首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ecological Indicators》2008,8(5):599-613
The invertebrate species index (ISI) is a new biotic index to assess stream health in southeast Queensland, Australia, using benthic macroinvertebrates. The index aims to refine stream monitoring, in particular for eutrophication, as nutrient input is a major stressor of streams in the region. Biotic indices previously used for the region were based on sensitivity scores for macroinvertebrate families and orders, and were valid for all streams across the continent. The ISI is based on species level and tailored to the specific traits of southeast Queensland, thus yielding an increased level of detection of biological change. This will improve monitoring of environmental impact on a regional and local scale. The ISI is a site-specific index calculated as the weighted average (WA) of species’ sensitivity scores (S10), with a species-specific indicator weight (W) and the abundance (A) of each species used as weights. S10 scores for 203 species of benthic macroinvertebrates ranging from 10 (species most sensitive to pollution) to 1 (tolerant of excessive pollution) were derived by means of WA regression and calibration using site scores representing an environmental impact gradient. W measures the indicator strength of the species, and was derived from the weighted standard deviation of the S10. The initial site scores for the WA modeling were derived using canonical correspondence analysis (CCA) to ordinate the sites along a gradient associated with 12 abiotic variables. The data on benthic macroinvertebrates are based on 212 quantitative samples collected in wadeable freshwater streams in southeast Queensland. Two major stream types, (1) small creeks, mainly of uplands and (2) larger streams and rivers of lowlands, were recognised for the region, and for both types the ISI range representing reference condition was established. These reference conditions can be used to establish ecological quality ratios by comparing observed to expected indices and to define ecological quality classes. The ISI is the first biotic index for streams in Australia that uses sensitivity scores and indicator weights for macroinvertebrate species. There is a growing trend in Australia to identify stream macroinvertebrates to species level and to study their specific traits and ecological requirements. The reasons for this are manifold; assessing and monitoring stream health is only one of them. For most regions of Australia, no common ground exists, so far, on how to use species data for stream health assessment. The new biotic index fills this gap for southeast Queensland in providing a standard for the use of species level data in stream health assessment.  相似文献   

2.
Biotic indices for algae, macroinvertebrates, and fish assemblages can be effective for monitoring stream enrichment, but little is known regarding the value of the three assemblages for detecting perturbance as a consequence of low-level nutrient enrichment. In the summer of 2006, we collected nutrient and biotic samples from 30 wadeable Ozark streams that spanned a nutrient-concentration gradient from reference to moderately enriched conditions. Seventy-three algal metrics, 62 macroinvertebrate metrics, and 60 fish metrics were evaluated for each of the three biotic indices. After a group of candidate metrics had been identified with multivariate analysis, correlation procedures and scatter plots were used to identify the four metrics having strongest relations to a nutrient index calculated from log transformed and normalized total nitrogen and total phosphorus concentrations. The four metrics selected for each of the three biotic indices were: algae—the relative abundance of most tolerant diatoms, the combined relative abundance of three species of Cymbella, mesosaprobic algae percent taxa richness, and the relative abundance of diatoms that are obligate nitrogen heterotrophs; macroinvertebrate—the relative abundance of intolerant organisms, Baetidae relative abundance, moderately tolerant taxa richness, and insect biomass; fish—herbivore and detritivore taxa richness, pool species relative abundance, fish catch per unit effort, and black bass (Micropterus spp.) relative abundance.All three biotic indices were negatively correlated to nutrient concentrations but the algal index had a higher correlation (rho = ?0.89) than did the macroinvertebrate and fish indices (rho = ?0.63 and ?0.58, respectively). Biotic index scores were lowest and nutrient concentrations were highest for streams with basins having the highest poultry and cattle production. Because of the availability of litter for fertilizer and associated increases in grass and hay production, cattle feeding capacity increases with poultry production. Studies are needed that address the synergistic effect of poultry and cattle production on Ozark streams in high production areas before ecological risks can be adequately addressed.  相似文献   

3.
The importance of assembly processes in shaping biological communities is poorly understood, especially for microbes. Here, we report on the forces that structure soil bacterial communities along a 2000 m elevational gradient. We characterized the relative importance of habitat filtering and competition on phylogenetic structure and turnover in bacterial communities. Bacterial communities exhibited a phylogenetically clustered pattern and were more clustered with increasing elevation. Biotic factors (i.e., relative abundance of dominant bacterial lineages) appeared to be most important to the degree of clustering, evidencing the role of the competitive ability of entire clades in shaping the communities. Phylogenetic turnover showed the greatest correlation to elevation. After controlling the elevation, biotic factors showed greater correlation to phylogenetic turnover than all the habitat variables (i.e., climate, soil and vegetation). Structural equation modelling also identified that elevation and soil organic matter exerted indirect effects on phylogenetic diversity and turnover by determining the dominance of microbial competitors. Our results suggest that competition among bacterial taxa induced by soil carbon contributes to the phylogenetic pattern across elevational gradient in the Tibetan Plateau. This highlights the importance of considering not only abiotic filtering but also biotic interactions in soil bacterial communities across stressful elevational gradients.  相似文献   

4.
溪流鱼类多样性沿着河流纵向梯度的空间分布规律已得到大量报道, 但这些研究大多聚焦基于物种组成的分类α多样性, 而有关分类β多样性和功能多样性的纵向梯度分布规律及其对人类干扰的响应研究较少。本文以青弋江上游3条人为干扰程度不同的河源溪流为研究区域, 比较研究了人为干扰对溪流鱼类功能α和β多样性及其纵向梯度分布格局的影响。结果显示, 人类干扰改变了河源溪流鱼类功能多样性的纵向梯度格局——由线性变化变为二项式分布。此外, 我们发现, 人为干扰导致土著种被本地入侵种取代, 且较强的土地利用和水污染排放可能增大环境的不连续性, 而群落周转和嵌套变化往往取决于环境的变化。尽管功能β多样性由嵌套成分主导, 但周转成分占比相对于人为干扰较小的溪流而言明显增加。人为干扰显著改变了受干扰溪流鱼类的物种组成和功能多样性, 且功能多样性的纵向梯度格局在不同的多样性指标上存在差异。本研究强调, 在评估人为干扰下多样性的变化时, 需要从多方面考虑, 包括空间尺度和多样性指标等。  相似文献   

5.
1. The effect of nutrient enrichment on structural (invertebrate indices) and functional (leaf‐litter breakdown rates) characteristics of stream integrity was studied in nine boreal streams. 2. The results showed predicted changes in biotic indices and leaf‐litter breakdown along a complex (principal component) nutrient gradient. Biotic indices were better correlated with nutrient effects than leaf‐litter breakdown. 3. Fungal biomass and invertebrate densities in the litter bags were positively correlated with leaf‐litter breakdown, and both were also positively related to the nutrient gradient. 4. Invertebrate community composition influenced breakdown rate. High breakdown rates at one site were associated with the high abundance of the detritivore Asellus aquaticus. 5. This study lends support to the importance of invertebrate and fungi as mediators of leaf‐litter decomposition. However, our study also shows that study design (length of incubation) can confound the interpretation of nutrient‐induced effects on decomposition.  相似文献   

6.
The impacts of differences in watershed land uses, and differences in seasonality on benthic macroinvertebrate communities, were evaluated in 12 stream sites within the Xitiaoxi River watershed, China, from April 2009 to January 2010. The composition of macroinvertebrate community differed significantly among three land use types. Forested sites were characterized by high taxa richness, diversity and the benthic‐index of biotic integrity (B‐IBI), while farmland and urban disturbed stream sites presented contrary patterns. The percentage of urban land use, conductivity, dissolved oxygen, ammonia nitrogen and total phosphorus were the major drivers for the variations. The land use related water quality stress gradients of the four sampling seasons were determined by means of four independent Principal Component Analyses. The responses of macroinvertebrate community metrics, to anthropogenic stressors, were explored using Spearman Rank Correlation analyses. All the selected metrics, including total numbers of taxa, numbers of Ephemeroptera, Plecoptera and Trichoptera taxa, percentage of non‐insect abundance, percentage of scrapers abundance, Pielou’s evenness index, Simpson diversity index, and the Benthic Index of Biotic Integrity were correlated significantly with environmental gradients (PC1) in autumn. In other seasons such correlations were less pronounced. Our results imply that autumn is the optimal time to sample macroinvertebrate communities, and to conduct water quality biomonitoring in this subtropical watershed. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Anthropogenic changes in climate, land use, and disturbance regimes, as well as introductions of non‐native species can lead to the transformation of many ecosystems. The resulting novel ecosystems are usually characterized by species assemblages that have not occurred previously in a given area. Quantifying the ecological novelty of communities (i.e., biotic novelty) would enhance the understanding of environmental change. However, quantification remains challenging since current novelty metrics, such as the number and/or proportion of non‐native species in a community, fall short of considering both functional and evolutionary aspects of biotic novelty. Here, we propose the Biotic Novelty Index (BNI), an intuitive and flexible multidimensional measure that combines (a) functional differences between native and non‐native introduced species with (b) temporal dynamics of species introductions. We show that the BNI is an additive partition of Rao's quadratic entropy, capturing the novel interaction component of the community's functional diversity. Simulations show that the index varies predictably with the relative amount of functional novelty added by recently arrived species, and they illustrate the need to provide an additional standardized version of the index. We present a detailed R code and two applications of the BNI by (a) measuring changes of biotic novelty of dry grassland plant communities along an urbanization gradient in a metropolitan region and (b) determining the biotic novelty of plant species assemblages at a national scale. The results illustrate the applicability of the index across scales and its flexibility in the use of data of different quality. Both case studies revealed strong connections between biotic novelty and increasing urbanization, a measure of abiotic novelty. We conclude that the BNI framework may help building a basis for better understanding the ecological and evolutionary consequences of global change.  相似文献   

8.
The Suquía River (Córdoba, Argentina) has become an important issue because it flows into Mar Chiquita Lake, one of the largest saline lakes in the world. This water body, together with the expansive swamps of the Dulce River on the northern shore and the mouth of Suquía and Xanaes River, is considered one of the most important wetlands in Argentina in terms of biodiversity in a range of freshwater to very saline environments. Nevertheless, the presence of densely populated urban settlements and the increasing environmental impact due to anthropogenic activities characterize the central and lower sections of Suquía River Basin. Fishes are particularly affected and change their distribution and abundance as a consequence of the environmental deterioration. We collected information on fish fauna to develop and validate a Biotic Index to assess degradation of the Suquía River Basin. We classified fish species according to their sensitiveness or tolerance to environmental degradation, based on their distribution and abundance variations along a water quality gradient in order to design a Biotic Index for Suquía River Basin. The set of metrics used in the Biotic Index calculation was conformed by: the abundance of Astyanax eigenmanniorum, Rineloricaria catamarcensis, Gambusia affinis and Cnesterodon decemmacultus, the proportion of sensitive species richness, and the proportion of tolerant species richness. They clearly distinguished between the impaired and referenced sites. We demonstrated that it is possible to use fish as indicators of water quality in Córdoba Province (central part of Argentina) in order to carry out rapid and relatively inexpensive monitoring and conservation programs. The application of this Biotic Index showed that fish assemblages reflect the watershed conditions and are sensitive to changes in water quality across the environmental gradient.  相似文献   

9.
Wooded biomes converted to human-modified landscapes (HML) are common throughout the tropics, yielding small and isolated forest patches surrounded by an agricultural matrix. Diverse anthropogenic interventions in HMLs influence patches in complex ways, altering natural dynamics. Assessing current condition or ecological integrity in these patches is a challenging task for ecologists. Taking the Brazilian Atlantic Forest as a case study, we used the conceptual framework of the Index of Biotic Integrity (IBI), a multimetric approach, to assess the ecological integrity of eight small forest patches in a highly disturbed HML with different configurations and histories. The IBI was developed using bird assemblages found in these patches, and its performance was compared with analytical approaches commonly used in environmental assessment, such as general richness and Shannon’s diversity index. As a first step, the IBI procedure identifies an existing gradient of human disturbance in the study region and checks which biotic characteristics (candidate metrics) vary systematically across the gradient. A metric is considered valid when its’ relationship with the gradient provides an ecological interpretation of the environment. Then, the final IBI is elaborated using each valid metric, obtaining a score for each site. Over one year of sampling, 168 bird species were observed, providing 74 different bird candidate metrics to be tested against the disturbance gradient. Seven of them were considered valid:richness of threatened species; richness of species that use both “forest and non-forest” habitats; abundance of endemics, abundance of small understory-midstory insectivores, abundance of exclusively forest species; abundance of non-forest species, and abundance of species that forage exclusively in the midstory stratum. Each metric provided complementary information about the patch’s ecological integrity. The resulting IBI showed a significant linear relationship with the gradient of human disturbance, while total species richness and Shannońs diversity index did not. Application of numerical approaches, such as total species richness and Shannon’s diversity, did not distinguish ecological traits among species. The IBI proved better for assessing and interpreting ecological and environmental condition of small patches in highly disturbed HML. The IBI framework, its multimetric character, and the ease with which it can be adapted to diverse situations, make it an effective approach for assessing environmental conditions in the Atlantic Forest region, and also for many other small forest patches in the tropics.  相似文献   

10.
Unraveling how climate change impacts the diversity and distribution patterns of organisms is a major concern in ecology, especially with climate-sensitive species, such as dung beetles. Often found in warmer weather conditions, beetles are used as bio-indicators of environmental conditions. By using an altitudinal gradient as a proxy for climate change (i.e., space-for-time substitution), we assessed how changes in climatic variables, such as temperature and precipitation, impact patterns of dung beetle diversity and distribution in the Peruvian Andes. We recorded dung beetle diversity using three different types of baits, feces, carrion, and fruits, distributed in 18 pitfall traps in five different altitudinal sites (from 900 to 2500 m, 400 m apart from each other) in the rainy and dry season. We found that (i) dung beetle richness and abundance were influenced by the climate gradient, (ii) seasonality influenced beetle richness, which was high in the wet season, but did not influence abundance, (iii) dung beetle richness and abundance fit to a hump-shaped distribution pattern along the altitudinal gradient, and (iv) species richness is the beta-diversity component that best describes the composition of dung beetle species along the altitudinal gradient. Our data show that the distribution and diversity of dung beetles are different at larger scales, with different patterns resulting from the response of species to both abiotic and biotic factors.  相似文献   

11.
The ever-worsening condition of streams due to local, regional, and global demands on water has resulted in the development of increasingly streamlined, rapid assessment methods using macroinvertebrates. Biotic indices in particular are versatile and robust, although not always easy to use. For example, the family-level South African Scoring System is an effective water quality measure, but is time-consuming and requires high-level expert training. The index could be used alongside the species-level Dragonfly Biotic Index (DBI), originally developed for monitoring habitat integrity, with which it is significantly and strongly correlated. We review here the relevant biotic indices in stream biomonitoring and their advantages and disadvantages, and present a new extension of the DBI, the Habitat Condition Scale (HCS). The HCS enables comparison and ranking of sites in terms of their habitat condition. Indeed, the DBI is a very flexible index, having been used in site selection and prioritization for conservation, as well as the measurement of habitat recovery. The theoretical framework behind the index demonstrates the potential of the index to track biotic changes due to climate change. The index could also be easily adapted for use in other biogeographical regions, given that species distributions, threat levels and sensitivities are well-known, and that there is an adequate number of endemic species. However, like all benthic macroinvertebrate indices, the DBI cannot always identify exactly which in-water impacts have an effect and to what extent. The real power of the DBI lies in being able to quantify community response to known physical changes on the riverscape and across the region.  相似文献   

12.
Two benthic indices to assess the quality status (the AZTI's Marine Biotic Index (AMBI) and multivariate-AMBI (M-AMBI)) are being used extensively in different habitats worldwide. We try to interpret what is behind these indices making them suitable for different habitats. To demonstrate that, we used best professional judgment (BPJ), applying it to a dataset from southern Chile, to determine the criteria proposed by 12 experts in assessing the status. The experts were provided with raw species abundance data, from 12 stations within a gradient of disturbance, from unaffected to severely affected. There was a very good agreement among experts (kappa values 0.72–0.77), with highly significant (p < 0.001) correlation between BPJ and AMBI and M-AMBI classifications, and an agreement of 76.4% and 81.9%, respectively. When comparing BPJ in Chile with other results in Europe, USA and northern Africa, similar patterns can be identified: (i) the number of criteria identified for classification is very high (range 7–12); (ii) the experts use several criteria together in the BPJ assessment; and (iii) the rank of the most important criteria is indicator species, richness, and diversity/dominance. These criteria are included in indices such as AMBI and M-AMBI. Hence, although experts are classifying samples subjectively when applying BPJ, they are corroborated in their opinions when using such indices. This fact can explain why these indices are so widely used.  相似文献   

13.
《Ecological Indicators》2007,7(2):430-441
Restoration is a complex endeavor requiring the understanding of the degrading environment before applying any improvement measure. Environmental and ecological data in Nan-Shih stream were investigated in this study to assess its stream condition. Based on the data collected, the Index of Biotic Integrity (IBI index) which takes fish species as the major target, the Family-level Biotic Index (FBI) aquatic insects Hilsenhoff index and the Genus Index (GI) of algae were thus analyzed to quantify Nan-Shih stream's ecological system. The indices above were then applied on Index of Stream Condition (ISC index) to describe the overall river condition. Modified sub-indices, including the hydrology, physical form, streamside zone, water quality, and aquatic life, were made and used to provide baseline assessment information. ISC value is 33.89 evaluated as marginal level, in which hydrology sub-index score was the lowest indicating impact of artificial structures affecting flow significantly. The recommendations of the river corridor restoration and the habitat improvement were thus proposed as a reference for river management.  相似文献   

14.
确定溪流鱼类多样性的时空分布格局可为鱼类多样性保护与管理提供科学基础。尽管溪流鱼类分类群多样性的纵向梯度格局已有大量报道, 但以鱼类生物学特征为基础的功能多样性研究较少。本文基于2009-2010年4个季度对青弋江1-5级溪流共15个样点的调查数据, 利用形态特征数据和食性构建了鱼类复合功能群, 研究了不同级别溪流间鱼类分类群和功能群组成及多样性的异同, 着重探讨了鱼类分类群和功能群的α和β多样性沿溪流纵向梯度的变化规律。采集到的56种鱼类可分为4个营养功能群和5个运动功能群, 共计14个“营养-运动”复合功能群。双因素交互相似性分析结果显示, 鱼类分类群和功能群组成都随河流级别显著变化, 但季节动态不显著; 双因素方差分析后发现, 鱼类分类群和功能群α、β多样性都随河流级别显著变化, 但受季节影响不显著。经回归分析, 分类群和功能群α多样性与河流级别大小呈显著的线性正相关, 但最大分类群α多样性出现于4级河流, 最大功能群α多样性在4级和5级河流间一致; 分类群和功能群β多样性与河流级别大小呈显著的二项式关系, 呈U型分布。分类群β多样性的空间变化主要取决于物种周转, 而功能群β多样性主要由嵌套所驱动。本研究表明, 沿着“上游-下游”的纵向梯度, 河流鱼类的α和β多样性的空间变化规律不同, 分类群和功能群α多样性的空间格局基本一致, 但分类群(主要是物种周转)和功能群β多样性(主要是功能嵌套)的空间变化过程的驱动机制不同。  相似文献   

15.
识别群落内部各类群多样性格局的复杂性是生态学家面临的挑战,而尺度推绎规律是揭示复杂生态结构的有效途径之一。本研究利用多重分形的方法探索了不同海拔土壤动物多样性格局的尺度推绎规律,对比分析了凋落物层和土壤层之间多重分形谱的差异。结果表明: 与之前对植物群落的分析结果相似,土壤动物多样性尺度推绎规律同样具有幂律特征,如丰富度、Shannon多样性指数和Simpson多样性的倒数。凋落物层和土壤层中不同相对多度土壤动物的丰富度也具有幂律尺度推绎规律。凋落物层和土壤层中土壤动物多样性格局都具有多重分形特征,但凋落物层中多样性的分形结构比土壤层更均匀,且两层间优势类群与稀有类群的尺度推绎特征在多重分形谱上不同格局。幂律尺度推绎规律对于有着较高丰富度与多度的土壤动物同样存在,从而有助于揭示地下生物多样性的空间分布机制。  相似文献   

16.
 从种—多度关系和物种多样性对高寒草甸和高寒灌丛在不同放牧强度下群落结构特性的分析表明,种在群落中的相对重要性发生了变化,种相对多度的分布模式符合对数正态分布,并随放牧强度的变化显示出有规律的改变;同时,表示群落结构特性的指数(Simpson多样性指数λ、Shannon信息多样性指数H′、McIntosh多样性指数Dmc、均匀性指数E和物种丰富度指数R)值在各放牧强度群落间却未表现出统计学上的显著差异(P>0.05)。这表明在有些情况下单纯对物种多样性等指数值的比较并不一定能准确地反映出群落结构上的变化,同时也证实了West关于多样性指数值保持不变或近似但群落结构可能发生变化的推断。  相似文献   

17.
Landscape-scale patterns of freshwater fish diversity and assemblage structure remain poorly documented in many areas of Central America, while aquatic ecosystems throughout the region have been impacted by habitat degradation and hydrologic alterations. Diadromous fishes may be especially vulnerable to these changes, but there is currently very little information available regarding their distribution and abundance in Central American river systems. We sampled small streams at 20 sites in the Sixaola River basin in southeastern Costa Rica to examine altitudinal variation in the diversity and species composition of stream fish assemblages, with a particular focus on diadromous species. A set of environmental variables was also measured in the study sites to evaluate how changes in fish assemblage structure were related to gradients in stream habitat. Overall, fish diversity and abundance declined steeply with increasing elevation, with very limited species turnover. The contribution of diadromous fishes to local species richness and abundance increased significantly with elevation, and diadromous species dominated assemblages at the highest elevation sites. Ordination of the sampling sites based on fish species composition generally arranged sites by elevation, but also showed some clustering based on geographic proximity. The dominant gradient in fish community structure was strongly correlated with an altitudinal habitat gradient identified through ordination of the environmental variables. The variation we observed in stream fish assemblages over relatively small spatial scales has significant conservation implications and highlights the ecological importance of longitudinal connectivity in Central American river systems.  相似文献   

18.
The development of a Biotic Pollution Index for the River Nile in Egypt   总被引:2,自引:0,他引:2  
This article describes the development of a Nile Biotic Pollution Index (NBPI) for the River Nile in Egypt. Chemical data were collected from 30 locations along the Nile from Aswan to Cairo and 21 sites within the river delta, incorporating a range of conditions from unpolluted to grossly polluted. Seven chemical variables were used to calculate a Nile Chemical Pollution Index (NCPI) for each site. Biological data were collected primarily using Artificial Substrate Samplers (ASS). The UK developed, Biological Monitoring Working Party (BMWP) biotic index and the BMWP-ASPT were applied to the data. A Nile Biotic Pollution Index (NBPI) and the NBPI-ASPT were obtained by incorporating more of the Nile taxa. There were highly significant regressions (P < 0.001) for both the UK and the Nile Pollution Index scores with the NCPI for the whole river. The modification of the UK indices improved the Nile Indices increasing the number of taxa recorded from 29 to 43 and the total number of recorded taxon occurrences from 377 to 490. The Nile Indices provided better discrimination at both ends of the pollution spectrum. The NBPI-ASPT was best for the river as a whole, and particularly for the river from Aswan to Cairo. The NBPI was much better in the delta than from Aswan to Cairo. These differences in performance were attributed to the fact that the NBPI-ASPT excludes information on taxon diversity. In clean waters there was a wide range of NBPI score suggesting that the biodiversity of taxa is dependent on other aspects of habitat quality. Conversely in the polluted delta the high score of an individual taxon is critical for the NBPI-ASPT as it may have a distorting effect. As the NBPI-ASPT was the most consistent biotic index it is recommended as the regular biological assessment and regulatory tool for Egypt to meet the requirements of the Convention for Biodiversity. Handling editor: R. Norris  相似文献   

19.
基于底栖生物完整性指数的赣江流域河流健康评价   总被引:4,自引:0,他引:4  
底栖生物完整性指数(B-IBI)是最为广泛应用的水生态系统健康评价指数之一。根据2009-2010年期间赣江流域60个采样点的底栖动物数据(15个参照点, 45个受损点), 对17个生物参数进行分布范围、判别能力和Pearson相关性分析, 确定了B-IBI指数体系由总分类单元数、甲壳和软体动物分类单元数、甲壳和软体动物%和BI指数构成。采用比值法统一各生物参数量纲, 将各个生物参数分值加和得到B-IBI指数值。根据参照点的B-IBI值的25%分位数值最终确定赣江流域河流健康评价标准。评价结果表明, 赣江流域60个采样点中19个为健康, 19个为亚健康, 14个为一般, 8个较差。综合来看, 赣江流域河流处于健康-亚健康状态: 上游各支流中绵水、贡江、上犹江和桃江为健康状态, 章水、濂水、梅江和平江为较差状态; 中游各支流健康评价结果多为健康-亚健康状态, 而乌江为较差状态; 下游各支流为健康-亚健康状态; 赣江干流上健康评价的结果均为健康。    相似文献   

20.
1. Spatiotemporal patterns of canopy true bug diversity in forests of different tree species diversity have not yet been disentangled, although plant diversity has been shown to strongly impact the diversity and distribution of many insect communities. 2. Here we compare species richness of canopy true bugs across a tree diversity gradient ranging from simple beech to mixed forest stands. We analyse changes in community composition by additive partitioning of species diversity, for communities on various tree species, as well as for communities dwelling on beech alone. 3. Total species richness (γ‐diversity) and α‐diversity, and abundance of true bugs increased across the tree diversity gradient, while diversity changes were mediated by increased true bug abundance in the highly diverse forest stands. The same pattern was found for γ‐diversity in most functional guilds (e.g. forest specialists, herbivores, predators). Temporal and even more, spatial turnover (β‐diversity) among trees was closely related to tree diversity and accounted for ~90% of total γ‐diversity. 4. Results for beech alone were similar, but species turnover could not be related to the tree diversity gradient, and monthly turnover was higher compared to turnover among trees. 5. Our findings support the hypothesis that with increasing tree diversity and thereby increasing habitat heterogeneity, enhanced resource availability supports a greater number of individuals and species of true bugs. Tree species identity and the dissimilarity of true bug communities from tree to tree determine community patterns. 6. In conclusion, understanding diversity and distribution of insect communities in deciduous forests needs a perspective on patterns of spatiotemporal turnover. Heterogeneity among sites, tree species, as well as tree individuals contributed greatly to overall bug diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号