首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whether plants respond to cues produced by neighbors has been a topic of much debate. Recent evidence suggests that wild tobacco plants transplanted near experimentally clipped sagebrush neighbors suffer less leaf herbivory than tobacco controls with unclipped neighbors. Here we expand these results by showing evidence for induced resistance in naturally rooted tobacco when sagebrush neighbors are clipped either with scissors or damaged with actual herbivores. Tobacco plants with sagebrush neighbors clipped in both ways had enhanced activity levels of polyphenol oxidase (PPO), a chemical marker of induced resistance in many solanaceous plants. Eavesdropping was found for plants that were naturally rooted, although only when sagebrush and tobacco grew within 10 cm of each other. Although tobacco with clipped neighbors experienced reduced herbivory, tobacco that grew close to sagebrush had lower production of capsules than plants that grew far from sagebrush. When neighboring tobacco rather than sagebrush was clipped, neither levels of PPO nor levels of leaf damage to tobacco were affected. Eavesdropping on neighboring sagebrush, but not neighboring tobacco, may result from plants using a jasmonate signaling system. These results indicate that plants eavesdrop in nature and that this behavior can increase resistance to herbivory although it does not necessarily increase plant fitness.  相似文献   

2.
Previous experiments showed that wild tobacco plants with experimentally clipped sagebrush neighbors experienced less damage by grasshoppers than tobacco plants with unclipped sagebrush neighbors. This result could have been caused by grasshoppers preferring not to feed near clipped sagebrush. This hypothesis was tested in field choice experiments using six grasshopper species feeding on an unresponsive and uniformly palatable food. When offered food that was either close to clipped sagebrush or close to unclipped sagebrush, grasshoppers showed no preference. When offered food that was either close to sagebrush (3 cm) or far from sagebrush (30 cm), grasshoppers preferred to feed far from sagebrush. However, this preference was similar whether or not the sagebrush had been clipped. Avoidance of feeding near clipped sagebrush, independent of changes in tobacco, was not found to contribute to our earlier result that tobacco near clipped sagebrush suffered less herbivory than tobacco near unclipped sagebrush.  相似文献   

3.
The possibility of communication between plants was proposed nearly 20 years ago, although previous demonstrations have suffered from methodological problems and have not been widely accepted. Here we report the first rigorous, experimental evidence demonstrating that undamaged plants respond to cues released by neighbors to induce higher levels of resistance against herbivores in nature. Sagebrush plants that were clipped in the field released a pulse of an epimer of methyl jasmonate that has been shown to be a volatile signal capable of inducing resistance in wild tobacco. Wild tobacco plants with clipped sagebrush neighbors had increased levels of the putative defensive oxidative enzyme, polyphenol oxidase, relative to control tobacco plants with unclipped sagebrush neighbors. Tobacco plants near clipped sagebrush experienced greatly reduced levels of leaf damage by grasshoppers and cutworms during three field seasons compared to unclipped controls. This result was not caused by an altered light regime experienced by tobacco near clipped neighbors. Barriers to soil contact between tobacco and sagebrush did not reduce the difference in leaf damage although barriers that blocked air contact negated the effect. Received: 15 February 2000 / Accepted: 1 April 2000  相似文献   

4.
Seasonal changes in herbivore numbers and in plant defenses are well known to influence plant–herbivore interactions. Some plant defenses are induced in response to herbivore attack or cues correlated with risk of attack although seasonal variation in these defenses is relatively poorly known. We previously reported that sagebrush becomes more resistant to its herbivores when neighboring plants have been experimentally clipped with scissors. In this study we asked whether herbivory to leaves of sagebrush varied seasonally and whether there was seasonal variation in natural levels of damage when neighbors were clipped. We found that sagebrush accumulated most chewing damage early in the season, soon after the spring flush of new leaves. This damage was caused by generalist grasshoppers, deer, specialist caterpillars, beetles, gall makers, and other less common herbivores. Sagebrush showed no evidence of preferentially abscising leaves that had been experimentally clipped. Experimental clipping by Trirhabda pilosa beetle larvae caused neighbors to accumulate less herbivore damage later that season, similar to results in which clipping was done with scissors. Induced resistance caused by experimentally clipping a neighbor was affected by season; plants with neighbors clipped in May accumulated less damage throughout the season relative to plants with unclipped neighbors or neighbors clipped later in the summer. We found a correlation between seasonal herbivore pressure, damage accumulated by plants, and induced responses to experimentally clipping neighbors. The causal mechanisms responsible for this correlation are unknown although a strong seasonal effect was clear.  相似文献   

5.
Volatile communication allows plants to coordinate systemic induced resistance against herbivores. The mechanisms responsible and nature of the cues remain poorly understood. It is unknown how plants distinguish between reliable cues and misinformation. Previous experiments in which clipped sagebrush branches were bagged suggested that cues are emitted or remain active for up to 3 days. We conducted experiments using plastic bags to block emission of cues at various times following experimental clipping. We also collected headspace volatiles from clipped and unclipped branches for 1 h, transferred those volatiles to assay branches, and incubated the assays for either 1 or 6 h. We found that assay branches that received volatile cues for less than 1 h following clipping of neighbors failed to induce resistance. Assay branches that received volatile cues for more than 1 h experienced reduced herbivory throughout the season. Branches incubated for 6 h with volatiles that had been collected during the first hour following clipping showed induced resistance. These results indicate that sagebrush must receive cues for an extended time (>1 h) before responding; they suggest that the duration of cue reception is an important and overlooked process in communication allowing plants to avoid unreliable, ephemeral cues.  相似文献   

6.
7.
Many examples of associational resistance have been reported, in which a plant’s neighbors reduce the rate of damage by herbivores that it experiences. Despite 30 years of interest and hundreds of examples of associational resistance, we still know very little about how plants avoid their herbivores. This lack of mechanistic understanding prevents us from predicting when or where associational resistance will be important or might affect species’ distributions. I demonstrate here that the plant neighborhoods that surrounded focal mule’s ears (Wyethia mollis) individuals affected the damage they received. In particular, distance between a focal mule’s ears individual and its nearest sagebrush neighbor (Artemisia tridentata) was a good predictor of how much leaf area the mule’s ears would lose to herbivores over 2 years. Mule’s ears close to sagebrush suffered less loss than those with more distant nearest sagebrush neighbors. Mule’s ears with near sagebrush neighbors suffered half the leaf loss as mule’s ears with sagebrush experimentally removed. This associational resistance was probably not caused by sagebrush attracting or increasing populations of predators of generalist herbivores. Sagebrush is known to emit chemicals that are feeding deterrents to generalist grasshoppers and these deterrents were probably involved here. Volatile chemicals emitted by damaged sagebrush have been found to induce resistance in neighboring plants of several species. However, I found no evidence for such eavesdropping here as mule’s ears gained associational resistance from sagebrush neighbors whether or not those sagebrush neighbors had been experimentally damaged. Understanding the mechanisms responsible for associational resistance is critical to predicting where and when it will be important.  相似文献   

8.
Damage to sagebrush attracts predators but this does not reduce herbivory   总被引:2,自引:0,他引:2  
Emissions of volatiles increase following herbivory from many plant species and volatiles may serve multiple functions. Herbivore‐induced volatiles attract predators and parasitoids of herbivores and are often assumed to benefit plants by facilitating top‐down control of herbivores; this benefit of induced emissions has been tested only a few times. Volatile compounds released by experimentally clipped sagebrush shoots have been shown to reduce levels of chewing damage experienced by other shoots on the same plant and on neighboring sagebrush plants. In this study, I asked whether experimental clipping attracted predators of herbivorous insects to sagebrush shoots. I also evaluated aphid populations and chewing damage on clipped and unclipped shoots and whether predators were likely to have caused differences in aphids and chewing damage. Shoots that had been clipped recruited more generalist predators, particularly coccinellids and Geocoris spp. in visual surveys conducted during two seasons. Clipping also caused increased numbers of parasitized aphids in one season. Ants were common tending aphids but were not significantly affected by clipping. Despite the increase in generalist predators, clipped plants were more likely to support populations of aphids that increased during both seasons compared to aphids on unclipped control plants. Clipped shoots suffered less damage by chewing herbivores in the 1‐year in which this was measured. Chewing damage was not correlated with numbers of predators. These results suggest that predators and parasitoids were attracted to experimentally clipped sagebrush plants but that these predators were not effective at reducing net damage to the plant. This conclusion is not surprising as much of the herbivory is inflicted by grasshoppers and deer, herbivores that are not vulnerable to the predators attracted to sagebrush volatiles. More generally, it should not be assumed that predators that are attracted by herbivore‐induced volatiles necessarily benefit the plant without testing this hypothesis under field conditions.  相似文献   

9.
Plants can respond to insect herbivory in various ways to avoid reductions in fitness. However, the effect of herbivory on plant performance can vary depending on the seasonal timing of herbivory. We investigated the effects of the seasonal timing of herbivory on the performance of sagebrush (Artemisia tridentata). Sagebrush is known to induce systemic resistance by receiving volatiles emitted from clipped leaves of the same or neighboring plants, which is called volatile communication. Resistance to leaf herbivory is known to be induced most effectively after volatile communication in spring. We experimentally clipped 25 % of leaves of sagebrush in May when leaves were expanding, or in July when inflorescences were forming. We measured the growth and flower production of clipped plants and neighboring plants which were exposed to volatiles emitted from clipped plants. The treatment conducted in spring reduced the growth of clipped plants. This suggests that early season leaf herbivory is detrimental because it reduces the opportunities for resource acquisition after herbivory, resulting in strong induction of resistance in leaves. On the other hand, the late season treatment increased flower production in plants exposed to volatiles, which was caused mainly by the increase in the number of inflorescences. Because the late season treatment occurred when sagebrush produces inflorescences, sagebrush may respond to late herbivory by increasing compensation ability and/or resistance in inflorescences rather than in leaves. Our results suggest that sagebrush can change responses to herbivory and subsequent volatile communication seasonally and that the seasonal variation in responses may reduce the cost of induced resistance.  相似文献   

10.
Shiojiri K  Karban R 《Oecologia》2006,149(2):214-220
Plants progress through a series of distinct stages during development, although the role of plant ontogeny in their defenses against herbivores is poorly understood. Recent work indicates that many plants activate systemic induced resistance after herbivore attack, although the relationship between resistance and ontogeny has not been a focus of this work. In addition, for sagebrush and a few other species, individuals near neighbors that experience simulated herbivory become more resistant to subsequent attack. Volatile, airborne cues are required for both systemic induced resistance among branches and for communication among individuals. We conducted experiments in stands of sagebrush of mixed ages to determine effects of plant age on volatile signaling between branches and individuals. Young and old control plants did not differ in levels of chewing damage that they experienced. Systemic induced resistance among branches was only observed for young plants. Young plants showed strong evidence of systemic resistance only if airflow was permitted among branches; plants with only vascular connections showed no systemic resistance. We also found evidence for volatile communication between individuals. For airborne communication, young plants were more effective emitters of cues as well as more responsive receivers of volatile cues.  相似文献   

11.
Interplant communication in nature is beginning to look like a reality with the field demonstration that tobacco plants downwind of damaged sagebrush suffer less herbivory, a response that appears to be mediated by an airborne signal. Sagebrush constitutively releases methyl jasmonate (MeJA), a compound that is highly active in inducing a number of physiological responses in plants. Damage increases the absolute quantity of the MeJA released as well as the proportion of MeJA in the isomeric cis form. Several studies have shown that volatile MeJA, when released in sufficient quantities, can simulate responses elicited by direct MeJA applications. Additionally, the thermodynamically unstable cis isomer, which is responsible for the characteristic jasmine odor, is thought to be the biologically active form of MeJA. To examine the hypothesis that the cis-MeJA release is responsible for the apparent inter-plant communication, we developed methods to: (1) entrain sagebrush constituents in water which preserved the isomeric shift in the MeJA released after damage; (2) chemically manipulate the MeJA trans : cis ratio; and (3) isolate nearly pure cis-MeJA by HPLC. These treatments were applied as aqueous sprays to a natural population of tobacco plants, however, an outbreak of specialist herbivores consumed all treated plants and chemical analysis on previously harvested treated leaf material was inconclusive. The hypothesis is currently being carefully investigated with laboratory experiments.  相似文献   

12.
The ability to distinguish self from nonself allows organisms to protect themselves against attackers. Sagebrush plants use volatile cues emitted by clipped neighbors to adjust their defenses against herbivores. Recently, we reported that cues from genetically identical ‘self’ clones were more effective at reducing damage than were cues from ‘nonself’ clones. This indicates that plants can distinguish self from non-self through volatiles and respond differentially. Identity recognition may be an essential step in enabling plants to behave cooperatively. Emission of cues which enable other plant tissues (on the same or other individual) to respond appropriately to herbivore risk may have evolved if cues are aimed primarily at self tissue.Key words: communication, eavesdropping, herbivory, kin recognition, self/nonself, volatilesThe ability to recognize self from nonself is a fundamental property of individuals of all multicellular organisms. Distinguishing between molecules that are part of one''s own tissues and those of an invader provides a first step towards the evolution of a functioning immune system. An immune system responds differently towards self and nonself tissues, destroying the later. In addition to immune responses, many other sophisticated behaviors have been described for animals that differentiate self from non-self and even kin from strangers.1 For example, social behaviors including altruism can be favored by natural selection when animals are able to first distinguish kin from non-kin and respond differently to individuals in these two categories.2 Although plant behavior is far less well studied, plants too display many sophisticated and context-dependent behaviors.3Plant biologists have described various situations in which plants exhibit different behaviors based on identity. It has been known for some years that many angiosperms choose mates based on genetic identity.4 Numerous mechanisms have been described, primarily involving differential germination of pollen, growth of pollen tubes through stigmatic tissue, and production of competent zygotes. More recently, several workers have found that plants may differentiate self from non-self and alter their morphologies in response to cues from these two types of sources. Plants appeared to recognize their own roots and to grow fewer and shorter roots when they contacted self roots compared to non-self roots (reviewed in references 57). A common feature of these experimental studies is that roots only showed self-recognition when they were physically attached. These experimental studies may be subject to alternate explanations.8,9Recently we reported that sagebrush plants induced resistance more effectively against their herbivores in response to the volatile cues emitted by self clones compared to the cues of non-self clones.10 We had previously found that experimental clipping to branches caused systemic induced resistance within an individual against herbivores only when volatile cues were transmitted.11 To evaluate self/non-self discrimination we first produced clones of 60 parent plants in the field by root crown division. These potted clones were propagated and then placed back in the field near either their genetically identical parent (self treatment) or a genetically different parent (nonself treatment). The potted clones were experimentally clipped in spring for both treatments and the damage that accumulated over the growing season was recorded for parents near self and non-self clones. We found that plants near clipped self clones received approximately 42% less damage by their herbivores than plants near clipped non-self clones (Fig. 1, One-way ANOVA, F1,58 = 8.72, p = 0.005).Open in a separate windowFigure 1The mean number of leaves that were damaged by herbivores (grasshoppers, caterpillars and deer) on assay branches of sagebrush (±1 se). Cuttings were either genetically identical (self) or different (non-self) from the assay branch; assay branches were within 5 cm of potted cuttings but not in physical contact. Cuttings were experimentally clipped to simulate herbivory in May and herbivore damage accumulated on the assay branches until season''s end in September when damage was assayed.This result is novel in several ways. Past results showing self/nonself recognition between roots required that they be in physical contact for discrimination to occur; physical contact was not required in this case. In addition, this is the first identity study to measure responses in terms of damage by herbivores rather than plant morphology or reproduction. This result is more robust than the changes in root morphology because changes attributed to self or non-self volatiles cannot be explained by alternative hypotheses involving potentially confounding differences in resource availability or pot size.8,9 The ability of plants to differentiate self from non-self is important because it may enable differential treatment towards ramets that share genes.Recent work has also suggested that plants may be able to discriminate between kin and strangers. Cakile edentula and Impatiens pallida changed their morphologies depending upon whether their roots contacted kin or strangers.12,13 These altered morphologies were consistent with the notion that kin cooperated and non-kin competed. Examination of self/non-self recognition and kin/stranger recognition patterns in Arabidopsis thaliana indicated that these two forms of identity discrimination were affected differently by inhibitors and therefore suggested that they may involve different signaling mechanisms.14Plants that emit volatile cues that other individuals can use to adjust their defenses (eavesdropping) may be at a selective disadvantage.15 Why should a plant dispense information that allows its neighbors to fine tune their defenses against herbivory? One possible answer to this conundrum may be that plants emit volatile cues to coordinate their own defenses since volatile cues are active over relatively short distances. A second possible answer is that greater sensitivity to self volatiles reduces the cost of eaves-dropping. In designing our sagebrush experiment we cloned plants as a means of producing physically separate pairs of plants that were either genetically identical or different. Early genetic work indicated that populations of sagebrush were highly structured genetically.16 In other words, relatedness decreased as a function of the distance between individuals, also known as population viscosity. Recent genetic analyses of microsatellites indicate that vegetative reproduction by rhizomes also occurs in this species and some neighbors in nature are genetically identical (Ishizaki, et al. in review). Population viscosity has been considered to increase the likelihood of cooperation, in part because neighbors already share genes.2,17 Applying similar logic, communication is facilitated by kin recognition if relatives are better able to communicate than non-kin. Communication may be favored if the tissue emitting cue is surrounded by primarily self tissue or if the exchange of cues is more effective and likely to occur between self tissues. In conclusion, plant communication using volatile cues may have evolved because individual plants were communicating primarily with themselves.  相似文献   

13.
When plants receive volatiles from a damaged plant, the receivers become more resistant to herbivory. This phenomenon has been reported in many plant species and called plant-plant communication. Lab experiments have suggested that several compounds may be functioning as airborne signals. The objective of this study is to identify potential airborne signals used in communication between sagebrush (Artemisia tridentata) individuals in the field. We collected volatiles of one branch from each of 99 sagebrush individual plants. Eighteen different volatiles were detected by GC-MS analysis. Among these, 4 compounds; 1.8-cineol, β-caryophyllene, α-pinene and borneol, were investigated as signals of communication under natural conditions. The branches which received either 1,8-cineol or β-caryophyllene tended to get less damage than controls. These results suggested that 1,8-cineol and β-caryophyllene should be considered further as possible candidates for generalized airborne signals in sagebrush.  相似文献   

14.
Winter browsing by mammalian herbivores is known to induce a variety of morphological and physiological changes in plants. Browsing has been suggested to decrease the carbohydrate reserves in woody plants, which might lead to reduced tannin production in leaves during the following summer, and consequently, to increased herbivore damage on leaves. We conducted a clipping experiment with mature mountain birch trees and measured the effects of clipping on birch growth, leaf chemistry and toughness, as well as on the performance of insect herbivores. Leaves grew larger and heavier per unit area in the clipped ramets and had a higher content of proteins than leaves in the control trees. Clipping treatment did not affect the total content of sugars in the leaves (mg g?1), suggesting that a moderate level of clipping did not significantly reduce the carbohydrate pools of fully‐grown mountain birch trees. Furthermore, the contents of proanthocyanidins (condensed tannins) and gallotannins were slightly higher in the leaves of clipped ramets, contrary to the hypothesis of reduced tannin production. The effects of clipping treatment on leaf and shoot growth and on foliar chemistry were mainly restricted to the clipped ramets, without spreading to untreated ramets within the same tree individual. The effects of clipping on leaf characters varied during the growing season; for instance, leaf toughness in clipped ramets was higher than toughness in control trees and ramets only when leaves were mature. Accordingly, clipping had inconsistent effects on insect herbivores feeding at different times of the growing season. The generally small impact of clipping on herbivore performance suggests that the low intensity of natural browsing at the study area, simulated by our clipping treatment, does not have strong consequences for the population dynamics of insect herbivores on mountain birch via enhanced population growth caused by browsing‐induced changes in food quality.  相似文献   

15.
Insect herbivores can reduce growth, seed production, and population dynamics of host plants, but do not always do so. Big sagebrush (Artemisia tridentata) has one of the largest ranges of any shrub in North America, and is the dominant and characteristic shrub of the extensive sagebrush steppe ecosystem of the western United States. Nevertheless, the impact of insect herbivores on big sagebrush, its dominant and characteristic shrub, is largely unknown. Occasional large effects of insect herbivore outbreaks are documented, but there is little knowledge of the impact of the more typical, nominal herbivory that is produced by the diverse community of insects associated with big sagebrush in natural communities. In 2008, we removed insects from big sagebrush plants with insecticide to evaluate whether insect herbivores reduced growth and seed production of big sagebrush. Removal of herbivores led to significant and substantial increases in inflorescence growth (22%), flower production (325%), and seed production (1053%) of big sagebrush. Our results showed the impact of insect herbivory in the current growing season on the growth and reproduction of big sagebrush and revealed an unrecognized, significant role of non-outbreak herbivores on big sagebrush.  相似文献   

16.
The ability of many animals to recognize kin has allowed them to evolve diverse cooperative behaviours; such ability is less well studied for plants. Many plants, including Artemisia tridentata, have been found to respond to volatile cues emitted by experimentally wounded neighbours to increase levels of resistance to herbivory. We report that this communication was more effective among A. tridentata plants that were more closely related based on microsatellite markers. Plants in the field that received cues from experimentally clipped close relatives experienced less leaf herbivory over the growing season than those that received cues from clipped neighbours that were more distantly related. These results indicate that plants can respond differently to cues from kin, making it less likely that emitters will aid strangers and making it more likely that receivers will respond to cues from relatives. More effective defence adds to a growing list of favourable consequences of kin recognition for plants.  相似文献   

17.
Karban R 《Ecology letters》2007,10(9):791-797
Current views of plant communities emphasize the importance of competition for resources and colonization ability in determining seedling establishment and plant distributions. Many desert shrubs are surrounded by bare zones that lack other plants or have different suites of species beneath them compared with the open desert surrounding them. Releases of biochemicals as volatiles from leaves, leachates from litter, or exudates from roots have been proposed as mechanisms for this pattern, but such phytotoxicity has been controversial. I tested the hypothesis that experimental clipping of sagebrush foliage enhances its effect as a germination inhibitor. Germination of native forbs and grasses was reduced in association with clipped, compared with unclipped, sagebrush foliage in lath house and field experiments. Sagebrush seeds were not significantly affected. Air contact was required for this inhibition of germination. Soil contact and leaf litter were not required and added little inhibition of germination. These results suggest a potentially large, indirect, and previously overlooked role for interactions between herbivory and germination that could affect plant community structure.  相似文献   

18.
Summary We report the results of a pot experiment that examined the effects of three ecologically important factors controlling plant growth rates in savanna grasslands: defoliation, soil nitrogen and soil water availability. The experiment was conducted in the Amboseli region in east Africa, and was designed to simulate natural conditions as far as possible, using local soils and a grass species that is heavily grazed by abundant large herbivores. Productivity by different plant components was reduced, stimulated or unchanged by defoliation, depending on specific watering and fertilization treatments. Total above-ground production was stimulated by defoliation and was maximized at moderate clipping intensities, but this was statistically significant only when plants were watered infrequently (every 8 days), and most important, periods between clipping events were extended (at least 24 days). Under these conditions, plant growth rates were limited by water availability at the time of clipping, and soil water conserved in clipped, compared to unclipped plants. Within a given fertilization treatment, whole-plant production was never stimulated by defoliation because root growth was unaffected or inhibited by clipping. However, when fertilization was coupled to defoliation, as they are in the field, whole-plant production by fertilized and moderately clipped plants exceeded production by infertilized, unclipped plants. Under this interpretation, maximum whole-plant production coincided with optimum conditions for herbivores (maximum nitrogen concentration in grass leaves) when watering was frequent, and plants were moderately defoliated. However, these conditions were not the same as those that maximized relative above-ground stimulation of growth (infrequent watering and clipping).The results indicate that above-ground grass production can be stimulated by grazing, and when that is likely to occur. However, the results emphasize that plant production responses to defoliation can vary widely, contigent upon a complex interaction of ecological factors.  相似文献   

19.
To increase systemic resistance to herbivory, some clonal plants transmit internal cues among clonal ramets to prevent widespread damage to genets. Sagebrush (Artemisia tridentata) (Asteraceae) is known to use volatile cues to induce resistance within and between plants (so‐called volatile communication). In the present study, we observed the extent and frequency of clonal growth in a natural sagebrush population in western North America to understand the influence of clonal growth on volatile communication. We used genetic analysis involving microsatellite markers and excavation of the root systems. In addition, we characterized the volatile profiles from the headspace of sagebrush ramets. Excavation of the root system of sagebrush plants revealed that sagebrush propagates clonally below ground and that daughter ramets grow near the mother stem. Volatiles were variable among genetically different ramets, although clonal ramets (genetically identical ramets) released similar volatiles, suggesting a genetic basis for volatile similarity. Sagebrush has been shown to be most responsive to volatiles released from artificially produced clones and suffers less herbivore damage as a result. Therefore, these results, taken into consideration together, imply that volatile communication may occur among genetically identical ramets under natural conditions, and that volatile similarity between the releaser and receiver may be recognized by the receiver and increase resistance against herbivory.  相似文献   

20.
Neighbourhood affects a plant's risk of herbivory and subsequent success   总被引:2,自引:0,他引:2  
1. It is generally assumed that growing in proximity to sources of nectar will benefit plants by attracting predators and parasites that reduce herbivore loads.
2. This paper documents patterns of hornworm Manduca quinquemaculata abundance on wild tobacco plants Nicotiana attenuata . Observations suggested that several plant traits were associated with hornworm eggs and larvae.
3. Hornworms were more likely to be found on large tobacco plants.
4. Hornworms were more likely to be found on tobacco plants with flowering Eriastrum densifolium neighbours.
5. Experimental removal of neighbouring Eriastrum densifolium flowers or whole plants reduced hornworm damage to tobacco plants in neighbourhoods with E. densifolium . The effects of these manipulations were not found to increase reproductive success of neighbouring tobacco plants, although tobacco reproduction was reduced where M. quinquemaculata was abundant.
6. These results suggest that close proximity to nectar resources could decrease plant fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号