首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1986,103(6):2411-2420
The capacity of cells to interact with the plasminogen activator, urokinase, and the zymogen, plasminogen, was assessed using the promyeloid leukemic U937 cell line and the diploid fetal lung GM1380 fibroblast cell line. Urokinase bound to both cell lines in a time- dependent, specific, and saturable manner (Kd = 0.8-2.0 nM). An active catalytic site was not required for urokinase binding to the cells, and 55,000-mol-wt urokinase was selectively recognized. Plasminogen also bound to the two cell lines in a specific and saturable manner. This interaction occurred with a Kd of 0.8-0.9 microM and was of very high capacity (1.6-3.1 X 10(7) molecules bound/cell). The interaction of plasminogen with both cell types was partially sensitive to trypsinization of the cells and required an unoccupied high affinity lysine-binding site in the ligand. When plasminogen was added to the GM1380 cells, a line with high intrinsic plasminogen activator activity, the bound ligand was comprised of both plasminogen and plasmin. Urokinase, in catalytically active or inactive form, enhanced plasminogen binding to the two cell lines by 1.4-3.3-fold. Plasmin was the predominant form of the bound ligand when active urokinase was added, and preformed plasmin can also bind directly to the cells. Plasmin on the cell surface was also protected from its primary inhibitor, alpha 2-antiplasmin. These results indicate that the two cell lines possess specific binding sites for plasminogen and urokinase, and a family of widely distributed cellular receptors for these components may be considered. Endogenous or exogenous plasminogen activators can generate plasmin on cell surfaces, and such activation may provide a mechanism for arming cell surfaces with the broad proteolytic activity of this enzyme.  相似文献   

2.
The major cell-surface glycoprotein fibronectin mediates a variety of cellular adhesive interactions that have been reported to be competitively inhibited by gangliosides. These effects suggest a possible function of gangliosides as receptors for fibronectin. To test this hypothesis more directly, we examined the interaction of endogenous fibronectin with a ganglioside-deficient cell line, NCTC 2071. These cells, which grow in serum-free medium, synthesized fibronectin. The fibronectin did not bind to these cells, but instead bound diffusely to the culture substratum. When the cells were cultured in medium containing ganglioside, the fibronectin became bound to the cell surface in fibrillar strands. The order of effectiveness of purified gangliosides was GT1b greater than GD1a greater than GM1 greater than GM2 greater than GM3. The effect with mixed gangliosides was accompanied by a restoration of cellular capacity to bind and to respond to cholera toxin. Treatment of the cells with several phospholipids did not alter fibronectin binding. Our results support the hypothesis that gangliosides can help mediate the binding of fibronectin to fibroblasts.  相似文献   

3.
Binding of fibronectins to gangliosides was tested directly using several different in vitro models. Using an enzyme-linked immunoabsorbent assay (ELISA), gangliosides were immobilized on polystyrene tubes and relative binding of fibronectin was estimated by alkaline phosphatase activity of conjugated second antibody. Above a critical ganglioside concentration, the gangliosides bound the fibronectin (GT1b congruent to GD1b congruent to GD1a greater than GM1 much greater than GM2 congruent to GD3 congruent to GM3) in approximately the same order of efficiency as they competed for the cellular sites of fibronectin binding in cell attachment assays (Kleinman et al., Proc natl acad sci US 76 (1979) 3367). Alternatively, these same gangliosides bound to immobilized fibronectin. Rat erythrocytes coated with gangliosides GM1, GD1a or GT1b bound more fibronectin than erythrocytes not supplemented with gangliosides. Using fibronectin in which lysine residues were radioiodinated, an apparent Kd for binding to mixed rat liver gangliosides of 7.8 X 10(-9) M was determined. This value compared favorably with the apparent Kd for attachment of fibronectin to isolated plasma membranes from rat liver of 3.7 X 10(-9) M for fibronectin modified on the tyrosine residue, or 6.4 X 10(-9) M for fibronectin modified on lysine residues. As shown previously by Grinnell & Minter (Biochem biophys acta 550 (1979) 92), fibronectin modified on tyrosine residues did not promote spreading and attachment of CHO cells. It did, however, bind to cells. In contrast, lysine-modified fibronectin both bound to cells and promoted cell attachment. Plasma membranes isolated from hepatic tumors in which the higher gangliosides that bind fibronectin were depleted bound 43-75% less [125I]fibronectin than did plasma membranes from control livers. The findings were consistent with binding of fibronectins to gangliosides, including the same gangliosides depleted from cell surfaces during tumorigenesis in the rat.  相似文献   

4.
Vyas AA  Schnaar RL 《Biochimie》2001,83(7):677-682
Gangliosides, sialylated glycosphingolipids which are the predominant glycans on vertebrate nerve cell surfaces, are emerging as components of membrane rafts, where they can mediate important physiological functions. Myelin associated glycoprotein (MAG), a minor constituent of myelin, is a sialic acid binding lectin with two established physiological functions: it is involved in myelin-axon stability and cytoarchitecture, and controls nerve regeneration. MAG is found selectively on the myelin membranes directly apposed to the axon surface, where it has been proposed to mediate myelin-axon interactions. Although the nerve cell surface ligands for MAG remain to be established, evidence supports a functional role for sialylated glycoconjugates. Here we review recent studies that reflect on the role of gangliosides, sialylated glycosphingolipids, as functional MAG ligands. MAG binds to gangliosides with the terminal sequence 'NeuAc alpha 3Gal beta 3GalNAc' which is found on the major nerve gangliosides GD1a and GT1b. Gangliosides lacking that terminus (e.g., GM1 or GD1b), or having any biochemical modification of the terminal NeuAc residue fail to support MAG binding. Genetically engineered mice lacking the GalNAc transferase required for biosynthesis of the 'NeuAc alpha 3Gal beta 3GalNAc' terminus have grossly impaired myelination and progressive neurodegeneration. Notably the MAG level in these animals is dysregulated. Furthermore, removal of NeuAc residues from nerve cells reverses MAG-mediated inhibition of neuritogenesis, and neurons from mice lacking the 'NeuAc alpha 3 Gal beta 3GalNAc' terminus have an attenuated response to MAG. Cross-linking nerve cell surface gangliosides can mimic MAG-mediated inhibition of nerve regeneration. Taken together these observations implicate gangliosides as functional MAG ligands.  相似文献   

5.
Pasteurella multocida toxin (PMT) is an AB toxin that causes pleiotropic effects in targeted host cells. The N-terminus of PMT (PMT-N) is considered to harbor the membrane receptor binding and translocation domains responsible for mediating cellular entry and delivery of the C-terminal catalytic domain into the host cytosol. Previous studies have implicated gangliosides as the host receptors for PMT binding. To gain further insight into the binding interactions involved in PMT binding to cell membranes, we explored the role of various membrane components in PMT binding, utilizing four different approaches: (a) TLC-overlay binding experiments with (125) I-labeled PMT, PMT-N or the C-terminus of PMT; (b) pull-down experiments using reconstituted membrane liposomes with full-length PMT; (c) surface plasmon resonance analysis of PMT-N binding to reconstituted membrane liposomes; (d) and surface plasmon resonance analysis of PMT-N binding to HEK-293T cell membranes without or with sphingomyelinase, phospholipase D or trypsin treatment. The results obtained revealed that, in our experimental system, full-length PMT and PMT-N did not bind to gangliosides, including monoasialogangliosides GM(1) , GM(2) or GM(3) , but instead bound to membrane phospholipids, primarily the abundant sphingophospholipid sphingomyelin or phosphatidylcholine with other lipid components. Collectively, these studies demonstrate the importance of sphingomyelin for PMT binding to membranes and suggest the involvement of a protein co-receptor.  相似文献   

6.
Herren T  Burke TA  Das R  Plow EF 《Biochemistry》2006,45(31):9463-9474
Tethering of plasminogen to cell surfaces controls plasmin formation and, thereby, influences pericellular proteolysis and cell migration. Modulation of cellular plasminogen binding sites provides a mechanism for regulation of these events. In this study, two distinct models, phorbol ester-stimulated adhesion of U937 monocytoid cells and culturing of peripheral blood neutrophils, treatments which modulate plasminogen binding sites, have been examined to determine the molecular basis for the upregulation of plasminogen receptors. Membranes were isolated from cell populations, with and without upregulated plasminogen binding capacities, and analyzed by [(125)I]plasminogen ligand blotting of gel transfers. Approximately 15 different [(125)I]plasminogen-binding proteins were discerned in the membrane fractions, and only relatively minor differences in the intensities of individual bands were noted in the different cell populations. The notable exception was the presence of a 17 kDa band, which was selectively and markedly enhanced in the membranes from cells with enhanced plasminogen binding capacities. The 17 kDa protein was isolated from both cell types, and amino acid sequencing of peptide fragments identified the same protein, histone H2B. Increased expression of histone H2B was observed on stimulated U937 cells and cultured neutrophils by confocal microscopy with an antibody raised to the carboxy-terminal octopeptide sequence of histone H2B. This antibody or its Fab fragments substantially decreased the level of binding of plasminogen to these cultured neutrophils and stimulated U937 cells that exhibited elevated levels of binding but not to nonstimulated cells. Thus, histone H2B represents a regulated plasminogen receptor, which contributes significantly to the plasminogen binding capacity of cells.  相似文献   

7.
Highly enriched brush-border and basolateral membranes isolated from rat renal cortex were used to study the distribution of endogenous gangliosides in the two distinct plasma membrane domains of epithelial cells. These two membrane domains differed in their glycolipid composition. The basolateral membranes contained more of both neutral and acidic glycolipids, expressed on a protein basis. In both membranes, the neutral glycolipids corresponding to mono-, di-, tri- and tetraglycosylceramides were present. The basolateral membranes contained more diglycosylceramide than the brush-border membranes. The major gangliosides found were GM4, GM3, and GD3 with minor amounts of GM1 and GD1a. The latter were identified and quantified by sensitive iodinated cholera toxin binding assays. When the distribution of individual gangliosides was calculated as a percent of total gangliosides, the brush-border membranes were enriched with GM3, GM1 and GD1a compared to the basolateral membranes, which were enriched with GD3 and GM4. The observation of a distinct distribution of glycolipids between brush-border and basolateral membranes of the same epithelial cell suggests that there may be a specific sorting and insertion process for epithelial plasma membrane glycolipids. In turn, asymmetric glycolipid biogenesis may reflect differences in glycolipid function between the two domains of the epithelial plasma membrane.  相似文献   

8.
Yong Di  Jun Tian  Pu Yang  Shen Qu 《FEBS letters》2010,584(15):3469-24475
Very low density lipoprotein receptors (VLDLR) including type I and type II are known to affect cell functions by binding to its extracellular ligands. However, the effect of these ligands on VLDLR expression remains elusive. Tissue factor pathway inhibitor (TFPI) and urokinase plasminogen activator and plasminogen activator inhibitor 1 (uPA-PAI-1) complex, two ligands of VLDLR, were used to examine their effects on VLDLR expression. TFPI treatment decreased type II VLDLR expression, inhibited cell proliferation and migration, and degradated β-catenin in SGC7901 cells. However, uPA-PAI-1 complex, increased type II VLDLR expression with promoted cell proliferation and migration and stabilization of β-catenin. These results indicated that extracellular ligands can change the expression of type II VLDLR to affect cell proliferation and migration.  相似文献   

9.
Cell migration involves the integrins, their extracellular matrix ligands, and pericellular proteolytic enzyme systems. We have studied the role of plasminogen activator inhibitor-1 (PAI-1) in cell migration, using human amnion WISH cells and human epidermoid carcinoma HEp-2 cells in an assay measuring migration from microcarrier beads and a modified Boyden-chamber assay. Active, but not latent or reactive center-cleaved, PAI-1 inhibited migration. A PAI-1 mutant without ability to inhibit plasminogen activation was as active as wild-type PAI-1 as a migration inhibitor, showing that inhibition of plasminogen activation was not involved. PAI-1 specifically interfered with integrin- and vitronectin-mediated migration: Migration onto vitronectin-coated but not onto fibronectin-coated surfaces was inhibited by PAI-1, a cyclic RGD peptide inhibited migration, and both cell lines expressed vitronectin-binding αv-integrins. In addition, active PAI-1, but not latent or reactive center-cleaved PAI-1, inhibited vitronectin binding to integrins in anin vitrobinding assay, without affecting binding of fibronectin. Monoclonal antibodies against the urokinase receptor, another vitronectin binding protein, did not affect cell migration in the beads assay, while some inhibitory effect was observed in the Boyden-chamber assay. We conclude that PAI-1, independently of its role as a proteinase inhibitor, inhibits cell migration by competing for vitronectin binding to integrins, while the interference of PAI-1 with binding of vitronectin to the urokinase receptor may play a secondary role. These data define a novel function for the serpin PAI-1, enabling it to regulate cell migration over vitronectin-rich extracellular matrix in the body.  相似文献   

10.
We have isolated and characterized glycopeptides, derived from mouse and bovine cerebral cortex cells, that inhibit protein synthesis and cell growth of normal but not transformed cells. The inhibitor binds to target cell surfaces, and gangliosides have previously been shown to influence cell sensitivity to the glycopeptides. Preincubation with 3.0 micrograms/ml ganglioside GM1 at 0 degrees C for 3 hr sensitized the mouse L-cell line to the inhibitor, as determined by protein synthesis assays. Preincubation of LM cells with ganglioside GM1 alone did not affect protein synthesis rates. In addition, the gangliosides GD1a and GM3 also sensitized the LM cells to the protein synthesis inhibitory effect of the glycopeptide inhibitor. Binding experiments were performed with 3T3 (sensitive) and LM (insensitive) cells to determine if sensitivity to the glycopeptide inhibitor was reflected in binding of the inhibitor to these cells. Binding of 125I-labeled inhibitor to 3T3 cells was maximal after 60 min at 0 degrees C and saturable at approximately 1 X 10(4) molecules/cell. Furthermore, binding of the inhibitor was dose-dependent, with half-maximal binding at 1.5-2.0 nM and saturation at 8.0-10.0 nM. Scatchard plot analysis indicated that the Kd was about 1 X 10(-9) M and that there are 1 X 10(4) receptors/cell. Binding of the inhibitor to LM cells was maximal after 30 min at 0 degrees C and saturation occurred at 5 X 10(3) molecules/cell. We then examined the possibility that gangliosides are the cellular receptor or co-receptor for the glycopeptide inhibitor. Binding of the inhibitor to ganglioside GM1 was first examined after the ganglioside had been preadsorbed to polystyrene tubes. These experiments indicated that the ganglioside did not bind the inhibitor. Ganglioside-containing liposomes from phosphatidylcholine or LM cell membrane components were also prepared; these artificial membranes did not bind appreciable amounts of the iodinated inhibitor. Competition experiments showed that the gangliosides GM1 and GD1a did not neutralize the protein synthesis inhibitory activity of the glycopeptides, indicating that gangliosides do not directly interact with the glycopeptide inhibitor. In addition, binding of the inhibitor to LM cells preincubated with ganglioside GM1 was studied. Although the binding of the inhibitor to LM cells was one-half that observed for 3T3 cells, incorporation of exogenous gangliosides into LM cells did not result in increased binding of the inhibitor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Gangliosides were recently shown to bind to calmodulin (Higashi, H., Omori, A., and Yamagata, T. (1992) J. Biol. Chem. 267, 9831-9838). This prompted us to investigate the effects of gangliosides on the calmodulin-dependent enzyme, cyclic nucleotide phosphodiesterase. Several species of gangliosides competitively inhibited calmodulin-stimulated phosphodiesterase activity, with GD1b, GT1b, and GD1a being noted to do so particularly (group 1). GM1, GQ1b, and GM2 (group 2) were less inhibitory, and GM3, GM3(NeuGc), GalCer, sulfatide, GgOse4Cer, and oligosaccharide portions of inhibitory gangliosides showed no inhibition in accordance with the binding specificity of calmodulin to gangliosides. Trypsin-activated phosphodiesterase was inhibited by gangliosides with similar specificity, indicating interactions of gangliosides with the enzyme. Inhibition, however, was less than that of calmodulin-dependent activity by these compounds and, in both cases, was eliminated by excess calmodulin. In the absence of calmodulin, group 1 gangliosides at lower concentrations activated the intact enzyme but inhibited it over a certain range of increase in concentration. Ganglioside-dependent modulation of calmodulin-dependent phosphodiesterase activity is thus shown to be due to interactions of gangliosides with both calmodulin and the enzyme, and consequently, ganglioside-calmodulin binding is likely the mechanism for regulation of the enzyme.  相似文献   

12.
Cancer cell invasion and metastasis require the concerted action of several proteases that degrade extracellular matrix proteins and basement membranes. Recent reports suggest the plasminogen activator system plays a critical role in pancreatic cancer biology. In the present study, we determined the contribution of the plasminogen activator system to pancreatic cancer cell invasion in vitro. Moreover, the effect of peroxisome proliferator-activated receptor (PPAR)-gamma ligands, which are currently in clinical use as antidiabetic drugs and interestingly seem to display antitumor activities, on pancreatic cancer cell invasion and the plasminogen activator system was assessed. Expression of components of the plasminogen activator system [i.e., urokinase-type plasminogen activator (uPA), plasminogen activator inhibitor-1, and uPA receptor] was detected in six human pancreatic cancer cell lines. Inhibition of urokinase activity by specific synthetic compounds reduced baseline pancreatic cancer cell invasion. The PPAR-gamma ligands 15-deoxy-Delta12,14-prostaglandin J2 and ciglitazone also attenuated pancreatic cancer cell invasion. This effect was abrogated by dominant-negative PPAR-gamma receptors and pharmacologic PPAR-gamma inhibitors. Moreover, activation of PPAR-gamma by ligands increased plasminogen activator inhibitor-1 and decreased uPA levels in pancreatic cancer cells, and this was accompanied by a reduction in total urokinase activity. The present study shows that the plasminogen activator system plays an integral role in pancreatic cancer cell invasion in vitro. Activation of the nuclear receptor PPAR-gamma by ligands reduced pancreatic cancer cell invasion, which was largely mediated by modulation of the plasminogen activator system. These findings further underscore the potential role of PPAR-gamma ligands as therapeutic agents in pancreatic cancer.  相似文献   

13.
Cultured human endothelial cells synthesize and secrete two types of plasminogen activator, tissue plasminogen activator (t-PA) and urokinase (u-PA). Previous work from this laboratory (Hajjar, K.A., Hamel, N. M., Harpel, P. C., and Nachman, R. L. (1987) J. Clin. Invest. 80, 1712-1719) has demonstrated dose-dependent, saturable, and high affinity binding of t-PA to two sites associated with cultural endothelial cell monolayers. We now report that an isolated plasma membrane-enriched endothelial cell fraction specifically binds 125I-t-PA at a single saturable site (Kd 9.1 nM; Bmax 3.1 pmol/mg membrane protein). Ligand blotting experiments demonstrated that both single and double-chain t-PA specifically bound to a Mr 40,000 membrane protein present in detergent extracts of isolated membranes, while high molecular weight, low molecular weight, and single-chain u-PA associated with a Mr 48,000 protein. Both binding interactions were reversible and cell-specific and were inhibitable by pretreatment of intact cells with nanomolar concentrations of trypsin. The relevant binding proteins were not found in subendothelial cell matrix, failed to react with antibodies to plasminogen activator inhibitor type 1 and interacted with their respective ligands in an active site-independent manner. The isolated t-PA binding site was resistant to reduction and preserved the capacity for plasmin generation. In contrast, the isolated u-PA binding protein was sensitive to reduction, and did not maintain the catalytic activity of the ligand on the blot. The results suggest that in addition to sharing a matrix-associated binding site (plasminogen activator inhibitor type 1), both t-PA and u-PA have unique membrane binding sites which may regulate their function. The results also provide further support for the hypothesis that plasminogen and t-PA can assemble on the endothelial cell surface in a manner which enhances cell surface generation of plasmin.  相似文献   

14.
Specific immune damage to liposomes containing Forssman or globoside glycolipid was inhibited when the liposomes also contained ganglioside. The activity of a human monoclonal Waldenstr?m macroglobulin antibody to Forssman glycolipid was inhibited by each of three gangliosides tested, GM3, GD1a and GD1b. Inhibition of the monoclonal antibody was dependent on the amount of ganglioside in the liposomes, and was diminished by reducing the relative amount of ganglioside. Inhibition also correlated positively with the number of ganglioside sialic acid groups, with inhibition by GT1b greater than GD1a greater than GM3. Naturally occurring human antibodies to globoside glycolipid were detected in 18% (9 out of 50) of normal human sera tested. Immune damage to liposomes induced by each of the three highest-reacting human anti-globoside sera was blocked by liposomal GM3. We conclude that gangliosides can strongly influence immune damage to membranes induced by antibody interactions with adjacent neutral glycolipids.  相似文献   

15.
Adhesion of eight cell lines, derived from human gliomas of different histological types, to fibronectin, collagen I, vitronectin, and laminin was investigated in vitro. The glioma cell lines were found to attach to these substrates to different extents. Interestingly, all cell lines strongly attached to laminin. In addition, glioma cell adhesion was found to be dose dependent. Moreover, adhesion of three cell lines to fibronectin and collagen I was partially inhibited and to vitronectin completely prevented by GRGDTP peptide, indicating the involvement of integrin receptors in glioma cell adhesion. We have demonstrated, recently, that gangliosides play an important role in promoting glioma cell invasion of the reconstituted basement membrane, Matrigel, in vitro. In order to study the mechanism of action of gangliosides in this process, the role of six gangliosides (GM1, GM3, GD3, GD1a, GD1b, and GT1b) in cell adhesion to the four proteins was investigated in three cell lines. Although all gangliosides, with the exception of GM3, were found to enhance cell adhesion to these proteins to different extents, GD3 proved to be the most effective adhesion-promoting ganglioside in all three cell lines. GM3 was found to inhibit cell adhesion to the four proteins in one cell line but enhanced cell adhesion in two other cell lines. The three cell lines were found to express both GD3 and gangliosides recognised by the A2B5 antibody. Furthermore, adhesion of the three cell lines to fibronectin, vitronectin, laminin, and collagen I was inhibited by incubation with A2B5, demonstrating the involvement of intrinsic cell membrane gangliosides in adhesion of glioma cells to these proteins. Taken together with the observation that gangliosides modulate integrin receptor function, these data suggest that gangliosides may play a central role in the control of the adhesive and invasive properties of human glioma cells.  相似文献   

16.
Reevaluation of the Role of Gangliosides as Receptors for Tetanus Toxin   总被引:4,自引:2,他引:2  
Binding of tetanus toxin to rat brain membranes was of lower affinity and capacity when binding was determined in 150 mM NaCl, 50 mM Tris-HCl (pH 7.4) than in 25 mM Tris-acetate (pH 6.0). Binding under both conditions was reduced by treating the membranes with neuraminidase. Pronase treatment, however, reduced toxin binding only in the Tris-saline buffer (pH 7.4). In addition, the concentration of gangliosides required to inhibit toxin binding was 100-fold higher in Tris-saline compared to Tris-acetate buffer. The toxin receptors in the membranes were analyzed by ligand blotting techniques. Membrane components were dissolved in sodium dodecyl sulfate, separated by polyacrylamide gel electrophoresis, and transferred to nitrocellulose sheets, which were overlaid with 125I-labeled toxin. Tetanus toxin bound only to material that migrated in the region of the dye front and was extracted with lipid solvents. Gangliosides isolated from the lipid extracts or other sources were separated by TLC on silica gel and the chromatograms were overlaid with labeled tetanus toxin. The toxin bound to areas where the major rat brain gangliosides migrated. When equimolar amounts of different purified gangliosides were applied to the chromatogram, binding of the toxin was in the order GD1b approximately equal to GT1b approximately equal to GQ1b greater than GD2 greater than GD3 much greater than GD1a approximately equal to GM1. Thus, the toxin appears to have the highest affinity for gangliosides with a disialyl group linked to the inner galactosyl residue. When binding of tetanus toxin to transfers and chromatograms was determined in the Tris-saline buffer (pH 7.4), the toxin bound to the same components but the extent of binding was markedly reduced compared with the low-salt and -pH conditions. Our results indicate that the interaction of tetanus toxin with rat brain membranes and gangliosides is greatly reduced under more physiological conditions of salt and pH and raise the possibility that other membrane components such as sialoglycoproteins may be receptors for the toxin under these conditions.  相似文献   

17.
A clonal line of murine Leydig tumor cells (MLTC-1) bound both human chorionic gonadotropin (hCG) and cholera toxin (CT) with high affinity and accumulated cyclic AMP in response to either effector. The major cellular ganglioside was GM3 with small amounts of GM2, GM1, and GD1a. The gangliosides became labeled when the cells were grown in medium containing [3H] galactose or were exposed to galactose oxidase or NaIO4 followed by NaB3H4. CT specifically protected GM1 from surface labeling whereas hCG did not protect any gangliosides from being labeled. When the cells were exposed to sialidase, surface GD1a was eliminated, and GM1 increased with a corresponding increase in CT binding. When sialidase-treated cells were first incubated with the B component of CT, binding and action of CT was blocked. The cells, however, retained their ability to bind and respond to hCG. Addition of purified gangliosides to the medium effectively inhibited the binding and action of CT but not hCG. The cells incorporated the exogenous gangliosides and exhibited increased binding of and responsiveness to CT but not hCG. Both hCG- and CT-receptor complexes were extracted from the cells with nonionic detergent and analyzed by sucrose gradient centrifugation. The hCG-receptor complex had an apparent molecular weight of 190,000 whereas the CT-receptor complex sedimented only slightly faster than CT itself. MLTC-1 gangliosides were separated on thin layer chromatograms which were overlayed with either iodinated CT or hCG. The toxin bound to a ganglioside corresponding to GM1 whereas the hormone did not bind to any of the gangliosides. When the cells were incubated overnight with hCG, they lost their hCG receptors but exhibited an increase in CT binding and gangliosides. Our results indicate that GM1 is the specific receptor for CT whereas gangliosides are not involved in the binding and action of hCG.  相似文献   

18.
Cell entry of rotaviruses is a complex process, which involves sequential interactions with several cell surface molecules. Among the molecules implicated are gangliosides, glycosphingolipids with one or more sialic acid (SA) residues. The role of gangliosides in rotavirus cell entry was studied by silencing the expression of two key enzymes involved in their biosynthesis—the UDP-glucose:ceramide glucosyltransferase (UGCG), which transfers a glucose molecule to ceramide to produce glucosylceramide GlcCer, and the lactosyl ceramide-α-2,3–sialyl transferase 5 (GM3-s), which adds the first SA to lactoceramide-producing ganglioside GM3. Silencing the expression of both enzymes resulted in decreased ganglioside levels (as judged by GM1a detection). Four rotavirus strains tested (human Wa, simian RRV, porcine TFR-41, and bovine UK) showed a decreased infectivity in cells with impaired ganglioside synthesis; however, their replication after bypassing the entry step was not affected, confirming the importance of gangliosides for cell entry of the viruses. Interestingly, viral binding to the cell surface was not affected in cells with inhibited ganglioside synthesis, but the infectivity of all strains tested was inhibited by preincubation of gangliosides with virus prior to infection. These data suggest that rotaviruses can attach to cell surface in the absence of gangliosides but require them for productive cell entry, confirming their functional role during rotavirus cell entry.  相似文献   

19.
125I-labelled heat-labile toxin (from Escherichia coli) and 125I-labelled cholera toxin bound to immobilized ganglioside GM1 and Balb/c 3T3 cell membranes with identical specificities, i.e. each toxin inhibited binding of the other. Binding of both toxins to Balb/c 3T3 cell membranes was saturable, with 50% of maximal binding occurring at 0.3 nM for cholera toxin and 1.1 nM for heat-labile toxin, and the number of sites for each toxin was similar. The results suggest that both toxins recognize the same receptor, namely ganglioside GM1. In contrast, binding of 125I-heat-labile toxin to rabbit intestinal brush borders at 0 degree C was not inhibited by cholera toxin, although heat-labile toxin inhibited 125I-cholera toxin binding. In addition, there were 3-10-fold more binding sites for heat-labile toxin than for cholera toxin. At 37 degrees C cholera toxin, but more particularly its B-subunit, did significantly inhibit 125I-heat-labile toxin binding. Binding of 125I-cholera toxin was saturable, with 50% maximal of binding occurring at 1-2 nM, and was quantitatively inhibited by 10(-8) M unlabelled toxin or B-subunit. By contrast, binding of 125I-heat-labile toxin was non-saturable (up to 5 nM), and 2 X 10(-7) M unlabelled B-subunit was required to quantitatively inhibit binding. Neuraminidase treatment of brush borders increased 125I-cholera toxin but not heat-labile toxin binding. Extensive digestion of membranes with Streptomyces griseus proteinase or papain did not decrease the binding of either toxin. The additional binding sites for heat-labile toxin are not gangliosides. Thin-layer chromatograms of gangliosides which were overlayed with 125I-labelled toxins showed that binding of both toxins was largely restricted to ganglioside GM1. However, 125I-heat-labile toxin was able to bind to brush-border galactoproteins resolved by SDS/polyacrylamide-gel electrophoresis and transferred to nitrocellulose.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号