of special interest for therapy. In normal conditions, the c-Met receptor is activated by its bivalent ligand hepatocyte growth factor (HGF). Also bivalent antibodies can activate the receptor by cross linking, limiting therapeutic applications. We report the generation of the RNA aptamer CLN64 containing 2’-fluoro pyrimidine modifications by systematic evolution of ligands by exponential enrichment (SELEX). CLN64 and a previously described single-stranded DNA (ssDNA) aptamer CLN3 exhibited high specificities and affinities to recombinant and cellular expressed c-Met. Both aptamers effectively inhibited HGF-dependent c-Met activation, signaling and cell migration. We showed that these aptamers did not induce c-Met activation, revealing an advantage over bivalent therapeutic molecules. Both aptamers were shown to bind overlapping epitopes but only CLN3 competed with HGF binding to cMet. In addition to their therapeutic and diagnostic potential, CLN3 and CLN64 aptamers exhibit valuable tools to further understand the structural and functional basis for c-Met activation or inhibition by synthetic ligands and their interplay with HGF binding.  相似文献   

6.
To investigate the potential clinical application of aptamers to prevention of HIV infection, single-stranded DNA (ssDNA) aptamers specific for CD4 were developed using the systematic evolution of ligands by exponential enrichment approach and next generation sequencing. In contrast to RNA-based aptamers, the developed ssDNA aptamers were stable in human serum up to 12 h. Cell binding assays revealed that the aptamers specifically targeted CD4-expressing cells with high binding affinity (Kd = 1.59 nM), a concentration within the range required for therapeutic application. Importantly, the aptamers selectively bound CD4 on human cells and disrupted the interaction of viral gp120 to CD4 receptors, which is a prerequisite step of HIV-1 infection. Functional studies showed that the aptamer polymers significantly blocked binding of viral gp120 to CD4-expressing cells by up to 70% inhibition. These findings provide a new approach to prevent HIV-1 transmission using oligonucleotide aptamers.  相似文献   

7.
胃腺癌是消化道最常见的恶性肿瘤之一,由于没有针对早期胃腺癌有效的诊断方法,目前胃腺癌手术治疗还主要针对中晚期患者,预后差. 本文应用cell-SELEX技术,筛选早期胃腺癌原代细胞的适配子,为早期胃腺癌的诊断提供新的思路. 从早期胃腺癌组织中分离得到早期胃腺癌原代细胞,应用体外合成全长88 bp中间含52 bp随机序列的单链DNA文库,通过对PCR扩增条件的优化,借助生物素-链霉亲和素磁珠系统,经cell-SELEX反复筛选,可获得针对早期胃腺癌原代细胞的特异性适配子.经12轮cell-SELEX筛选,ssDNA文库与早期胃腺癌原代细胞的亲和力由1 560上升到4 336,表明亲和力较高的适配子得到逐步富集. 经克隆和测序,应用软件分析可知,30个克隆子中编号为C17和C27的2个序列完全一致,具同源性,二级结构预测可知单链DNA形成不同的茎环结构可能是适配子与早期胃腺癌原代细胞作用的结构基础. 特异性分析显示,胃腺癌原代细胞组与正常胃粘膜上皮细胞、空白对照组之间荧光强度值差异非常显著(P<001);正常胃粘膜上皮细胞组与空白对照组之间差异不显著(P>005). 经亲和力测定,各适配子与早期胃腺癌原代细胞的解离系数达到nmol/L,具有很高的亲和力.利用cell-SELEX技术成功筛选到早期胃腺癌原代细胞的适配子,为胃腺癌的早期诊断与治疗药物靶点方面的研究奠定了实验基础.  相似文献   

8.
金黄色葡萄球菌外毒素B特异性适体的筛选及其应用   总被引:1,自引:0,他引:1  
目的:利用指数富集配基的系统进化(SELEX)技术,筛选能与金黄色葡萄球菌外毒素B(SEB)特异、高亲和力结合的单链DNA(ssDNA)适体,并将该适体应用于患者血清标本的检测。方法:从体外合成的96核苷酸随机ss-DNA文库中,以羧基磁珠作为筛选介质,经逐步PCR扩增、筛选,获得针对SEB的高亲和力、高特异性适体;利用荧光素标记适体测定筛选过程中各轮结合力;利用酶连接适体方法检测适体特异性和结合力。结果:经过13轮筛选,ssDNA文库与SEB的结合百分率从1.1%提高到39.8%,增加了36倍;获得的ssDNA适体(A11)针对SEB的特异性强,与金黄色葡萄球菌表面蛋白A(SPA)结合低,并能初步识别患者血清。结论:利用SELEX技术筛选获得了特异结合SEB的高亲和力的ssDNA适体,为金黄色葡萄球菌的临床诊断与治疗奠定了基础。  相似文献   

9.
目的:建立一种基于Western印迹的指数式富集的配体系统进化(SELEX)技术,用于未纯化蛋白样品核酸适配体筛选。方法:将目的蛋白经SDS-PAGE分离后转移到PVDF膜上,用生物素标记的ss DNA与PVDF膜上的蛋白共同孵育,获得能与靶蛋白特异结合的适配体,最后通过生物素-链霉亲和素-辣根过氧化物酶系统、基因克隆测序、MEME在线软件和RNAstructure软件分析适配体的一、二级结构,并对筛选得到的适配体进行鉴定。结果:经过4轮筛选,获得了能特异识别靶蛋白而不识别无关蛋白的适配体,原库Gp45则与上述蛋白均没有结合。结论:建立了Western印迹-SELEX技术,可用于未纯化蛋白样品核酸适配体筛选。  相似文献   

10.
Staphylococcus aureus are potent human pathogens possessing arsenal of virulence factors. Staphylococcal food poisoning (SFP) and respiratory infections mediated by staphylococcal enterotoxin B (SEB) are common clinical manifestations. Many diagnostic techniques are based on serological detection and quantification of SEB in different food and clinical samples. Aptamers are known as new therapeutic and detection tools which are available in different ssDNA, dsDNA and protein structures. In this study, we used a new set of ssDNA aptamers against SEB. The methods used included preparation of a dsDNA library using standard SEB protein as the target analyte, affinity chromatography matrix in microfuge tubes, SELEX procedures to isolate specific ssDNA‐aptamer as an affinity ligand, aptamer purification using ethanol precipitation method, affinity binding assay using ELISA, aptamer cloning and specificity test. Among 12 readable sequences, three of them were selected as the most appropriate aptamer because of their affinity and specificity to SEB. This study presents a new set of ssDNA aptamer with favorable selectivity to SEB through 12 rounds of SELEX. Selected aptamers were used to detect SEB in infected serum samples. Results showed that SEB c1 aptamer (2 µg SEB/100 nM aptamer) had favorable specificity to SEB (kd = 2.3 × 10?11). In conclusion, aptamers can be considered as useful tools for detecting and evaluating SEB. The results showed that affinity chromatography was an affordable assay with acceptable accuracy to isolate sensitive and selective novel aptamers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
目的 鳗弧菌(Vibrio anguillarum)是水产养殖中的重要条件致病菌,每年给水产养殖业造成巨大的经济损失,研究其致病机制、对其进行快速的检测鉴定是其病害防治的前提和基础.核酸适配体因其高亲和力、高特异性等多种优点,在微生物的靶标分析、检测鉴定以及致病机制等多个领域都呈现出较好的应用潜力.因此,筛选鳗弧菌的核...  相似文献   

12.
13.
We have identified aptamers (synthetic oligonucleotides) binding to the very small molecule ethanolamine with high affinity down to the low nanomolar range. These aptamers were selected for their ability to bind to ethanolamine immobilised on magnetic beads, from an 96mer library of initially about 1 x 10(16) randomised ssDNA molecules. The dissociation constants of these aptamers range between K(D)=6 and K(D)=19 nmol L(-1). The aim of the development of ethanolamine aptamers is their use for the detection of this substance in clinical and environmental analysis. Ethanolamine is associated with several diseases. Moreover, ethanolamine and its derivatives di- and tri-ethanolamine are used in chemical and cosmetic industries. The use of biosensors with ethanolamine aptamer as new molecular recognition element could be an innovative method for an easy and fast detection of ethanolamine.  相似文献   

14.
In vitro selection of RNA aptamers that bind to a specific ligand usually begins with a random pool of RNA sequences. We propose a computational approach for designing a starting pool of RNA sequences for the selection of RNA aptamers for specific analyte binding. Our approach consists of three steps: (i) selection of RNA sequences based on their secondary structure, (ii) generating a library of three-dimensional (3D) structures of RNA molecules and (iii) high-throughput virtual screening of this library to select aptamers with binding affinity to a desired small molecule. We developed a set of criteria that allows one to select a sequence with potential binding affinity from a pool of random sequences and developed a protocol for RNA 3D structure prediction. As verification, we tested the performance of in silico selection on a set of six known aptamer–ligand complexes. The structures of the native sequences for the ligands in the testing set were among the top 5% of the selected structures. The proposed approach reduces the RNA sequences search space by four to five orders of magnitude—significantly accelerating the experimental screening and selection of high-affinity aptamers.  相似文献   

15.
The purpose of this study was to identify biotinylated single-stranded (ss) DNA aptamers with binding specificity to Listeria and use these for capture and subsequent qPCR detection of the organism. For aptamer selection, SELEX (systematic evolution of ligands by exponential enrichment) was applied to a biotin-labeled ssDNA combinatorial library. After multiple rounds of selection and counter-selection, aptamers separated, sequenced, and characterized by flow cytometry showed binding affinities to L. monocytogenes of 18–23%. Although selected for using L. monocytogenes, these aptamers showed similar binding affinity for other members of the Listeria genus and low binding affinity for non-Listeria species. One aptamer, Lbi-17, was chosen for development of a prototype capture and detection assay. When Lbi-17 was conjugated to magnetic beads and used in a combined aptamer magnetic capture (AMC)-qPCR assay, the pathogen could be detected at concentrations <60 CFU/500 μl buffer in the presence of a heterogeneous cocktail of non-Listeria bacterial cells, with a capture efficiency of 26–77%. Parallel experiments using immunomagnetic separation (IMS)-qPCR produced the same detection limit but lower capture efficiency (16–21%). Increasing assay volume to 10 and 50 ml resulted in reduced capture efficiency and higher limits of detection, at 2.7 and 4.8 log10 CFU L. monocytogenes per sample, respectively, for the AMC-qPCR assay. Biotinylated ssDNA aptamers are promising ligands for food-borne pathogen concentration prior to detection using molecular methods.  相似文献   

16.
A specific single-stranded DNA (ssDNA) aptamer (aptamer17) that specifically recognizes differentiated PC12 cells had been previously obtained after 6 rounds of whole cell-based subtractive systematic evolution of ligands by exponential enrichment selection from a random ssDNA library. To further investigate the relationship between the structure and function of this aptamer, 3 truncated ssDNA aptamers were designed according to the predicted secondary structure of aptamer17. Our results show that the stem-loop is the core structure of the aptamers required for specific binding to differentiated PC12 cells, specifically loops I and II. Aptamer17 and the truncated aptamers with this basic structure could bind specifically to differentiated PC12 cells and identify these cells from a mixture of differentiated and undifferentiated PC12 cells. Therefore, truncated forms of aptamer17 may be useful in the clinic to identify undifferentiated and differentiated PC12 cells from a mixture of cells.  相似文献   

17.
To identify DNA aptamers demonstrating binding specificity for Shigella dysenteriae, a whole-bacterium Systemic Evolution of Ligands by Exponential enrichment (SELEX) method was applied to a combinatorial library of single-stranded DNA (ssDNA) molecules. After several rounds of selection using S. dysenteriae as the target, the highly enriched oligonucleotide pool was sequenced and then grouped into different families based on primary sequence homologies and similarities in the secondary structures. Aptamer S 1, which showed particularly high binding affinity in preliminary studies, was chosen for further characterisation. This aptamer displayed a dissociation constant (Kd value) of 23.47 ± 2.48 nM. Binding assays to assess the specificity of aptamer S 1 showed high binding affinity for S. dysenteriae and low apparent binding affinity for other bacteria. The ssDNA aptamers generated may serve as a new type of molecular probe for microbial pathogens, as it has the potential to overcome the tedious isolation and purification requirements for complex targets.  相似文献   

18.
A binding protein for single-stranded DNA (ssDNA) was purified from calf thymus to near homogeneity by chromatography on DEAE-cellulose, blue-Sepharose, ssDNA-cellulose and FPLC Mono Q. The most purified fraction consisted of four polypeptides with molecular masses of 70, 55, 30, and 11 kDa. The polypeptide with the molecular mass of 55 kDa is most likely a degraded form of the largest polypeptide. The complex migrated as a whole on both glycerol gradient ultracentrifugation (s = 5.1 S) and gel filtration (Stokes' radius approximately 5.1 nm). Combining these data indicates a native molecular mass of about 110 kDa, which is in accord with a 1:1:1 stoichiometry for the 70 + 55/30/11-kDa complex. The ssDNA binding protein (SSB) covered approximately 20-25 nucleotides on M13mp8 ssDNA, as revealed from both band shift experiments and DNase I digestion studies. The homologous DNA-polymerase-alpha-primase complex was stimulated by the ssDNA binding protein 1.2-fold on poly(dA).(dT)14 and 10-13-fold on singly primed M13mp8 DNA. Stimulation was mainly due to facilitated DNA synthesis through stable secondary structures, as demonstrated by the vanishing of many, but not all, pausing sites. Processivity of polymerase-primase was not affected on poly(dA).(dT)14; with poly(dT).(rA)10 an approximately twofold increase in product lengths was observed when SSB was present. The increase was attributed to a facilitated rebinding of polymerase alpha to an already finished DNA fragment rather than to an enhancement of the intrinsic processivity of the polymerase. Similarly, products 300-600 nucleotides long were formed on singly primed M13 DNA in the presence of SSB, in contrast to 20-120 nucleotides when SSB was absent. DNA-primase-initiated DNA replication on M13 DNA was inhibited by SSB in a concentration-dependent manner. However, with less sites available to begin with RNA priming, more homogeneous products were formed.  相似文献   

19.
The homotetrameric Escherichia coli single-stranded DNA-binding (SSB) protein plays a central role in DNA replication, repair, and recombination. In addition to its essential activity of binding to transiently formed single-stranded (ss) DNA, SSB also binds an array of partner proteins and recruits them to their sites of action using its four intrinsically disordered C-terminal tails. Here we show that the binding of ssDNA to SSB is inhibited by the SSB C-terminal tails, specifically by the last 8 highly acidic amino acids that comprise the binding site for its multiple partner proteins. We examined the energetics of ssDNA binding to short oligodeoxynucleotides and find that at moderate salt concentration, removal of the acidic C-terminal ends increases the intrinsic affinity for ssDNA and enhances the negative cooperativity between ssDNA binding sites, indicating that the C termini exert an inhibitory effect on ssDNA binding. This inhibitory effect decreases as the salt concentration increases. Binding of ssDNA to approximately half of the SSB subunits relieves the inhibitory effect for all of the subunits. The inhibition by the C termini is due primarily to a less favorable entropy change upon ssDNA binding. These observations explain why ssDNA binding to SSB enhances the affinity of SSB for its partner proteins and suggest that the C termini of SSB may interact, at least transiently, with its ssDNA binding sites. This inhibition and its relief by ssDNA binding suggest a mechanism that enhances the ability of SSB to selectively recruit its partner proteins to sites on DNA.  相似文献   

20.
Surface protein hemagglutinin (HA) mediates the binding of influenza virus to host cell receptors containing sialic acid, facilitating the entry of the virus into host cells. Therefore, the HA protein is regarded as a suitable target for the development of influenza virus detection devices. In this study, we isolated single-stranded DNA (ssDNA) aptamers binding to the HA1 subunit of subtype H1 (H1-HA1), but not to the HA1 subunit of subtype H5 (H5-HA1), using a counter-systematic evolution of ligands by exponential enrichment (counter-SELEX) procedure. Enzyme-linked immunosorbent assay and surface plasmon resonance studies showed that the selected aptamers bind tightly to H1-HA1 with dissociation constants in the nanomolar range. Western blot analysis demonstrated that the aptamers were binding to H1-HA1 in a concentration-dependent manner, yet were not binding to H5-HA1. Interestingly, the selected aptamers contained G-rich sequences in the central random nucleotides region. Further biophysical analysis showed that the G-rich sequences formed a G-quadruplex structure, which is a distinctive structure compared to the starting ssDNA library. Using flow cytometry analysis, we found that the aptamers did not bind to the receptor-binding site of H1-HA1. These results indicate that the selected aptamers that distinguish H1-HA1 from H5-HA1 can be developed as unique probes for the detection of the H1 subtype of influenza virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号