首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 606 毫秒
1.
Summary Pre-cloacal glands occur in some species of amphisbaenians. Although these glands are important in systematics, their biology and chemistry are little known. The pre-cloacal glands of Amphisbaena alba are of the holocrine type. They are made up of a glandular body and a duct. The glandular body is conical to elongate and is formed of clongatc lobules separated one from another by collagen septa. Each lobule is composed, at its periphery, of germinative cells, and within of polyhedral secretory cells, of different degrees of differentiation. The germinative cells, set on a basal lamina, are basophilic and their cytoplasm is fairly electron dense. The polyhedral cells display bulky cytoplasm, filled with spherical granules, wrapped in membranes and differing in their electron densities. Towards the lumen of the gland, these granules are increasingly eosinophilic and have an affinity for orange G. The secretion is discharged into the duct leading to the pore, which is situated in the central region of the scale. This secretion shows positive histochemical results for mucopolysaccharides and proteins. The similarity between the epidermal glands of lizards and those of A. alba raises the suggestion that the glands have equivalent functions, possibly in the course of intra- or interspecific communication.  相似文献   

2.
Many lizards have epidermal glands in the cloacal or femoral region with semiochemical function related to sexual behavior and/or territorial demarcation. Externally, these glands are recognized as a row of pores, opening individually in the center of a modified scale. In many species the pores are used as systematic characters. They form a glandular cord or, in some species, a row of glandular beads below the dermis, and are connected to the exterior through the ducts, which continuously liberate a solid secretion. Dead cells, desquamated from the secretory epithelium, constitute the secretion, known as "a secretion plug." The present work focuses on the morphology of the femoral glands of the teiid lizard Ameiva ameiva, correlating it to the way in which the secretion is deposited in the environment. The results here obtained are compared to those available for other lizards and amphisbaenians. We observed that the diameter of the glandular pores did not show significant differences between males and females. The glands comprise germinative and secretory cells, which pass through at least three stages of differentiation, during which an accumulation of cytoplasmic granules, with a glycoprotein content, occurs. The cells eventually die and desquamate from the secretory epithelium, forming a secretory plug mostly constituted by juxtaposed nonfragmented secretory cells. Because of the arrangement of the rosette-like scales surrounding the femoral pores, we suggest that when the animal is in a resting position, with its femoral regions touching the ground, these scales may be involved in the breakage of their respective plugs, depositing tiny portions on the substrate. In this manner, it seems that the method for signal dispersion in this species involves specifically adapted structures and does not simply involve the chance breakage of the plug, as the gland secretes it. Signal dispersion must also be intimately associated with the animal's movement within its territory.  相似文献   

3.
The cranial glands of ten species of turtles were studied by the use of histochemistry applied to serial sections of whole heads. The majority were stenohaline species, but one brackish water form, Malaclemys, was included. The results show that all species have two major orbital glands, an anterior Harderian gland, and a posterior lachrymal gland. The latter is seromucous in all species except Malaclemys terrapin in which the gland shows little evidence or organic secretion. External and medial nasal glands are found in all species studied, and also are seromucous glands. With these reslts, combined with a review of the literature the following conclusions are made. The Harderian gland is by definition the orbital gland opening through the medial surface of the nictitating membrane at or near the anterior canthus. It is of constant occurrence, and histological appearance, probably serving the same function. However, despite much recent study this function remains unknown. The lachrymal gland is defined as the orbital gland which opens through the lateral surface of the nictitating membrane, or medial surface of the lower eyelid, at or near the posterior canthus. It is of variable occurrence, absent in many reptiles, and has a histological structure which is also variable. In the stenohaline species it is apparently involved in organic secretion, while in the brackish water Malaclemys it may be involved in salt secretion, as it is in Cheloniidae. The nasal glands in turtles are probably homologous with the nasal salt glands of lizards and birds, but they do not appear to subserve the same function. In all species of turtles studied the nasal glands are seromucous. They are perhaps involved in the maintenance of the epithelium of the olfactory cavity.  相似文献   

4.
We investigated inter‐ and intraspecific variation in epidermal gland characteristics in cordylid lizards. Our particular interest was whether a causal relationship exists between the presence of generation glands and lifestyle, i.e. in rock‐dwelling or ground‐dwelling lizards. We established that both femoral and generation glands are always present in adult males, but that species can be divided into three categories on the basis of the presence of these glands in adult females: both femoral and generation glands absent; femoral glands present, but generation glands absent; and both femoral and generation glands present. The absence of epidermal glands in females appears to be the basal condition in the Cordylidae. All cordylid species are sexually dimorphic as far as generation gland number is concerned, with females having consistently less glands than males. Gland number in females is strongly affected by climate, being lower in cooler compared with warmer environments. In males, there is no clear geographical pattern, although in some clades males of high‐altitude species have more generation glands than males of species occurring at lower altitudes. At least four of the five ground‐dwelling species in the family display unique generation gland characteristics, compared with rock‐dwelling species, reflecting the continued importance of generation glands in terrestrial environments. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 158 , 312–324.  相似文献   

5.
The exocrine glandular system of the nymphs and the adults of Dysdercus cingulatus were studied. The D. cingulatus nymphs present 3 dorso-abdominal glands (lying under the 3rd, 4th, and 5th abdominal terga) and a pair of dorso-lateral pygidial glands on the pygidium (tergum 8). Histological and ultrastructural studies show that the upper and lower walls of the dorso-abdominal glands differ in structure; 3 types of cells were described: epidermal cells, unicellular secretory cells, and multicellular secretory units. Each of these exocrine glands plays an important part in the behavior of the nymphs (gregariousness, alarm, defense). The morphology of the various glands is discussed, and the chemistry of their secretions and their biological functions are considered.  相似文献   

6.
In this study, the development of integument and cutaneous glands in the toad Rhinella granulosa (Bufonidae) at different larval stages and in postmetamorphic and adult forms was examined. The analyses were conducted using histological, ultrastructural and morphometric methods. The results showed that cellular aggregations of precursor epidermal glands start to appear in stage 31 of (Herpetologica, 16, 1960 and 183) and then proliferate and invade the dermis. After stage 41, granular and mucous glands are very similar to those found in adults. The granular glands are syncytial and are surrounded by a distinct layer of myoepithelial cells. In the region of parotoid macroglands, the granular glands accumulate and their alveoli progressively increase until they reach adult size. An analysis by scanning electron microscopy showed the inner distribution of the syncytial nuclei and the myoepithelial cells. The morphological changes observed in the integument of tadpoles are associated with the gradual adaptation to terrestrial environments by preparing the individual for future chemical defence against predators and micro‐organisms.  相似文献   

7.
Leaf glands of Diplopterys pubipetala were studied with light and electron microscopy. Aspects of their secretion, visitors and phenology were also recorded. Glands occur along the margin, at the apex and at the base of the leaf blade. All the glands begin secretion when the leaf is still very young, and secretion continues during leaf expansion. The highest proportion of young leaves coincides with the beginning of flowering. The glucose‐rich secretion is collected by Camponotus ants, which patrol the newly formed vegetative and reproductive branches. All the glands are sessile, partially set into the mesophyll, and present uniseriate epidermis subtended by nonvascularised parenchyma. The glands at the apex and base are larger and also consist of vascularised subjacent parenchyma. The cytoplasm of epidermal and parenchyma cells has abundant mitochondria, polymorphic plastids filled with oil droplets and a few starch grains. Golgi bodies and endoplasmic reticulum are more abundant in the epidermal cells. The parenchyma cells of the subjacent region contain chloroplasts and large vacuoles. Plasmodesmata connect all the nectary cells. The zinc iodide–osmium tetroxide (ZIO) method revealed differences in the population of organelles between epidermal cells, as well as between epidermal cells and parenchyma cells. Ultrastructural results indicate that leaf glands of Dpubipetala can be classified as mixed secretory glands. However, the secretion released by these glands is basically hydrophilic and composed primarily of sugars, hence these glands function as nectaries.  相似文献   

8.
Summary Alterations in the ultrastructure of in vitro cultured larval salivary glands of Drosophila melanogaster in response to the steroid hormone ecdysone were studied in relation to complex changes in puffing patterns. We found that the changes in the fine structure of cultured glands reflected progression of the puffing pattern, and they paralleled those seen in vivo. We observed that glue secretion by exocytosis, the main function of salivary glands, took place between puff stage 5 (PS5) and PS7. Glue could not be expectorated under culture conditions but was slowly released from the lumen through a duct into the medium. After the cultured glands reached PS13/PS14, further progress of puffing and fine structural alterations required that the ecdysteroid titer be transiently extremely low or absent. Under in vitro conditions we did not observe the putative new secretory program(s) described for glands in vivo after PS12. However, ultrastructural changes which unambiguously indicated that an autohistolytic process had begun in vitro started to appear after PS17. Many salivary gland cells developed numerous features of progressive self-degradation between PS18 and PS21. Actual degradation of salivary glands in vivo seemed to be rapid, but in vitro degradation was never completed, probably due to a lack of exogenous factors from the hemolymph. Manipulations of ecdysone titer in vitro in the culture medium, known during the larval puffing cycle to cause premature induction of developmentally specific puffing patterns, did not affect the normal development of ultrastructural features of the cytoplasm and nucleus.  相似文献   

9.
On the systematic position of the amphisbaenians The hemipenis of amphisbaenians has scincomorph characteristics, e. g. plicae and microscopic spiny epithelium. In plesiomorph forms (Bipes, Blanus) the apex is simple, in apomorph forms (Trogonophis) it is forked. The genus Amphisbaena has a variable hemipenis morphology. The species from the Antilles are clearly differentiated from those of the continent, the latter resemble Leposternon more than their Caribbean congeners. The resemblance between hisbaenians and scincomorph lizards, especiall teiids, in mode of development of the orbitosplenoid (Bacbia: Bellairs and Gans 1983) and in the mode of lung reduction (Bacbia: hoc loco) is congruent with resemblance in hemipenis characters. These resemblances are considered to be synapomorphic, not convergent.  相似文献   

10.
The anatomy of the femoral glands in an iguanid lizard, Crotaphytus collaris collaris (Say), is described. The 48 lizards (including three embryos) from which glands were examined were obtained throughout their season of activity at one locality in Kansas. In animals of both sexes the glands lie in a linear series on the ventral aspect of each thigh. They are composed of branching tubes and tubules of epidermal and dermal origin. The row of femoral pores is the only external manifestation of the glands. Post hatching, the glands of males increase in size and complexity; little onto-genetic change occurs in the glands of females. The relative length of the glands appears to vary seasonally in adult males suggesting variation in their activity. The greatest relative sizes occur in the breeding season. At times a stratum corneum, continuous with the stratum corneum of the skin, occurs in the duct of the gland internal to part of the secretion plug. Formation of the stratum corneum seems to be initiated in the autumn prior to hibernation, and the stratum corneum removes the outer part of the secretion plug in the next ecdysis; meanwhile, production of a new secretion plug is initiated. The anatomy of the femoral glands in Crotaphytus is similar to that of the described glands of other species of lizards.  相似文献   

11.
Generation glands are holocrine epidermal glands occurring on the ventral aspect of the thigh of cordylid lizards. In most species these glands seemingly start to differentiate with the onset of sexual maturity, but macroscopic signs of generation gland activity were noted in neonates of the large-scaled girdled lizard, Cordylus macropholis. The glands of neonatal, subadult, and adult individuals were examined microscopically using standard histological techniques. The glands of the five neonatal specimens examined, including both males and females, all had the same basic structure and displayed two layers of mature glandular material. In subadult and adult specimens, the number of layers varied from seven to nine. The structure of the generation glands of C. macropholis is similar to that of the few other Cordylus species that have been described to date. They are of the protruding kind with multiple mature glandular generations. Juveniles of an additional 12 cordylid species have been examined for the presence of active generation glands. Active glands were found to be present in neonates of C. tasmani and C. tropidosternum, both of which are, like C. macropholis, terrestrial species. In C. cordylus and C. coeruleopunctatus, active generation glands are absent in neonates, but differentiate soon after birth. In other cordylid species, generation glands apparently differentiate only with the onset of sexual maturity. J. Morphol. 235:177–182, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
Squamate reptiles (lizards, snakes, amphisbaenians) number approximately 8200 living species and are a major component of the world's terrestrial vertebrate diversity. Recent molecular phylogenies based on protein-coding nuclear genes have challenged the classical, morphology-based concept of squamate relationships, requiring new classifications, and drawing new evolutionary and biogeographic hypotheses. Even the key and long-held concept of a dichotomy between iguanians (~1470 sp.) and scleroglossans (all other squamates) has been refuted because molecular trees place iguanians in a highly nested position. Together with snakes and anguimorphs, iguanians form a clade – Toxicofera – characterized by the presence of toxin secreting oral glands and demonstrating a single early origin of venom in squamates. Consequently, neither the varanid lizards nor burrowing lineages such as amphisbaenians or dibamid lizards are the closest relative of snakes. The squamate timetree shows that most major groups diversified in the Jurassic and Cretaceous, 200–66 million years (Myr) ago. In contrast, five of the six families of amphisbaenians arose during the early Cenozoic, ~60–40 Myr ago, and oceanic dispersal on floating islands apparently played a significant role in their distribution on both sides of the Atlantic Ocean. Among snakes, molecular data support the basic division between the small fossorial scolecophidians (~370 sp.) and the alethinophidians (all other snakes, ~2700 sp.). They show that the alethinophidians were primitively macrostomatan and that this condition was secondarily lost by burrowing lineages. The diversification of alethinophidians resulted from a mid-Cretaceous vicariant event, the separation of South America from Africa, giving rise to Amerophidia (aniliids and tropidophiids) and Afrophidia (all other alethinophidians). Finally, molecular phylogenies have made it possible to draw a detailed evolutionary history of venom among advanced snakes (Caenophidia), a key functional innovation underlying their radiation (~2500 sp.). To cite this article: N. Vidal, S.B. Hedges, C. R. Biologies 332 (2009).  相似文献   

13.
The wasps of the genus Polistes have been considered the key to understanding the evolution of social behavior in Hymenoptera. Several studies have shown that the development of organized insect societies was accompanied by the evolution of structures like exocrine glands, which became specialized to perform specific functions. This article investigates the ultrastructural and cytochemical features of the hypopharyngeal glands of Polistes versicolor. These glands have been studied in depth in social bees, where they occur only in nurses and produce the royal jelly. Our results revealed that these glands basically did not vary among individuals or between sexes. They are constituted by spherical cells, each with a large nucleus and well‐developed rough endoplasmic reticulum. Secretion vesicles are abundant, but lipid droplets were not observed, indicating that these glands may not have a role in pheromone synthesis. Acid phosphatase was detected in lysosomes, and also free in the cytosol, but did not seem to be related with cell death. Thus, our results suggest that the hypopharyngeal glands of P. versicolor may not have a specialized social role, but could produce digestive enzymes.  相似文献   

14.
Summary Salivary glands (parotid, submandibular and sublingual glands) of nine mammalian species were investigated with respect to presence and localization of argyrophil and argentaffin cells. With the exception of the parotid gland of the rat, no positive staining was observed within the examined glands. In the rat parotid distinctly argyrophil cells could be demonstrated in the intercalated ducts. Histochemical studies of the cells, ultrastructural analysis of their cytoplasmic granules as well as their reactions to certain drugs indicate that these cells are of exocrine rather than of endocrine nature. After a subcutaneous injection of pilocarpine, the intensity of the argyrophil staining was markedly reduced. No specific catecholamine fluorescence could be detected within the cells, not even after pretreatment of the animals with high doses of L-DOPA. The membrane-bounded cytoplasmic granules of the intercalated duct cells furthermore displayed a strong positive staining reaction after treatment of ultrathin Vestopal sections with the periodic acid-chromic acid-silver technique of Rambourg et al. (1969).Supported by grants from the Swedish Medical Research Council (Project No. 12X-718), and the Medical Faculty of the University of Umeå. The skilful technical assistance of Miss Siw Domeij is gratefully acknowledged  相似文献   

15.
Purba Pal 《Acta zoologica》2007,88(2):145-152
Within the clade Euthyneura the marine basommatophorans are particularly neglected. More morphological and molecular studies are needed because their phylogenetic relationships with other pulmonates remain unresolved. The present study examines the most conspicuous reproductive gland, the glandular complex in two marine limpets, Siphonaria capensis and S. serrata (Pulmonata: Basommatophora) at both gross and fine structural levels. These two sympatric species with different developmental modes were selected to compare the structure and function of this enormous glandular structure. In both S. capensis and S. serrata, the glandular complex shows an undifferentiated state composed of an acidophilic albumen gland and a basophilic mucous gland. The glands contain secretory cells and supporting cells (= ciliated cells) that are highly ciliated. When the histochemical properties of the glandular complex were compared with those of siphonariid egg masses (of each species) it could be established that the albumen gland was responsible for the production of perivitelline fluid whereas the mucous gland secreted substances that help in the assembly of mucous layers surrounding the egg capsules. We suggest that the presence of a single glandular complex comprised of two glands is the most primitive organization of reproductive glands in pulmonates. Furthermore, the histology, fine structure and histochemistry of these glands are very similar to those of the reproductive glands of opisthobranchs.  相似文献   

16.
Ma  Na  Zhang  Yu-Xin  Yue  Chao 《Protoplasma》2021,258(1):59-69

The salivary glands of Panorpidae usually exhibit distinct sexual dimorphism and are closely related to the nuptial feeding behavior. In this study, the salivary glands of Neopanorpa longiprocessa were investigated using light microscopy and transmission electron microscopy. The salivary glands are tubular labial glands and consist of a scoop-shaped salivary pump, a common salivary duct, and a pair of salivary tubes. The male and female salivary glands are remarkably different in the bifurcation position of the common salivary duct and the length and shape of the secretory tubes. Compared with the simple female salivary glands, the male’s are more developed as their paired elongated salivary tubes can be divided into two parts, the glabrate anterior tube and the posterior tube with many secretory tubules. The ultrastructural study shows that the male salivary tubes have strong secretory function. The existence of different secretion granules indicates that there are some chemical reactions or mixing occurring in the lumen. Based on the ultrastructural characteristics, the functions of the different regions of the salivary tube have been speculated. The relationship between the salivary glands and nuptial feeding behavior of N. longiprocessa has been briefly discussed based on the structure of the salivary glands.

  相似文献   

17.
In at least four closely related families of the diverse harvestmen lineage Gonyleptoidea, males may possess sexually dimorphic tarsal glands in the swollen tarsomeres of the basitarsus and/or metatarsus of leg I. The first histological and ultrastructural examination of the sexually dimorphic tarsal glands in leg I focused only on Manaosbiidae. In this study, we examine the morphology and ultrastructure of the sexually dimorphic glands, and their associated glandular openings, found in the basitarsus and/or metatarsus of leg I of males representing Cosmetidae, Gonyleptidae, and Cranaidae (glandular openings only). In cosmetids and gonyleptids, the tarsal glands are made up of 20–60 glandular units that form distinct groups within the prolateral and retrolateral half of the tarsomere. Each glandular unit consists of a pair of terminal secretory cells, an intercalary cell wrapped around the receiving canal, and a canal cell tightly wrapped around the length of the conducting canal. Cosmetidae, Gonyleptidae, and Cranaidae exhibit remarkably similar tarsal glands and gland openings although the location of the glands in the leg differs slightly among them. Males of these three families exhibit markedly different glands and glandular openings compared to males of the family Manaosbiidae. The sexually dimorphic tarsal glands may provide an important morphological character for determining phylogenetic relationships among gonyleptoid families. Finally, we provide morphological and ultrastructural data for the common tegumental glands. These data indicate that the sexually dimorphic tarsal glands are strikingly similar to, and may possibly be derived from, the tegumental glands. J. Morphol. 274:1203–1215, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
Guillaume, O. 2000. The ventral skin glands, new additional cloacal glands in Proteus anguinus (Caudata, Proteidae). II. Male. —Acta Zoologica (Stockholm) 81 : 223–234 Cloacae from male Proteus anguinus were examined for the first time by light and electron microscopy. Male P. anguinus possess anterior and posterior ventral glands, dorsal and lateral pelvic glands, vent glands and Kingsbury’s glands as do Necturus males. However, male P. anguinus also possess the new additional cloacal glands found in females and which the author has called the ventral skin glands. Furthermore, the number, the length and the diameter of these tubular glands are higher in males. Therefore the inference is that these glands are sexually dimorphic glands.  相似文献   

19.
Using stereological procedures, a detailed analysis was made from thin section electron micrographs of secreting and nonsecreting salt glands of Frankenia grandifolia (Cham. and Schlecht) and Avicennia germinans (L.) Stem. In F. grandifolia secretory cells, vacuolar volume significantly decreased, while the volume of endoplasmic reticulum increased in secreting glands. Numerous minivacuoles were predominantly located along the periphery of secreting secretory cells, some in apparent fusion with the plasma membrane. No difference was found in mitochondrial volume in the secretory cells between secreting and nonsecreting glands. In A. germinans, there was a significant decrease in vacuolar volume in secreting secretory cells. The volume of the endoplasmic reticulum and mitochondria also increased in these cells. However, no evidence of mini-vacuolar fusion with the plasma membrane was observed. These results indicate that the physical process of secretion may differ between F. grandifolia and A. germinans; in both, however, the ultrastructural observations support the contention that specific structural parameters are correlated with the process of secretion.  相似文献   

20.
Endocrine cells were investigated in human Bartholin's glands by use of histochemical, immunohistochemical and ultrastructural methods. Endocrine cells represent normal constituents of these glands, being mainly distributed throughout the transitional epithelium of the major excretory duct; however, single elements are dispersed among the acinar lobules. Serotonin-, calcitonin-, katacalcin-, bombesin- and alpha-hCG-immunoreactive cells were recognized, with serotonin-immunoreactive cells predominating. Co-expression of calcitonin, katacalcin or alpha-hCG with serotonin was observed in single endocrine cells. At the ultrastructural level, these cells are richly granulated and show typical neuroendocrine features. Bartholin's glands display an endocrine profile quite similar to that of other cloacal-derived tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号