首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Losses of dissolved nutrients (N, P, K, Ca, Mg, Na,Cl, and SO4) in runoff were measured on grasslandand shrubland plots in the Chihuahuan desert ofsouthern New Mexico. Runoff began at a lowerthreshold of rainfall in shrublands than ingrasslands, and the runoff coefficient averaged 18.6%in shrubland plots over a 7-year period. In contrast,grassland plots lost 5.0 to 6.3% of incidentprecipitation in runoff during a 5.5-year period. Nutrient losses from shrubland plots were greater thanfrom grassland plots, with nitrogen losses averaging0.33 kg ha–1 yr–1 vs0.15 kg ha–1 yr–1, respectively, during a 3-year period. Thegreater nutrient losses in shrublands were due tohigher runoff, rather than higher nutrientconcentrations in runoff. In spite of these nutrientlosses in runoff, all plots showed net accumulationsof most elements due to inputs from atmosphericdeposition. Therefore, loss of soil nutrients byhillslope runoff cannot, by itself, account for thedepletion of soil fertility associated withdesertification in the Chihuahuan desert.  相似文献   

2.
太湖地区典型水稻土稻-麦轮作地表径流中磷的变动规律   总被引:4,自引:0,他引:4  
为了了解来自农田土壤径流磷浓度对太湖水体富营养化的贡献状况,采用田间小区试验的方法,研究了太湖地区安镇爽水型水稻土和常熟囊水型水稻土2000~2002年度磷素流失浓度变化及其原因。结果表明:太湖地区农田水稻土磷素流失的主要形态是颗粒态磷;施磷处理对地表径流磷浓度有显著影响;两种水稻土的径流中磷浓度呈现出随时间而降低的趋势;稻季土壤磷素流失的最大风险时期约在水稻移栽后一个月内,而麦季约在磷肥施用后1~2个月内;对于同期地表径流事件,囊水型水稻土径流中DP和TP浓度均高于爽水型水稻土;土壤类型对地表径流次数有明显的影响,并且随季节表现不同。  相似文献   

3.
J. F. Witty 《Plant and Soil》1979,52(2):151-164
Summary N2-fixation by algae on the Broadbalk continuous wheat experiment was measured over a two year period using the acetylene reduction technique. The plots studied receive spring fertilizer treatments including farmyard manure and combinations of nitrochalk and Na, P, K and Mg which have remained much the same since the experiment started in 1843.Nitrogen applied at 196 kg ha–1 in spring suppressed algal N2-fixation until late in the season but at lower levels (48 kg N ha–1) the denser plant canopy increased both surface moisture and fixation. Herbicide treatment decreased fixation on plots of moderate nutritional status early in the season but had little effect on unfertilised plots where weed cover was sparse. On plots where weed and crop cover was very dense herbicide treatment increased fixation in August.Algal N2-ase activity, assayed by C2H2 reduction, continued throughout the night at a rate which averaged 33% of the midday value. Laboratory experiments indicate that dark fixation is very temperature sensitive and this value may represent a maximum. Algal crust in the field dried to 4.5–6.8% H2O content became active 3 1/2 h after rewetting and reached a steady state after 7 h which represented only 6–22% of that at the previous maximum suggesting that many cells had been killed.In a year with average rainfall algae on plots receiving 48 kg N ha–1 were estimated to fix 25–28 kg N ha–1 and plots without fertiliser 13–19 kg N ha–1. Algal fixation appeared to make a substantial contribution to the continuing fertility of unfertilised plots.  相似文献   

4.
Present nutrient management recommendations for irrigated rice in West Africa are typically uniform for large regions. Even with optimal crop management, spatial variability of indigenous nutrient supplies may cause low fertilizer efficiency, low productivity of expensive inputs and high losses to the environment. Substantial efficiency increases were achieved with site- and season-specific nutrient management approaches, but the relative importance of different components (site or season) or of the precision level used (field, scheme, or region) remained unclear. We conducted a field trial in the Senegal River valley to investigate short-range variability of indigenous nutrient supplies of N (INS), P (IPS), and K (IKS) on a three hectare farm, and subsequently used the field data and simulation tools to study the agro-economic effects of fertilizer management options with different precision levels.Spatial variability of soil characteristics and of indigenous nutrient supplies (IS) at field level was high and covered a large part of the variability reported in regional studies. INS ranged from 19 to 78 kg N ha–1, IPS ranged from 11 to 39 kg P ha– 1, and IKS ranged from 70 to 150 kg K ha–1. Rice yield ranged from 2.2 to 6.0 Mg ha–1 in N omission plots, from 4.1 to 9.8 Mg ha–1 in P omission plots, and from 5.3 to 9.6 Mg ha–1 in K omission plots. The highest yield in the fully fertilized treatment was 11.6 Mg ha–1. Simulated potential yield was 11.8 Mg ha–1. Field-specific fertilizer management and an economically optimal target yield resulted in an average yield of 9.6 Mg ha–1 compared to 7.5 Mg ha–1 for the existing uniform recommendation. Net benefit from fertilizer use dropped by 19% as a result of reduced precision. Non-season-specific recommendations accounted for 12% of net benefit loss, whereas lower spatial precision contributed 7% to the net benefit loss. We concluded that uniform domain-specific recommendations within agro-ecological zones (i.e. adjusted to the seasonal yield potential) modified by crop diagnostics offer the best opportunities to optimize fertilizer efficiency and net benefits of fertilizer use for intensive irrigated rice-based systems in West Africa.  相似文献   

5.
Residual P from historical farm practices hasbeen linked to elevated soluble reactivephosphorus (SRP) transport in runoff from afield study site in the Catskills Mountains,New York, U.S.A., with a P source assay indicatingthat successional forest floor biomass was themajor contributor to runoff SRP. In thispaper, we assemble hydrological and SRP budgetsthat indicate net SRP loss of 0.123 kgha–1 yr–1 occurs from the site(composed of 0.044 kg ha–1 yr–1precipitation input, with 0.143 kg ha–1yr–1 and 0.024 kg ha–1 yr–1losses in runoff and groundwater,respectively). These findings contrast withconservative P cycling reported for undisturbedforests. Coupled hydrological and SRP data areanalyzed suggesting that catchment ambient andequilibrium SRP concentrations corresponding togroundwater and long-term average runoffconcentrations are in the range capable ofcontributing to eutrophication of receivingwaters. A physically based variable sourcearea hydrological model is tested to simulateSRP export using deterministic concentrations. The three-layer model (surface runoff, shallowlateral flow, and groundwater) is parameterizedusing spatially distributed data fromadditional P source assays and fieldhydrological monitoring for the site. Differences in simulated and observed outflowand SRP export are partially explained byforest evapotranspiration and frozen soilprocesses. The field data, SRP budgets andsimulations show that sufficient residual Ppools exist to prolong net SRP loss rates untilecosystem processes re-establish moreconservative P cycling.  相似文献   

6.
Carbon balance of a tropical savanna of northern Australia   总被引:7,自引:0,他引:7  
Chen X  Hutley LB  Eamus D 《Oecologia》2003,137(3):405-416
Through estimations of above- and below-ground standing biomass, annual biomass increment, fine root production and turnover, litterfall, canopy respiration and total soil CO2 efflux, a carbon balance on seasonal and yearly time-scales is developed for a Eucalypt open-forest savanna in northern Australia. This carbon balance is compared to estimates of carbon fluxes derived from eddy covariance measurements conducted at the same site. The total carbon (C) stock of the savanna was 204±53 ton C ha–1, with approximately 84% below-ground and 16% above-ground. Soil organic carbon content (0–1 m) was 151±33 ton C ha–1, accounting for about 74% of the total carbon content in the ecosystem. Vegetation biomass was 53±20 ton C ha–1, 39% of which was found in the root component and 61% in above-ground components (trees, shrubs, grasses). Annual gross primary production was 20.8 ton C ha–1, of which 27% occurred in above-ground components and 73% below-ground components. Net primary production was 11 ton C ha–1 year–1, of which 8.0 ton C ha–1 (73%) was contributed by below-ground net primary production and 3.0 ton C ha–1 (27%) by above-ground net primary production. Annual soil carbon efflux was 14.3 ton C ha–1 year–1. Approximately three-quarters of the carbon flux (above-ground, below-ground and total ecosystem) occur during the 5–6 months of the wet season. This savanna site is a carbon sink during the wet season, but becomes a weak source during the dry season. Annual net ecosystem production was 3.8 ton C ha–1 year–1.  相似文献   

7.
Arvidsson  Helen  Lundkvist  Heléne 《Plant and Soil》2002,238(1):159-174
Nutrient concentrations in current and 1-year-old needles were analyzed annually for 5 years after application of hardened wood ash in 1–4-year-old Norway spruce (Picea abies (L.) Karst.) stands within a range of climate and fertility gradients. At each site, 3000 kg ha–1 hardened wood ash of two types, Nymölla and Perstorp, was applied in a randomized block design. Wood ash Nymölla contained 12 kg ha–1 P, 30 kg ha–1 K, 891 kg ha–1 Ca, 72 kg ha–1 Mg and wood ash Perstorp contained 12 kg ha–1 P, 60 kg ha–1 K, 486 kg ha–1 Ca, and 60 kg ha–1 Mg. The ash was intended to compensate for nutrients removed at the preceding harvest when logging residues were collected and removed from the site (whole-tree harvesting). The climate gradient included four climate zones throughout Sweden and each of these included a fertility gradient of three sites classified according to their ground vegetation type. There were no effects on nutrient concentrations in the needles 1 year after the application of wood ash. Five years after ash application, the concentrations of P, K and Ca in current and 1-year-old needles were higher than in the control plots. The results were consistent over all stands, irrespective of climate zone and fertility status. P and K concentrations were higher in spruce needles from plots treated with Perstorp wood ash, whereas Ca concentrations were higher in those of Nymölla treated plots. Analyses across all study sites revealed a treatment effect in terms of increased ratios of P:N, K:N and Ca:N in 1-year-old needles. The ratio P:N tended to increase with time in the Perstorp wood ash treatment compared with the control. The needle concentrations of Mg and S were not affected by the ash applications. The increase in needle nutrient concentrations after application of hardened wood ash suggests that wood ash recycling could be used in order to replace nutrients removed at whole-tree harvesting.  相似文献   

8.
Methane emissions from a flooded Louisiana, USA, rice field were measured over the first cropgrowing season. Microplots contained the semidwarf Lemont rice cultivar drill seeded into a Crowley silt loam soil (Typic Albaqualfs). Urea fertilizer was applied preflood at rates of 0, 100, 200 and 300 kg N ha–1. Emissions of CH4 from the plots to the atmosphere were measured over a 86-d sampling period until harvest. Methane samples were collected in the morning hours (0730–0930) using a closed-chamber technique. Emissions of CH4 were highly variable over the first cropping season and a significant urea fertilizer effect was observed. Two peak CH4 emission periods were observed and occurred about 11 d after panicle differentiation and during the ripening stages. Maximum CH4 emmissions from the 0, 100, 200 and 300 urea-N treatments were 6.0, 8.9, 9.8 and 11.2 kg CH4 ha–1 d–1, respectively. These flux measurements corresponded to approximately 210, 300, 310 and 360 kg CH4 evolved ha–1 over the 86-d sampling period for the 4 treatments.  相似文献   

9.
Summary In a udic chromusterts the transformation of an initial application of15N-urea @ 80 kg N ha–1 to rice (Oryza sativa L.) in rice-wheat (R-W) and to wheat (Triticum aestivum L.) in wheat-rice (W-R) rotations was followed in 6 successive crops in each rotation. All rice crops were grown in irrigated wetland and wheat in irrigated upland conditions.The first wheat crop in W-R rotation utilized 22 kg fertilizer N ha–1 as compared to 19 kg by the corresponding rice crop in R-W rotation. But the latter absorbed more soil N than the former. About 69% of the total N uptake in rice was derived from mineralization of soil organic N as compared to 61% in wheat.The succeeding wheat crop in R-W rotation utilized 6.7% of the residual fertilizer N in the soil but the corresponding rice crop in W-R rotation only 2.2%. The higher utilization appeared to be related to a greater incorporation of labelled fertilizer N in mineral and hexosamine fractions of the soil N. After the second crop in each rotation, the average residual fertilizer N utilization in the next 4 crops ranged between 3 and 4%.The total recovery of15N-urea in all crops amounted to 21.7 and 24.3 kg N ha–1 in R-W and W-R rotation, respectively. At the end of the experiment, about 9 to 10 kg ha–1 of the applied labelled N was found in soil upto 60 cm depth. Most of the labelled soil N (69–76%) was located in the upper 0–20 cm soil layer indicating little movement to lower depths despite intensive cropping for 4 years.  相似文献   

10.
Weeds are a major constraint to the success of dry-seeded rice (DSR). The main means of managing these in a DSR system is through chemical weed control using herbicides. However, the use of herbicides alone may not be sustainable in the long term. Approaches that aim for high crop competitiveness therefore need to be exploited. One such approach is the use of high rice seeding rates. Experiments were conducted in the aman (wet) seasons of 2012 and 2013 in Bangladesh to evaluate the effect of weed infestation level (partially-weedy and weed-free) and rice seeding rate (20, 40, 60, 80, and 100 kg ha−1) on weed and crop growth in DSR. Under weed-free conditions, higher crop yields (5.1 and 5.2 t ha−1 in the 2012 and 2013 seasons, respectively) were obtained at the seeding rate of 40 kg ha−1 and thereafter, yield decreased slightly beyond 40 kg seed ha−1. Under partially-weedy conditions, yield increased by 30 to 33% (2.0–2.2 and 2.9–3.2 t ha−1 in the 2012 and 2013 seasons, respectively) with increase in seeding rate from 20 to 100 kg ha−1. In the partially-weedy plots, weed biomass decreased by 41–60% and 54–56% at 35 days after sowing and at crop anthesis, respectively, when seeding rate increased from 20 to 100 kg ha−1. Results from our study suggest that increasing seeding rates in DSR can suppress weed growth and reduce grain yield losses from weed competition.  相似文献   

11.
In phosphorus deficient soils and under smallscale farming systems, the development of efficient management strategies for P fertilizers is crucial to sustain food production. A field experiment was conducted on a P-fixing Acrisol in western Kenya to study possibilities of replenishing soil P with seasonal additions of small rates of P fertilizers. Triple superphosphate was applied at 0, 10, 25, 50 and 150 kg P ha–1 for 5 consecutive maize growing seasons followed by 4 seasons of residual crops. Maize yields and soil P fractions were determined. Although maize responded to additions of 10 kg P ha–1 with a cumulative grain yield of 16.8 Mg ha–1, at the end of the experiment, compared to 8.8 Mg ha–1 in the non-P fertilized plots, soil labile P did not increase correspondingly. Seasonal additions of 150 kg P ha–1 increased maize yields to a cumulative value of 39 Mg ha–1 at the end of the experiment, and increased all soil inorganic P fractions. At the third season of residual phase, treatment with a cumulative addition of 750 kg P ha–1 gave the highest yields compared to treatments in the same residual stage, but these yields were considered less than the maximum yield of the season. This indicates that the large build up of soil P was not available for crop uptake. The inorganic P fraction extracted by NaHCO3 was the most affected by changes in management, increasing during the input phase and decreasing after interruption of P addition, for all P rates. The decrease in this pool during the residual phase could be explained by the maize uptake. This study showed that seasonal additions of 25 kg P ha–1 can increase maize yield with gradual replenishment of soil P.  相似文献   

12.
Nitrogen mineralization rates were estimated in 19-year-old interplantings of black walnut (Juglans nigra L.) with dinitrogen fixing autumn-olive (Elaeagnus umbellata Thunb.) or black alder (Alnus glutinosa L. Gaertn.) and in pure walnut plantings at two locations in Illinois USA. N mineralization rates were measured repeatedly over a one year period usingin situ incubations of soil cores in oxygen-permeable polyethylene bags at 0–10 and 10–20 cm soil depths, and also by burying mixed-bed ion-exchange resin in soil. Mineralization rates were highest in summer and in plots containing actinorhizal Elaeagnus and Alnus in contrast with pure walnut plots. Elaeagnus plots at one location yielded 236 kg of mineral N ha–1 yr–1 in the upper 20 cm of soil, a value higher than previously reported for temperate decidous forest soils in North America. The highest mean plot values for N mineralization in soil at a location were 185 kg ha–1 yr–1 for Alnus interplantings and 90 kg ha–1 yr–1 for pure walnut plots. Plots which had high N mineralization rates also had the largest walnut trees. Despite low pH (4.1 and 6.5) and low extractable P concentrations (1.4 and 0.7 mg kg–1 dry mass) at the two locations, nitrification occurred in all plots throughout the growing season. NO 3 –N was the major form of mineralized N in soil in the actinorhizal interplantings, with NH 4 + –N being the major form of mineral N in control plots. Walnut size was highly correlated with soil nitrogen mineralization, particularly soil NO 3 –N production in a plot.  相似文献   

13.
Field undisturbed tension-free monolith lysimeters and 15N-labeled urea were used to investigate the fate of fertilizer nitrogen in paddy soil in the Taihu Lake region under a summer rice-winter wheat rotation system. We determined nitrogen recovered by rice and wheat, N remained in soil, and the losses of reactive N (i.e., NH3, N2O, NO3 ?, organic N and NH4 +) to the environment. Quantitative allocation of nitrogen fate varied for the rice and wheat growing seasons. At the conventional application rate of 550 kg N ha?1 y?1 (250 kg N ha?1 for wheat and 300 kg N ha?1 for rice), nitrogen recovery of wheat and rice were 49% and 41%, respectively. The retention of fertilizer N in soil at harvest accounted for 29% in the wheat season and for 22% in the rice season. N losses through NH3 volatilization from flooded rice paddy was 12%, far greater than that in the wheat season (less than 1%), while N leaching and runoff comprised only 0.3% in the rice season and 5% in the wheat season. Direct N2O emission was 0.12% for the rice season and 0.14% for the wheat season. The results also showed that some dissolved organic N (DON) were leached in both crop seasons. For the wheat season, DON contributed 40–72% to the N- leaching, in the rice season leached DON was 64–77% of the total N leaching. With increasing fertilizer application rate, NH3 volatilization in the rice season increased proportionally more than the fertilizer increase, N leaching in the wheat season was proportional to the increase of fertilizer rate, while N2O emission increased less in proportion than fertilizer increase both in the rice season and wheat season.  相似文献   

14.
Application of 0, 30, 60, 90 and 120 kg N ha–1 of urea (U) in split doses with (and without)Azolla pinnata, R. Brown was studied for three consecutive seasons under planted field condition. Fresh weight (FW), acetylene reduction activity (ARA) and N yield of Azolla were found to be maximum 14 days after inoculation (DAI). Among the different treatments, maximum Azolla growth was recorded in no N control. The FW, ARA and N yield of Azolla were inhibited increasingly with the increase in N levels. Irrespective of season, FW and N yield of Azolla were inhibited only a small extent with 90 kg N ha–1 U, beyond which the inhibition was pronounced. ARA was inhibited only slightly up to 60 kg N ha–1 of U. Grain yield and crop N uptake of rice increased significantly up to 90 kg N ha–1 of U (alone or in combination with Azolla) in the dry seasons (variety IR 36) and up to 60 kg N ha–1 U in the wet season (variety CR 1018).  相似文献   

15.
Eight tonnes ha–1 of stubble were used to mulch spring wheat (Triticum aestivum) on a fine textured soil with the aim of controlling both transpiration and soil evaporation during the wet pre-anthesis phase to increase moisture supply during grain filling in the eastern wheatbelt of Western Australia. Mulching reduced leaf area per plant by reducing the culm number; consequently the green area index was reduced. Reduced culm number was associated with low soil temperature which at 50 mm depth averaged 7°C lower under the mulched crop relative to the control crop in mid-season. The smaller canopies of the mulched crop used 15 mm less water than those of the control before anthesis; this difference in water-use was due equally to reduced transpiration and soil evaporation. However, the mulched crop was unable to increase ET during grain filling, a response associated with the persistence of low soil temperature for most of the growth period. Hence, total ET for the season was significantly lower (18 mm) under the mulched crop than the control crop. At harvest, mulching did not have significant effects on total above-ground dry matter and grain yields, but it increased water use efficiency for grain yield by 18%, grain weight by almost 17% and available moisture in both uncropped and cropped plots by an average of 43 mm.To determine whether there was any residual effects of soil treatment on moisture storage during the summer fallow period, soil moisture was monitored both in cropped plots and uncropped plots, that were either mulched or unmulched during the growing season, from harvest in October 1988 until next planting in June 1989. Available moisture at next planting was correlated with moisture storage at harvest despite the differences in run-off, soil evaporation and fallowing efficiency (increase in moisture storage as a percentage of rainfall) between treatments during fallowing. Therefore, the mulched treatments had more moisture available (30 mm), mostly as a result of less water use during cropping in the previous growing season, than the unmulched treatment.The study shows that mulching may be used to restrain both transpiration and soil evaporation early in the season to increase availability of soil moisture during grain filling. Secondly, mulching during the previous growing season had little effect on soil moisture during the summer fallow period, however, the moisture saved by mulching during cropping was conserved for the following season. These results indicate the importance of evaluating mulching of winter crops in terms of crop yield in the subsequent growing season as well as in the current season in which the soil was treated.Abbreviations D through drainage - DAS days after sowing of the crop on 31 May 1988 - DM dry matter produced in the above-ground portion of the crop (kg ha–1) - E0 evaporation from Class A pan (mm) - Es evaporation from uncropped soil (mm) - Esc evaporation from soil beneath the wheat canopy (mm) - ET evapotranspiration (mm) - FE fallowing efficiency (gain in soil moisture storage/rainfall) - GAI green area index (area of green vegetation per unit land area) - GWUE water-use efficiency for grain production (grain yield/total ET, kg ha–1mm–1) - K extinction coefficient (see equation 1) - RO run-off of moisture from soil surface during/following rainfall (mm) - SM available soil moisture (mm) at harvest (SMh) or at planting (SMp) - WUE water-use efficiency for total above-ground dry matter yield (see GWUE)  相似文献   

16.
Decline in soil fertility accelerated by shorter fallow periods was expected to be a major constraint in slash-and-burn rice production systems in northern Laos. In this paper we describe relationships between fallow period, soil fertility parameters, weeds and rice yield. Soil infertility is not perceived a major yield constraint by the farmers. Of the various soil parameters observed only soil organic matter showed consistent association with rice yield (r=0.42, p<0.01). Fallow period and rice yield showed no association and the relationship between fallow and organic matter was very weak (r=0.16, p<0.01). Rice yield was negatively related to densities of Ageratum conyzoides and Lygodium flexuosum. Soil loss during the cropping period ranged from 300–29.300 kg ha–1. For the same period organic matter, total N, available P and available K content in the top 0–3 cm decreased by 11,12,17, and 17%, respectively, and loss of total N for the soil depth of 0–25 cm was estimated at 400 kg ha–1. Soil physical properties, moisture stress and available N are the most likely detriments to rice yields. Further attempts to relate soil properties to rice yield should include repeated measurements during the cropping season and observations on soil physical properties.The research presented was supported by the Provincial Agriculture Service, Luang Prabang, Laos, and the Swiss Development Cooperation.  相似文献   

17.
In a field experiment using microplots, a flooded Crowley silt loam (Typic Albaqualfs) rice soil was fertilized with 15N labelled (60–74 atom %) urea and KNO3. Emission of N2, N2O and CH4 and accumulation in soil were measured for 21 d after fertilizer application.Emission of 15N2-N measured from the urea and KNO3 treated plots ranged from <15 to 570 and from 330 to 3,420 g ha–1 d–1, respectively. Entrapped 15N2-N in the urea treated microplots was significantly lower (<15 g to 2.1 kg ha–1) on all sampling dates compared to the 15N2-N gas accumulation in the KNO3 treated plots (6.4 to 31.5 kg ha–1). Emissions of N2O-N were low and did not exceed 4 g ha–1 d–1. Fluxes of CH4 from the fertilizer and control plots were low and never exceeded 33 g ha–1 d–1. Maximum accumulation of CH4 in the flooded soil measured 460 and 195 g ha–1 for the urea and KNO3 treatments, respectively.  相似文献   

18.
Summary The effect of cultivation (ploughing followed by rotavation) on the mineralization of soil nitrogen was measured at 2 sites on a silt loam soil. Both sites had a predominantly arable cropping history but one had been under grass for the previous 2 years and the other had carried wheat. Mineralization of N was slightly faster in cultivated soil but the difference was only significant at the site previously under grass. At this site cultivated soil contained 7 kg ha–1 more mineral N than uncultivated soil 2 weeks after treatment, and 9 kg ha–1 after 6 weeks. The corresponding figures for the site that had grown wheat were 4 and 6 kg N ha–1.  相似文献   

19.
Crop performance, nitrogen and water use in flooded and aerobic rice   总被引:11,自引:0,他引:11  
Irrigated aerobic rice is a new system being developed for lowland areas with water shortage and for favorable upland areas with access to supplementary irrigation. It entails the cultivation of nutrient-responsive cultivars in nonsaturated soil with sufficient external inputs to reach yields of 70–80% of high-input flooded rice. To obtain insights into crop performance, water use, and N use of aerobic rice, a field experiment was conducted in the dry seasons of 2002 and 2003 in the Philippines. Cultivar Apo was grown under flooded and aerobic conditions at 0 and at 150 kg fertilizer N ha–1. The aerobic fields were flush irrigated when the soil water potential at 15-cm depth reached –30 kPa. A 15N isotope study was carried out in microplots within the 150-N plots to determine the fate of applied N. The yield under aerobic conditions with 150 kg N ha–1 was 6.3 t ha–1 in 2002 and 4.2 t ha–1 in 2003, and the irrigation water input was 778 mm in 2002 and 826 mm in 2003. Compared with flooded conditions, the yield was 15 and 39% lower, and the irrigation water use 36 and 41% lower in aerobic plots in 2002 and 2003, respectively. N content at 150 kg N ha–1 in leaves and total plant was nearly the same for aerobic and flooded conditions, indicating that crop growth under aerobic conditions was limited by water deficit and not by N deficit. Under aerobic conditions, average fertilizer N recovery was 22% in both the main field and the microplot, whereas under flooded conditions, it was 49% in the main field and 36% in the microplot. Under both flooded and aerobic conditions, the fraction of 15N that was determined in the soil after the growing season was 23%. Since nitrate contents in leachate water were negligible, we hypothesized that the N unaccounted for were gaseous losses. The N unaccounted for was higher under aerobic conditions than under flooded conditions. For aerobic rice, trials are suggested for optimizing dose and timing of N fertilizer. Also further improvements in water regime should be made to reduce crop water stress.  相似文献   

20.
Summary The symbiotic association of the water fernAzolla with the blue-green algaAnabaena azollae can fix 30–60 kg N ha–1 per rice cropping season. The value of this fixed N for rice production, however, is only realized once the N is released from theAzolla biomass and taken up by the rice plants. The availability of N applied asAzolla or as urea was measured in field experiments by two15N methods. In the first,Azolla caroliniana (Willd.) was labelled with15N in nutrient solution and incorporated into the soil at a rate of 144 kg N ha–1. The recovery ofAzolla-N in the above ground parts of rice [Oryza sativa (L) cv. Nucleoryza] was found to be 32% vs. 26% for urea applied at a rate of 100 kg N/ha; there was no significant difference in recovery. In the second, 100 kg N/ha of15N-urea was applied separately or in combination with either 250 or 330 kg N ha–1 of unlabelledAzolla. At the higher rate, the recovery ofAzolla-N was significantly greater than that of urea. There was a significant interaction when both N sources were applied together, which resulted in a greater recovery of N from each source in comparison to that source applied separately. Increasing the combined urea andAzolla application rate from 350 kg N ha–1 to 430 kg N ha–1 increased the N yield but had no effect on the dry matter yield of rice plants. The additional N taken up at the higher level of N application accumulated to a greater extent in the straw compared to the panicles. Since no assumptions need to be made about the contribution of soil N in the method using15N-labelledAzolla, this method is preferable to the15N dilution technique for assessing the availability ofAzolla-N to rice. Pot trials usingAzolla stored at –20°C or following oven-drying showed that both treatments decreased the recovery of N by one third in comparison to freshAzolla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号