首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
大型水生植物对重金属的富集与转移   总被引:27,自引:0,他引:27  
潘义宏  王宏镔  谷兆萍  熊国焕  易锋 《生态学报》2010,30(23):6430-6441
通过野外调查和室内分析,研究了云南阳宗海南北两区域自然生长的17种水生植物的生长状况及植物和对应水样、根区底泥中重金属(As、Zn、Cu、Cd、Pb)的含量。结果表明:植物长势良好,未发现受害症状。水体As严重污染,Pb轻度污染,Zn、Cu和Cd均未超标。9种沉水植物同时对As、Zn、Cu、Cd、Pb的富集系数(植物全株重金属含量与水中该元素含量的比值)远大于1,具有共富集特征。在平均含As0.175mg/L的水中,金鱼藻、黑藻、小眼子菜、八药水筛全株As平均含量分别为(150±7.3)、(179±35)、(92±31)、(265±21)mg/kg(干重),对As具有较强富集能力;对于8种湿生和挺水植物,北部采样点的喜旱莲子草、田栖稗、细叶小苦荬和长芒稗对As,长芒稗、细叶小苦荬、圆果雀稗、水蓼和风车草对Cd,海芋和圆果雀稗对Zn的富集系数(植物地上部重金属含量与底泥中该元素含量的比值)以及圆果雀稗对Cd和Zn转移系数(植物地上部重金属含量与根中该元素含量的比值)均大于1。聚类分析结果表明,金鱼藻、黑藻、八药水筛、小眼子菜、穗状狐尾藻5种水生植物同时对As、Zn、Cu、Cd、Pb具有较强的吸收和富集能力,在重金属复合污染水体修复中具有较大潜力。  相似文献   

2.
淡水湖泊生态系统中砷的赋存与转化行为研究进展   总被引:2,自引:0,他引:2  
张楠  韦朝阳  杨林生 《生态学报》2013,33(2):337-347
砷(As)是一种无处不在的元素,目前已有很多关于湖泊水体、沉积物、浮游生物、底栖动物、鱼类及水生植物中As的含量分布与赋存形态的研究报道.As在全球淡水湖泊中分布不均,区域差异性较大;湖泊沉积物中As含量水平对底栖动物的自然生境影响很大,甚至造成底栖物种生物区系的改变;水生植物普遍具有富集As的能力,一般表现为沉水植物>浮水植物>挺水植物;水生动物中As含量一般为底栖动物>浮游动物>鱼类.相对于海洋生态系统,目前对湖泊生态系统环境与生物质中砷的赋存形态及其转化的认识还很不足,今后应加强人类活动影响下我国重要湖泊As的迁移、富集与转化行为的研究.  相似文献   

3.
修复白洋淀镉污染水体的沉水植物筛选试验   总被引:1,自引:0,他引:1  
为了筛选出适宜修复白洋淀镉(Cd)污染水体的沉水植物,该研究通过室内模拟试验,分析了四种沉水植物黑藻、狐尾藻、金鱼藻和菹草对Cd的耐受性及对底泥Cd的富集和迁移能力。结果表明:(1)通过毒性测试研究,Cd对黑藻、狐尾藻、金鱼藻及菹草的4 d-EC50(半数抑制浓度)分别为0.51、0.81、0.03、0.12 mg·L-1,狐尾藻对Cd的耐性最强,黑藻次之,金鱼藻对Cd的耐性最低; 四种沉水植物对Cd的最大富集量分别为27.89、15.28、22.54、32.74 g·kg-1,菹草对Cd的富集能力最强,黑藻次之,狐尾藻对Cd的富集能力最低。(2)通过Cd污染底泥修复研究,黑藻、狐尾藻和菹草体内Cd富集量整体表现为根>叶片和茎(P<0.05); 地上部、根对Cd的富集能力分别表现为黑藻>菹草>狐尾藻,菹草>黑藻>狐尾藻; 三种沉水植物对Cd的迁移能力则表现为黑藻>狐尾藻>菹草。总之,黑藻对底泥中Cd富集和迁移能力均较强,且耐性较高,是最适合修复白洋淀Cd污染水体的沉水植物。  相似文献   

4.
沉水植物茎叶微界面特性研究进展   总被引:1,自引:0,他引:1  
董彬  韩睿明  王国祥 《生态学报》2017,37(6):1769-1776
沉水植物茎叶-水界面是浅水湖泊的重要界面之一,对湖泊生物地球化学循环和水环境质量具有重要影响。富营养化水体中,大量的附着物常富集在沉水植物茎叶表面,形成了特殊的生物-水微界面。对该微界面特性进行深入研究,有助于揭示沉水植物在微环境层面对富营养化水体中物质循环的调控过程和机制。沉水植物茎叶微界面具有促进水体养分转化、改变环境因子及可溶性物质的空间分布,增加物质运输的阻力和距离、降低植物光合作用、调控重金属等生态功能;微界面结构及环境因子受水体营养盐浓度、沉水植物种类及生长阶段等因素的影响。对微界面结构功能的主要研究方法进行了分析总结,并对沉水植物茎叶微界面的研究前沿进行了展望。  相似文献   

5.
采用野外调查和室内分析相结合的方法,以上海市8个区县25条中小型河道为研究对象,调查研究重金属在沉积物和水生植物中累积特征,采用潜在生态风险指数评价法对沉积物重金属污染进行了评价,采用生物富集系数(BCF)方法评价不同水生植物对重金属的富集特性,对水生植物与沉积物中的重金属含量进行相关性分析。分析表明,与土壤环境质量国家二级标准(GB15618-1995)相比,As、Ni和Zn平均含量是标准的6.7倍、1.5倍和1.4倍,Cd、Pb、Cu、Cr平均含量不超标。参照上海市土壤环境背景值,上海市中小型河道沉积物中7种重金属的潜在生态风险依次为:Cdgt;Asgt;Pbgt;Nigt;Cugt;Zngt;Cr,其中Cd、As生态风险严重,7种潜在生态风险Ri平均值为431.43,有强生态风险。植物体内累积最高的重金属为Cu,累积最低的重金属为Cd,沉水植物体内重金属Cd、As、Cr、Pb、Ni、Cu的含量均大于挺水植物,沉水植物苦草和水盾草对多种重金属的富集能力大于1,在重金属复合污染水体修复中具有较大潜力。根据植物体与沉积物中重金属的含量关系,发现黑藻与沉积物中重金属Cu、Ni、Pb的含量显著正相关;水盾草与沉积物中重金属Cu含量显著正相关,芦苇与沉积物中重金属Cr的含量显著正相关,上述3种植物可作为上海市河道重金属污染监测植物的选择对象。  相似文献   

6.
采用野外调查和室内分析相结合的方法,以上海市8个区县25条中小型河道为研究对象,调查研究重金属在沉积物和水生植物中累积特征,采用潜在生态风险指数评价法对沉积物重金属污染进行了评价,采用生物富集系数(BCF)方法评价不同水生植物对重金属的富集特性,对水生植物与沉积物中的重金属含量进行相关性分析。分析表明,与土壤环境质量国家二级标准(GB15618-1995)相比,As、Ni和Zn平均含量是标准的6.7倍、1.5倍和1.4倍,Cd、Pb、Cu、Cr平均含量不超标。参照上海市土壤环境背景值,上海市中小型河道沉积物中7种重金属的潜在生态风险依次为:CdAsPbNiCuZnCr,其中Cd、As生态风险严重,7种潜在生态风险Ri平均值为431.43,有强生态风险。植物体内累积最高的重金属为Cu,累积最低的重金属为Cd,沉水植物体内重金属Cd、As、Cr、Pb、Ni、Cu的含量均大于挺水植物,沉水植物苦草和水盾草对多种重金属的富集能力大于1,在重金属复合污染水体修复中具有较大潜力。根据植物体与沉积物中重金属的含量关系,发现黑藻与沉积物中重金属Cu、Ni、Pb的含量显著正相关;水盾草与沉积物中重金属Cu含量显著正相关,芦苇与沉积物中重金属Cr的含量显著正相关,上述3种植物可作为上海市河道重金属污染监测植物的选择对象。  相似文献   

7.
为了探求合适的水体砷污染修复植物及砷在食物链中传递、累积的特点,以常见的沉水植物-苦草为研究对象,对受砷污染的水体进行修复,结果表明:苦草对水环境中砷的富集能在较短的时间内(3 d)达到一个较大值,到第14天,不同砷水平(2 mg/L)处理下的苦草对砷富集系数均超过200;苦草中砷浓度随处理时间及外源砷浓度的增加而增加,且与外源砷浓度之间存在极显著地正相关;苦草在不同浓度砷处理下都生长良好,对砷胁迫表现出较强的耐受性。因此,苦草对于水体的砷污染有着很好的去除效果,同时也能很好地反映出一个地区的砷污染水平。  相似文献   

8.
光衰减及其相关环境因子对沉水植物生长影响研究进展   总被引:2,自引:0,他引:2  
吴明丽  李叙勇 《生态学报》2012,32(22):7202-7212
光衰减对沉水植物的生长具有至关重要的影响。系统归纳总结了光衰减及其相关环境因子对沉水植物生长的影响,指出:光因子是沉水植物生长的第一环境要素,水体中的有色可溶性有机质、浮游植物叶片细胞中的叶绿素和悬浮颗粒物以及水体本身,对光穿透水体时光强的衰减有着直接的影响,是影响沉水植物最重要的光衰减水质参数。其他环境因子如营养盐、沉积物和流水动力学等因素,则会直接或间接影响光衰减水质参数,进而影响水体透明度和浑浊度,影响沉水植物的光合作用,是影响沉水植物光衰减的间接环境因子。提出了研究中重点关注的几个问题。  相似文献   

9.
水生植物及植物表面附着微生物在人工湿地水体净化过程中发挥着重要的作用。以北京奥林匹克公园龙形水系为研究对象,通过高通量测序技术,对其底泥、水体及3种沉水植物——苦草Vallisneria natans、狐尾藻Myriophyllum verticillatum、龙须眼子菜Potamogeton pectinatus——的根际及叶际微生物群落的结构及功能进行了研究。结果表明,微生物多样性从高到低分别为底泥样品、植物根际样品、植物叶际样品和水体样品,植物叶际微生物种类要显著高于水体中微生物种类。LEfSe分析结果显示不同生境富集不同的微生物类群,其中底泥主要富集厌氧微生物类群,水体及植物叶际主要富集好氧微生物类群,植物根际则两者兼具。功能预测结果显示植物叶际样品的反硝化标志基因丰度要高于根际样品及底泥和水体样品,且狐尾藻和龙须眼子菜叶际样品反硝化标志基因丰度要高于苦草叶际样品。本研究可以为人工湿地构建时对沉水植物及功能微生物的选择提供指导意义。  相似文献   

10.
研究了3种沉水植物对不同质量浓度富营养化水体的净化能力,结果表明,轮叶黑藻、金鱼藻和狐尾藻对水体中的氮、磷都有很好的净化效果,对总氮去除能力从大到小依次为轮叶黑藻>金鱼藻>狐尾藻,对总磷去除能力从大到小依次为轮叶黑藻>狐尾藻>金鱼藻。实验表明,沉水植物是富营养化水体水生态系统重建的关键,在水体生态修复中,轮叶黑藻是一种很好的水体净化沉水植物。  相似文献   

11.
Wetland aquatic plants including Canna glauca L., Colocasia esculenta L. Schott, Cyperus papyrus L. and Typha angustifolia L. were used in the phytoremediation of submerged soil polluted by arsenic (As). Cyperus papyrus L. was noticed as the largest biomass producer which has arsenic accumulation capacity of 130-172 mg As/kg plant. In terms of arsenic removal rate, however, Colocasia esculenta L. was recognized as the largest and fastest arsenic remover in this study. Its arsenic removal rate was 68 mg As/m2/day while those rates of Canna glauca L., Cyperus papyrus L. and Typha angustifolia L. were 61 mg As/m2/day, 56 mg As/m2/day, and 56 mg As/m2/day, respectively. Although the 4 aquatic plants were inferior in arsenic accumulation, their high arsenic removal rates were observed. Phytostabilization should be probable for the application of these plants.  相似文献   

12.
Deteriorating urban water quality has attracted considerable attention in China. We investigated the contamination levels and distribution of heavy metals (As, Cd, Cu, Ni, Pb, and Zn) in Yuxi River water and sediments, and assessed the heavy metal accumulation capability of five species of submerged macrophytes: Vallisneria natans (Lour.) Hara, Potamogeton pectinatus L., Hydrilla verticillata (L. f.) Royle, Myriophyllum spicatum L., and Potamogeton crispus L. Samples were collected from upstream and downstream locations in different season. The results showed that the levels of heavy metals in the downstream areas were higher than in the upstream areas. Heavy metal concentrations in the river water during the dry seasons were higher than those during the rainy seasons, and the opposite results appeared in sediments and submerged macrophytes. In general, the river was slightly contaminated by heavy metals, and the concentrations of Pb and Ni in this river should serve as a warning, while Cd and Zn pollution in the sediments desperately needs to be removed. Furthermore, Potamogeton pectinatus L. showed a higher accumulation capacity for these metals among the five native submerged macrophytes and could be defined as a hyperaccumulator for Cd. Therefore, the potential use of native aquatic plants in contaminated rivers is worth further exploration.  相似文献   

13.
The uptake, transport, and accumulation of metals by plants are functions central to successful phytoextraction. This study investigates the uptake and translocation of arsenic from a contaminated sandy soil by a mature Chinese brake fern (Pteris vittata L.). An existing mathematical model for the coupled transport of water, heat, and solutes in the soil-plant-atmosphere continuum (CTSPAC) was modified to examine the flow of water as well as the uptake and translocation of total arsenic in the xylem of the fern. This model was calibrated using greenhouse measurements before its application. Simulation results showed that about 20% of the soil arsenic was removed by the fern in 10 d, of which about 90% of the arsenic was stored in the fronds and 10% in the roots. Although arsenic mass in the plant tissues increased consecutively with time, arsenic concentration in the xylem sap of the root tips has a typical diurnal distribution pattern: increasing during the day and decreasing at night, resulting from daily variations of frond surface water transpiration. The largest difference in simulated arsenic concentration in the root tips between the day and night was about 5%. This study also suggests that the use of transpiration stream concentration factor (TSCF), which is defined as the ratio of chemical concentration in the xylem sap to that in the external solution, to evaluate the translocation efficiency of arsenic for the hyperaccumulator Chinese brake fern (Pteris vittata L.) could be limited.  相似文献   

14.
The dynamics of metal content in higher aquatic plants (macrophytes) in a small Bugach water reservoir in 1998–2006 was studied. A comparative estimation of the metal content in six macrophyte species (Typha latifolia L., Typha angustifolia L., Polygonium amphibium L., Potamogeton perfoliatus L., Potamogeton pectinatus L., Phragmites australis (Cav) Trin. Ex Steud.) showed that their metal concentrations do not generally exceed those known from the literature. Cluster analysis showed that the macrophyte species under study form two ecological groups with respect to the metal content, i.e., submerged plants (hydrophytes) and emergent aquatic plants (heliophytes).  相似文献   

15.
M. Beklioglu  O. Ince  I. Tuzun 《Hydrobiologia》2003,490(1-3):93-105
Nutrient loading in lakes is recognized as a serious threat to water quality. Over 25 years of raw sewage effluent discharge shifted Lake Eymir from a state dominated by submerged plants to a turbid water state. Successful effluent diversion undertaken in 1995 achieved 88% and 95% reductions in the areal loading of total phosphorus (TP) and dissolved inorganic nitrogen (DIN), respectively. Furthermore, the reduced load of TP was very close to the suggested threshold areal load (0.6 g m–2 yr–1) to attain recovery. Even though diversion also reduced the in-lake TP level by half, the poor water clarity and low submerged plant coverage (112 ± 43 cm and 2.5% coverage of the lake total surface area, respectively) persisted. Domination of the fish stock by planktivorous tench (Tinca tinca L.) and the benthivorous common carp (Cyprinus carpio L.) (66 ± 0.7 and 31 ± 1 kg CPUE, respectively) appeared to perpetuate the poor water condition. A substantial fish removal effort over 1 year achieved a 57% reduction in the fish stock which led to a 2.5-fold increase in Secchi disk transparency. This increase occurred largely because of a 4.5-fold decrease in the inorganic suspended solid concentration, and to some extent, a decrease in chlorophyll-a concentration. A strong top-down effect of fish on the large-sized grazers was evident as density and the body size of Daphnia pulexde Geer increased significantly after the fish removal. Even though the spring and annual euphotic depths occurred well above the maximum and mean depths of the lake, respectively, re-development of submerged plants was poor (6.2% coverage). A weak re-establishment of submerged plants might be attributed to an insufficiently viable seed bank, inappropriate chemical conditions of the sediment (severe oxygen deficiency), or to the high coot (Fulica atra L.) density. However, the top-down effect of fish appeared to be of great importance in determining water clarity, and in turn, conditions for submerged plant development in a warm temperate lake as recorded in the north temperate lakes. Furthermore, this study provides evidence for the importance of top-down control of fish, which, in turn, can be effectively utilised as a restoration strategy in warm-temperate lakes as well. More applications, along with long monitoring programs, are needed to develop a better understanding about requirements for biomanipulation success in this climate.  相似文献   

16.
In The Netherlands, there has been a dramatic decline during the last 30 years in the number of stands belonging to the phytosociological alliance Littorellion. Generally, the communities classified within this alliance occur in poorly buffered, oligotrophic waters, with very low phosphate, nitrogen and carbon dioxide levels in the water layer and considerably higher nutrient levels in the sediment. The plant species dominating these communities are isoetids such as Litoorella uniflora (L.) Aschers., Lobelia dortmanna L. and Isoetes lacustris L., which show various adaptations to make successful growth possible under these conditions.Field observations showed that the water where Littorella uniflora had disappeared or strongly decreased could be divided into two groups. A major group (77%) was characterized by the presence of submerged Juncus bulbosus L. and/or Sphagnum species. These water appeared to be strongly acidified (pH < 4.5) and had increased nitrogen levels with ammonium as the dominant N-source. Within this group, the waters with luxuriant growth of Juncus bulbosus and/or Sphagnum spp. had strongly increased carbon dioxide levels in both sediment and water.Different types of experiments proved causal relationships between the observed changes in macrophytes and the changed physico-chemical parameters. Ecophysiological experiments showed that Juncus bulbosus lacks the typical adaptations of the isoetid plant species, i.e. it uses very low amounts of sediment-CO2 and releases only a little oxygen from the roots. However, Juncus bulbosus is more able than Littorella uniflora to use CO2 from the water layer. From the nutrient-uptake experiments, the decreased nitrate and increased ammonium levels seem to be favourable to Juncus bulbosus. The culture experiments clearly demonstrated that the biomass of Juncus bulbosus only increased strongly when the sediment was poorly buffered and the pH of water was low. When combining factors like CO2 enrichment of the sediment, with and without phosphate, and/or ammonium enrichment of the water in the culture experiments, it is clearly shown that phosphate and/or ammonium enrichment without CO2 enrichment do not lead to an increase in biomass of Juncus bulbosus. Therefore, it is obvious that the changes in the macrophyte community can be ascribed primarily to changes in the carbon budget as a result of acidification.A minor group of waters (23%) was characterized by the absence of submerged Juncus bulbosus and/or Sphagnum spp. In most of these waters, submerged plant species occurred, such as Myriophyllum alterniflorum DC or non-rooted species such as Riccia fluitans L. These waters were not acidified, and generally had an increased alkalinity and higher nitrogen and phosphate levels of sediment and/or water. Culture experiments showed that phosphate enrichment of the sediment alone leads to luxuriant growth of submerged macrophyte species such as Myriophyllum alterniflorum, whereas phosphate enrichment of both sediment and water leads to mass development of non-rooted plant species such as Riccia fluitans.  相似文献   

17.
Luronium natans (L.) Raf. (Floating Water-plantain) is an endangered amphibious freshwater species endemic to Europe. We examined the plasticity in carbon acquisition and photosynthesis in L. natans to assess if lack of plasticity could contribute to explain the low competitive ability of the species. The plasticity of photosynthesis in submerged leaves towards inorganic carbon availability was examined and the photosynthesis of submerged, floating and aerial leaves was contrasted. L. natans was shown to be plastic in inorganic carbon uptake, as it was able to effectively acclimate to changed concentrations of free-CO2. The photosynthetic apparatus was down-regulated in plants grown at high CO2. Chlorophyll concentration, Rubisco activity and maximum photosynthesis were significantly lower in submerged leaves of plants grown at high CO2 (200 μM free-CO2) compared to plants grown at low CO2 (18 μM free-CO2). Furthermore, bicarbonate utilization was down-regulated in response to high CO2. Carbon acquisition of submerged, floating and aerial leaves of L. natans differed significantly. The aerial leaves were superior in photosynthesising in air and, surprisingly, the floating leaves had the highest rates of photosynthesis in water. The study did not support the hypothesis that the low competitive ability of L. natans is caused by inefficient photosynthesis or a lack of plasticity in photosynthesis. However, the somewhat low photosynthetic performance of the submerged leaves may be a contributing factor.  相似文献   

18.
The potential of two plants, Thelypteris palustris (marsh fern) and Asparagus sprengeri (asparagus fern), for phytoremediation of arsenic contamination was evaluated. The plants were chosen for this study because of the discovery of the arsenic hyperaccumulating fern, Pteris vittata (Ma et al., 2001) and previous research indicating asparagus fern's ability to tolerate > 1200 ppm soil arsenic. Objectives were (1) to assess if selected plants are arsenic hyperaccumulators; and (2) to assess changes in the species of arsenic upon accumulation in selected plants. Greenhouse hydroponic experiments arsenic treatment levels were established by adding potassium arsenate to solution. All plants were placed into the hydroponic experiments while still potted in their growth media. Marsh fern and Asparagus fern can both accumulate arsenic. Marsh fern bioaccumulation factors (> 10) are in the range of known hyperaccumulator, Pteris vittata Therefore, Thelypteris palustris is may be a good candidate for remediation of arsenic soil contamination levels of < or = 500 microg/L arsenic. Total oxidation of As (III) to As (V) does not occur in asparagus fern. The asparagus fern is arsenic tolerant (bioaccumulation factors < 10), but is not considered a good potential phytoremediation candidate.  相似文献   

19.
Mentha aquatica L. was grown at different nutrient availabilities in water and in air at 60% RH. The plants were kept at 600 mmol m?3 free CO2 dissolved in water (40 times air equilibrium) and at 30 mmol m?3 CO2 in air to ensure CO2 saturation of growth in both environments. We quantified the transpiration-independent water transport from root to shoot in submerged plants relative to the transpiration stream in emergent plants and tested the importance of transpiration in sustaining nutrient flux and shoot growth. The acropetal water flow was substantial in submerged Mentha aquatica, reaching 14% of the transpiration stream in emergent plants. The transpiration-independent mass flow of water from the roots, measured by means of tritiated water, was diverted to leaves and adventitious shoots in active growth. The plants grew well and at the same rates in water and air, but nutrient fluxes to the shoot were greater in plants grown in air than in those that were submerged when they were rooted in fertile sediments. Restricted O2 supply to the roots of submerged plants may account for the smaller nutrient concentrations, though these exceeded the levels required to saturate growth. In hydroponics, the root medium was aerated and circulated between submerged and emergent plants to minimize differences in medium chemistry, and here the two growth forms behaved similarly and could fully exploit nutrient enrichment. It is concluded that the lack of transpiration from leaf surfaces in a vapour-saturated atmosphere, or under water, is not likely to constrain the transfer of nutrients from root to shoot in herbaceous plants. Nutrient deficiency under these environmental conditions is more likely to derive from restricted development and function of the roots in waterlogged anoxic soils or from low porewater concentrations of nutrients.  相似文献   

20.
Effects of aquatic vegetation type on denitrification   总被引:1,自引:0,他引:1  
In a microcosm 15N enrichment experiment we tested the effect of floating vegetation (Lemna sp.) and submerged vegetation (Elodea nuttallii) on denitrification rates, and compared it to systems without macrophytes. Oxygen concentration, and thus photosynthesis, plays an important role in regulating denitrification rates and therefore the experiments were performed under dark as well as under light conditions. Denitrification rates differed widely between treatments, ranging from 2.8 to 20.9 ??mol N m?2 h?1, and were strongly affected by the type of macrophytes present. These differences may be explained by the effects of macrophytes on oxygen conditions. Highest denitrification rates were observed under a closed mat of floating macrophytes where oxygen concentrations were low. In the light, denitrification was inhibited by oxygen from photosynthesis by submerged macrophytes, and by benthic algae in the systems without macrophytes. However, in microcosms with floating vegetation there was no effect of light, as the closed mat of floating plants caused permanently dark conditions in the water column. Nitrate removal was dominated by plant uptake rather than denitrification, and did not differ between systems with submerged or floating plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号