首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 459 毫秒
1.
2.
3.
The plant hormone auxin is perceived by a family of F box proteins called the TIR1/auxin-signaling F box proteins (AFBs). Phylogenetic studies reveal that these proteins fall into four clades in flowering plants called TIR1, AFB2, AFB4, and AFB6. Genetic studies indicate that members of the TIR1 and AFB2 groups act as positive regulators of auxin signaling. In this report, we demonstrate a unique role for the AFB4 clade. Both AFB4 and AFB5 function as auxin receptors based on in vitro assays. However, unlike other members of the family, loss of AFB4 results in a range of growth defects that are consistent with auxin hypersensitivity, including increased hypocotyl and petiole elongation and increased numbers of lateral roots. Indeed, qRT-PCR experiments show that afb4-2 is hypersensitive to indole-3-acetic acid (IAA) in the hypocotyl, indicating that AFB4 is a negative regulator of auxin response. Furthermore, we show that AFB4 has a particularly important role in the response of seedlings to elevated temperature. Finally, we provide evidence that the AFB4 clade is the major target of the picloram family of auxinic herbicides. These results reveal a previously unknown aspect of auxin receptor function.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Auxin receptors: a new role for F-box proteins   总被引:15,自引:0,他引:15  
  相似文献   

16.
17.
Previous studies have demonstrated that auxin (indole-3-acetic acid) and nitric oxide (NO) are plant growth regulators that coordinate several plant physiological responses determining root architecture. Nonetheless, the way in which these factors interact to affect these growth and developmental processes is not well understood. The Arabidopsis thaliana F-box proteins TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX (TIR1/AFB) are auxin receptors that mediate degradation of AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) repressors to induce auxin-regulated responses. A broad spectrum of NO-mediated protein modifications are known in eukaryotic cells. Here, we provide evidence that NO donors increase auxin-dependent gene expression while NO depletion blocks Aux/IAA protein degradation. NO also enhances TIR1-Aux/IAA interaction as evidenced by pull-down and two-hybrid assays. In addition, we provide evidence for NO-mediated modulation of auxin signaling through S-nitrosylation of the TIR1 auxin receptor. S-nitrosylation of cysteine is a redox-based post-translational modification that contributes to the complexity of the cellular proteome. We show that TIR1 C140 is a critical residue for TIR1-Aux/IAA interaction and TIR1 function. These results suggest that TIR1 S-nitrosylation enhances TIR1-Aux/IAA interaction, facilitating Aux/IAA degradation and subsequently promoting activation of gene expression. Our findings underline the importance of NO in phytohormone signaling pathways.  相似文献   

18.
19.
The auxin/indoleacetic acid (Aux/IAA) proteins are negative regulators of the auxin response factors (ARFs) that regulate expression of auxin-responsive genes. The Aux/IAA proteins have four conserved domains. Domain II is responsible for the rapid degradation of these proteins. Degradation of the Aux/IAA proteins, mediated by a SCF(TIR1) E3 ubiquitin protein ligase complex, is critical for auxin-regulated gene expression. Using a steroid-hormone-inducible system, we had previously shown that a protein-stability-enhancing mutation in domain II of IAA1 (iaa1) impaired diverse auxin responses. Inhibition of hypocotyl elongation, leaf expansion, and stem elongation by overexpression of iaa1 suggested that cell enlargement and/or cell division might be affected. We here examined the effects of the domain II mutation on cellular anatomy using light microscopy. Our results show that overexpression of iaa1 in Arabidopsis significantly reduced cell length and cell number and affected cell shape in inflorescences and leaves in a dexamethasone (DEX)-dependent manner. These results suggest that IAA1 might be involved in cell elongation as well as in cell division in the aerial parts of Arabidopsis plants. In addition, the formation of both phloem and xylem in leaves and stems was also impaired in a DEX-dependent manner, indicating a potential involvement of IAA1 in vascular development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号