首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fresh, functional human tissues have long been considered the closest possible model of human in vivo function and can be used to measure a wide range of pharmacological responses. Despite this, relatively little drug development is conducted using fresh human tissue because of the logistical and ethical difficulties surrounding the availability of tissue and practicalities of experimental work. Most tests of drug activity require a living test system comprising cells, tissues or whole organisms. In some instances, “living” (fresh) human tissues have the potential to reduce or replace animal tests through superior prediction of drug safety and efficacy. Before functional human tissue tests become a routine part of drug development, two factors must co-exist. Firstly, organisations such as Biopta must continue to create compelling evidence that human tissues are more predictive than alternative models; such evidence will drive demand from the pharmaceutical industry for human tissue-based tests. Secondly, the vast number of tissues and organs residual to surgery or unsuitable for transplant must be routinely consented for medical research and made available to all researchers in an equitable and timely manner. This requires a concerted effort throughout the NHS and consistent demand as well as financial support from researchers, particularly within industry. It is our view that the next 5–10 years will generate compelling evidence of the value of functional human tissue-based tests and recognition that more efficient use of residual or non-transplantable tissues and organs is an urgent priority for the development of new medicines.  相似文献   

2.
The technology of tissue differentiation from human pluripotent stem cells has attracted attention as a useful resource for regenerative medicine, disease modeling and drug development. Recent studies have suggested various key factors and specific culture methods to improve the successful tissue differentiation and efficient generation of human induced pluripotent stem cells. Among these methods, epigenetic regulation and epigenetic signatures are regarded as an important hurdle to overcome during reprogramming and differentiation. Thus, in this study, we developed an in silico epigenetic panel and performed a comparative analysis of epigenetic modifiers in the RNA-seq results of 32 human tissues. We demonstrated that an in silico epigenetic panel can identify epigenetic modifiers in order to overcome epigenetic barriers to tissue-specific differentiation.  相似文献   

3.
Stem cell biology has the potential to yield new therapies, new insights into disease, and a clearer understanding of tissue formation and maintenance. However, much of what we know about many stem cells is based upon experiments performed in culture. Stem cells sometimes exhibit critical differences in their properties or regulation between the culture and in vivo environments. Though cell lines with stem cell properties can be derived from the long-term culture of diverse tissues, it is not clear whether cells with similar properties exist in vivo. If the goal is to use differentiated cells for therapy or drug screening, it may not matter whether these stem cells exist in vivo. However, to understand tissue development/maintenance or the role of stem cells in disease, it is important to characterize progenitor function in vivo to evaluate physiological significance.  相似文献   

4.
A challenge in developing effective treatments is the modeling of the human disease using in vitro and in vivo systems. Animal models have played a critical role in the understanding of disease pathophysiology, target validation, and evaluation of novel therapeutic agents. However, as the success rate from entry into clinical testing to drug approval remains low, it is critical to have high quality and well-validated models reflective of the disease condition. Additional experimental models are being developed based on functional in vitro 3D tissue models such as organoids and 3D bioprinted tissues. Because these 3D tissue models mimic closer the architecture, cell composition and physiology of native tissues, they are now being used as screening platforms in drug discovery and development and for tissue transplant in regenerative medicine. Here we review the current state-of-art of in vitro and in vivo translational models for the development of therapies for rare diseases of the liver.  相似文献   

5.
Human organ slices, an in vitro model representing the multicellular and functional features of in vivo tissue, is a promising model for characterizing mechanisms of drug-induced organ injury and for identifying biomarkers of organ injury. Target organ injury is a significant clinical issue. In vitro models, which compare human and animal tissue to improve the extrapolation of animal in vivo studies for predicting human outcome, will contribute to improving drug candidate selection and to defining species susceptibilities in drug discovery and development programs. A critical aspect to the performance and outcome of human organ slice studies is the use of high quality tissue, and the use of culture conditions that support optimum organ slice survivability, in order to accurately reproduce mechanisms of organ injury in vitro. The attribute of organ slices possessing various cell types and interactions contributes to the overall biotransformation, inflammatory response and assessment of injury. Regional differences and changes in morphology can be readily evaluated by histology and special stains, similar to tissue obtained from in vivo studies. The liver is the major organ of which slice studies have been performed, however the utility of extra-hepatic derived slices, as well as co-cultures is increasing. Recent application of integrating gene expression, with human organ slice function and morphology demonstrate the increased potential of this model for defining the molecular and biochemical pathways leading to drug-induced tissue changes. By gaining a more detailed understanding of the mechanisms of drug-induced organ injury, and by correlating clinical measurements with drug-induced effects in the in vitro models, the vision of human in vitro models to identify more sensitive and discriminating markers of organ damage is attainable.  相似文献   

6.
The electrical activity of cardiac and uterine tissues has been reconstructed by detailed computer models in the form of virtual tissues. Virtual tissues are biophysically and anatomically detailed, and represent quantitatively predictive models of the physiological and pathophysiological behaviours of tissue within an isolated organ. The cell excitation properties are quantitatively reproduced by equations that describe the kinetics of a few dozen proteins. These equations are derived from experimental measurements of membrane potentials, ionic currents, fluxes, and concentrations. Some of the measurements were taken from human cells and human ion channel proteins expressed in non-human cells, but they were mostly taken from cells of other animal species. Data on tissue geometry and architecture are obtained from the diffusion tensor magnetic resonance imaging of ex vivo or post mortem tissue, and are used to compute the spread of current in the tissue. Cardiac virtual tissues are well established and reproduce normal and pathological patterns of cardiac excitation within the atria or ventricles of the human heart. They have been applied to increase the understanding of normal cardiac electrophysiology, to evaluate the candidate mechanisms for re-entrant arrhythmias that lead to sudden cardiac death, and to predict the tissue level effects of mutant or pharmacologically-modified ion channels. The human full-term virtual uterus is still in development. This virtual tissue reproduces the in vitro behaviour of uterine tissue biopsies, and provides possible mechanisms for premature labour.  相似文献   

7.
One factor critical to successful human gene therapy is development of efficient gene delivery systems. Although numerous vector systems for gene transfer have been developed, a perfect vector system has not yet been constructed. Difficulties of in vivo gene transfer appear to result from resistance of living cells to invasion by foreign materials and from interference of cellular functions. We should analyze what barriers in tissues affect in vivo gene transfection and how to solve these problems for gene therapy. In this review article, the biological barriers to in vivo gene transfection are discussed and possible solutions to each barrier are discussed with respect to construction of a perfect gene therapy vector system.  相似文献   

8.
The introduction of safe and effective new medicines is proving ever more difficult, a problem arguably due at least in part to over-reliance on experimental animal-based test systems. In light of the increasing awareness of the lack of predictiveness of such non-human approaches, the necessity to focus on human-based test methods is clear. There has been considerable progress in human in vivo (microdosing) and in silico approaches, primarily to identify ADMET issues, however, in vitro functional studies using human tissues are receiving inadequate attention. The potential scope of human tissue-based research is considerable, but much methodological development is required, which necessitates an increased willingness on the part of the Pharma industry to support it. This approach also requires considerably improved access to the cells and tissues themselves. While current acquisition is almost exclusively from surgery and post mortem, the range of tissue types, the quantity, quality and frequency of supply will remain inadequate to support human tissue as a key component of pre-clinical efficacy and safety testing. Additional routine access to non-transplantable tissues from organ donors for research purposes would be of inestimable value, but in order to realise this, true collaboration will be required between NHS, the Pharma and biotech industries, and the general public.  相似文献   

9.
10.
Cancer is a highly heterogeneous group of diseases that despite improved treatments remain prevalent accounting for over 14 million new cases and 8.2 million deaths per year. Studies into the process of carcinogenesis are limited by lack of appropriate models for the development and pathogenesis of the disease based on human tissues. Primary culture of patient samples can help but is difficult to grow for a number of tissues. A potential opportunity to overcome these barriers is based on the landmark study by Yamanaka which demonstrated the ability of four factors;Oct4, Sox2, Klf4, and c-Myc to reprogram human somatic cells in to pluripotency. These cells were termed induced pluripotent stem cells(i PSCs) and display characteristic properties of embryonic stem cells. This technique has a wide range of potential uses including disease modelling, drug testing and transplantation studies. Interestingly i PSCs also share a number of characteristics with cancer cells including self-renewal and proliferation, expression of stem cell markers and altered metabolism. Recently, i PSCs have been generated from a number of human cancer cell lines and primary tumour samples from a range of cancers in an attempt to recapitulate the development of cancer and interrogate the underlying mechanisms involved. This review will outline the similarities between the reprogramming process and carcinogenesis, and how these similarities have been exploited to generate i PSC models for a number of cancers.  相似文献   

11.
Drug-induced gingival enlargement (DIGE) is a fibrotic condition that can be caused by the antihypertensive drug nifedipine and the anti-seizure drug phenytoin, but the molecular etiology of this type of fibrosis is not well understood and the role of confounding factors such as inflammation remains to be fully investigated. The aim of this study was to develop an ex vivo gingival explant system to allow investigation of the effects of nifedipine and phenytoin alone on human gingival tissue. Comparisons were made to the histology of human DIGE tissue retrieved from individuals with DIGE. Increased collagen, fibronectin, and proliferating fibroblasts were evident, but myofibroblasts were not detected in DIGE samples caused by nifedipine and phenytoin. In healthy gingiva cultured in nifedipine or phenytoin-containing media, the number of cells positive for p-SMAD2/3 increased, concomitant with increased CCN2 and periostin immunoreactivity compared to untreated explants. Collagen content assessed through hydroxyproline assays was significantly higher in tissues cultured with either drug compared to control tissues, which was confirmed histologically. Matrix fibronectin levels were also qualitatively greater in tissues treated with either drug. No significant differences in proliferating cells were observed between any of the conditions. Our study demonstrates that nifedipine and phenytoin activate canonical transforming growth factor-beta signaling, CCN2 and periostin expression, as well as increase collagen density, but do not influence cell proliferation or induce myofibroblast differentiation. We conclude that in the absence of confounding variables, nifedipine and phenytoin alter matrix homeostasis in gingival tissue explants ex vivo, and drug administration is a significant factor influencing ECM accumulation in gingival enlargement.  相似文献   

12.
The recent developments in the isolation, culturing, and cryopreservation of human hepatocytes, and the application of the cells in drug development are reviewed. Recent advances include the improvement of cryopreservation procedures to allow cell attachment, thereby extending the use of the cells to assays that requires prolong culturing such as enzyme induction studies. Applications of human hepatocytes in drug development include the evaluation of metabolic stability, metabolite profiling and identification, drug-drug interaction potential, and hepatotoxic potential. The use of intact human hepatocytes, because of the complete, undisrupted metabolic pathways and cofactors, allows the development of data more relevant to humans in vivo than tissue fractions such as human liver microsomes. Incorporation of key in vivo factors with the intact hepatocytes in vitro may help predictive human in vivo drug properties. For instance, evaluation of drug metabolism and drug-drug interactions with intact human hepatocytes in 100% human serum may eliminate the need to determine in vivo intracellular concentrations for the extrapolation of in vitro data to in vivo. Co-culturing of hepatocytes and nonhepatic primary cells from other organs in the integrated discrete multiple organ co-culture (IdMOC) may allow the evaluation of multiple organ interactions in drug metabolism and drug toxicity. In conclusion, human hepatocytes represent a critical experimental model for drug development, allowing early evaluation of human drug properties to guide the design and selection of drug candidates with a high probability of clinical success.  相似文献   

13.
We describe a novel mouse CXC chemokine that is selectively expressed in lung epithelial cells and up-regulated in various lung inflammation models. Although this chemokine clusters with other ELR-CXC chemokines, none of them can confidently be assigned to be its human homologue based on sequence identity. In addition, the highly restricted mRNA tissue distribution of this chemokine differentiates it from all previously described chemokines: Lungkine could not be detected in any of the 70 cDNA libraries analyzed corresponding to specific murine cell populations and tissues. High levels of Lungkine mRNA were specifically detected in the lung and at lower levels in fetal lung tissue by Northern blot and in situ hybridization, suggesting a potential role for this chemokine during lung development. Moreover, Lungkine protein is secreted into the airway spaces and induces the in vitro and in vivo migration of neutrophils, suggesting that it is involved in lung-specific neutrophil trafficking. Using fluorescent in situ hybridization, we show that Lungkine maps to mouse chromosome 5.  相似文献   

14.
A new phenomenon by which adult developed mammalian and human body, can neo-regenerate its own tissue/organ in vivo, is recognized as "Desired Metaplasia". Reserve stem cells present in the tissues of adult developed body, are responsible for repair and replacement of lost tissues and cells during life, is plasia. Chronic tissue damage, due to long-standing causative factor, is taken care of and protected by forming resistant tissues, is metaplasia. Both these changes take place at the anatomical abode of the tissues. When stem cells of one tissue are colonized with another tissue/organ system, away from its anatomical abode, the neo-organo-histogenesis takes place by a phenomenon of desired metaplasia. This being new is critically, analytically and scientifically studied and discussed with reference to the available literature. An attempt has been made to establish the scientific account of the phenomenon. The laws of nature and embryology, as well as the basic philosophy responsible for neo-regeneration of tissues and organs in vivo, are discussed. In conclusion, the mammalian and human bodies can neo-regenerate their tissues and organs in vivo by desired metaplasia, provided certain criteria of embryological organogenesis are strictly observed.  相似文献   

15.
Epithelial cell transformation has been demonstrated in numerous animal models for the study of solid tumor biology. However, little evidence exists for human epithelial cell transformation without previous immortalization via genetic influences such as SV40 T-antigen, thus limiting our knowledge of the events that can transform naive human epithelium. Here we describe a system developed in our laboratory to directly transform freshly isolated primary human prostate epithelial cells without previous culture or immortalization. Prostate tissue is obtained from patients and benign tissue is separated from malignant tissue. Benign and malignant tissues are mechanically and enzymatically dissociated to single cells overnight, and immune cells and epithelial subsets are isolated on the basis of differential expression of surface antigens. Epithelial progenitor cells are transduced with lentiviruses expressing oncogenes and combined with inductive stroma for in vivo studies. At 8-16 weeks after transplantation into immune-deficient mice, the development of lesions, histologically classified as benign prostate, prostatic intraepithelial neoplasia and adenocarcinoma, can be evaluated.  相似文献   

16.
The four highly conserved Notch receptors receive short-range signals that control many biological processes during development and in adult vertebrate tissues. The involvement of Notch1 signaling in tissue self-renewal is less clear, however. We developed a novel genetic approach N(1)IP-CRE (Notch1 Intramembrane Proteolysis) to follow, at high resolution, the descendents of cells experiencing Notch1 activation in the mouse. By combining N(1)IP-CRE with loss-of-function analysis, Notch activation patterns were correlated with function during development, self-renewal and malignancy in selected tissues. Identification of many known functions of Notch1 throughout development validated the utility of this approach. Importantly, novel roles for Notch1 signaling were identified in heart, vasculature, retina and in the stem cell compartments of self-renewing epithelia. We find that the probability of Notch1 activation in different tissues does not always indicate a requirement for this receptor and that gradients of Notch1 activation are evident within one organ. These findings highlight an underappreciated layer of complexity of Notch signaling in vivo. Moreover, NIP-CRE represents a general strategy applicable for monitoring proteolysis-dependent signaling in vivo.  相似文献   

17.
Realistic modelling of the interaction between surgical instruments and human organs has been recognised as a key requirement in the development of high-fidelity surgical simulators. Primarily due to computational considerations, most of the past real-time surgical simulation research has assumed linear elastic behaviour for modelling tissues, even though human soft tissues generally possess non-linear properties. For a non-linear model, the well-known Poynting effect developed during shearing of the tissue results in normal forces not seen in a linear elastic model. Using constitutive equations of non-linear tissue models together with experiments, we show that the Poynting effect results in differences in force magnitude larger than the absolute human perception threshold for force discrimination in some tissues (e.g. myocardial tissues) but not in others (e.g. brain tissue simulants).  相似文献   

18.
The spatial and temporal localisation of a calcium-activated chloride channel (CLCA) and its mRNA was investigated, during the in vivo and in vitro development of stratified epithelia, by fluorescence immunohistochemistry and quantitative polymerase chain reaction in embryonic chicken corneas and the expansion of excised human corneal stem cells on amniotic membrane. Single-layered human epithelial cultures on amniotic membrane and early day embryonic chicken corneas expressed relatively little human CLCA2 or its chicken homologue. However, as the epithelium in both models matured and the number of cell-layers increased, the gene expression level and protein staining intensity increased, primarily within the basal cells of both the cultured and embryonic tissues. These results demonstrate that human CLCA2 protein and mRNA expression are elevated during epithelial stratification, suggesting that this protein plays a role in the growth of multi-layered corneal epithelia during both natural development and tissue cultivation. This work was supported by the Japanese Society for the Promotion of Science (CJC) and The Royal Society (C.J.C.).  相似文献   

19.
Over the past few years, establishment and adaptation of cell-based assays for drug development and testing has become an important topic in high-throughput screening (HTS). Most new assays are designed to rapidly detect specific cellular effects reflecting action at various targets. However, although more complex than cell-free biochemical test systems, HTS assays using monolayer or suspension cultures still reflect a highly artificial cellular environment and may thus have limited predictive value for the clinical efficacy of a compound. Today's strategies for drug discovery and development, be they hypothesis free or mechanism based, require facile, HTS-amenable test systems that mimic the human tissue environment with increasing accuracy in order to optimize preclinical and preanimal selection of the most active molecules from a large pool of potential effectors, for example, against solid tumors. Indeed, it is recognized that 3-dimensional cell culture systems better reflect the in vivo behavior of most cell types. However, these 3-D test systems have not yet been incorporated into mainstream drug development operations. This article addresses the relevance and potential of 3-D in vitro systems for drug development, with a focus on screening for novel antitumor drugs. Examples of 3-D cell models used in cancer research are given, and the advantages and limitations of these systems of intermediate complexity are discussed in comparison with both 2-D culture and in vivo models. The most commonly used 3-D cell culture systems, multicellular spheroids, are emphasized due to their advantages and potential for rapid development as HTS systems. Thus, multicellular tumor spheroids are an ideal basis for the next step in creating HTS assays, which are predictive of in vivo antitumor efficacy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号