首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
A comprehensive approach for drug safety assessment   总被引:1,自引:0,他引:1  
A comprehensive, multidisciplinary approach is proposed here for the development of a drug with an acceptable safety profile. Key parameters to be considered for drug safety evaluation based on this comprehensive approach include the following: (1) Pharmacology: Possible toxicity due to drug-target interactions, including interactions with unintended molecular targets, or with molecular targets in unintended organs. (2) Chemistry: Chemical scaffolding and side-chains with safety concerns. (3) Toxicology: Toxicity in animals in vivo, and in relevant animal and human cells in culture. (4) Drug metabolism and pharmacokinetics: Safety concerns due to toxification or detoxification, organ distribution, clearance and pharmacokinetic drug-drug interactions. (5) Risk factors: Physiological, environmental and genetic factors that may enhance a patient's susceptibility. It is proposed that this integrated, multidisciplinary approach to safety evaluation may enhance the accuracy of the prediction of drug safety and thereby the efficiency of drug development.  相似文献   

2.
Cryopreserved human hepatocytes were extensively characterized in our laboratory. The post-thaw viability, measured via dye exclusion, ranged from 55 to 83%, for hepatocytes cryopreserved from 17 donors. Post-thaw viability and yield (viable cells per vial) were found to be stable up to the longest storage duration evaluated of 120 days. Drug-metabolizing enzyme activities of the cryopreserved hepatocytes (mean of ten donors) as percentages of the freshly isolated cells were: 97%, for cytochrome P450 isoform (CYP) 1A2, 78% for CYP2A6, 96% for CYP2C9. 86% for CYP2Cl9, 90% for CYP2D6, 164% for CYP3A4, 76% for UDP-glucuronidase, and 88% for umbelliferone sulfotransferase. Known species-differences in 7-ethoxycoumarin (7-EC) metabolism were reproduced by cryopreserved hepatocytes from human, rat, rabbit, dog, and monkey, illustrating the utility of cryopreserved hepatocytes from multiple animal species in the evaluation of species-differences in drug metabolism. Higher throughput screening (HTS) assays were developed using cryopreserved human hepatocytes for hepatotoxicity, metabolic stability, and inhibitory drug-drug interactions. Dose-dependent cytotoxicity, measured using MTT metabolism as an endpoint, was observed for the known hepatotoxic chemicals tamoxifen, clozapine, cadmium chloride, diclofenac, amiodarone, tranylcypromine, precocene II, but not for 2-thiouracil. Cell density- and time-dependent metabolism of 7-EC and dextromethorphan were observed in the HTS assay for metabolic stability. Known CYP isoform-specific inhibitors were evaluated in the HTS assay for inhibitory drug-drug interactions. Furafylline, sulfaphenazole, quinidine, and ketoconazole were found to be specific inhibitors of CYP1A2, CYP2C9, CYP2D6, and CYP3A4, respectively. Tranylcypromine and diethyldithiocarbamate were found to be less specific, with inhibitory effects towards several CYP isoforms, including CYP2A6, CYP2C9, CYP2C19, and CYP2E1. These results suggest that cryopreserved human hepatocytes represent a useful experimental tool for the evaluation of drug metabolism, toxicity, and inhibitory drug-drug interaction potential.  相似文献   

3.
The pharmaceutical industry is committed to marketing safer drugs with fewer side effects, predictable pharmacokinetic properties and quantifiable drug-drug interactions. Drug metabolism is a major determinant of drug clearance and interindividual pharmacokinetic differences, and an indirect determinant of the clinical efficacy and toxicity of drugs. Progressive advances in the knowledge of metabolic routes and enzymes responsible for drug biotransformation have contributed to understanding the great metabolic variations existing in human beings. Phenotypic as well genotypic differences in the expression of the enzymes involved in drug metabolism are the main causes of this variability. However, only a minor part of phenotypic variability in man is attributable to gene polymorphisms, thus making the definition of a normal liver complex. At present, the use of human in vitro hepatic models at early preclinical stages means that the process of selecting drug candidates is becoming much more rational. Cultured human hepatocytes are considered to be the closest model to human liver. However, the fact that hepatocytes are located in a microenvironment that differs from that of the cell in the liver raises the question: to what extent does drug metabolism variability observed in vitro actually reflect that of the liver in vivo? By comparing the metabolism of a model compound both in vitro and in vivo in the same individual, a good correlation between the in vitro and in vivo relative abundance of oxidized metabolites and the hydrolysis of the compound was observed. Thus, it is reasonable to consider that the variability observed in human hepatocytes reflects the existing phenotypic heterogeneity of the P450 expression in human liver.  相似文献   

4.
The utility of primary human hepatocytes in the evaluation of drug-drug interactions is being investigated in our laboratories. Our initial approach was to investigate whether drug-drug interactions observed in humans in vivo could be reproduced in vitro using human hepatocytes. Two model drugs were studied: terfenadine and rifampin, representing compounds subjected to drug-drug interactions via inhibitory and induction mechanisms, respectively. Terfenadine was found to be metabolized by human hepatocytes to C-oxidation and N-dealkylation products as observed in humans in vivo. Metabolism by human hepatocytes was found to be inhibited by drugs which are known to be inhibitory in vivo, Ki values for the various inhibitors were derived from the in vitro metabolism data, resulting in the following ranking of inhibitory potency: For the inhibition of C-oxidation, ketoconazole > itraconazole > cyclosporin ~ troleandomycin > erythromycin > naringenin. For the inhibition of N-dealkylation, itraconazole ketoconazole > cyclosporin naringenin erythromycin troleandomycin. Rifampin induction of CYP3A, a known effect of rifampin in vivo, was also reproduced in primary human hepatocytes. Induction of CYP3A4, measured as testosterone 6-hydroxylation, was found to be dose-dependent, treatment duration-dependent, and reversible. The induction effect of rifampin was observed in hepatocytes isolated from all 7 human donors studied, with ages ranging from 1.7 to 78 years. To demonstrate that the rifampin-induction of testosterone 6-hydroxylation could be generalized to other CYP3A4 substrates, we evaluated the metabolism of another known substrate of CYP3A4, lidocaine. Dose-dependent induction of lidocaine metabolism by rifampin is observed. Our results suggest that primary human hepatocytes may be a useful experimental system for preclinical evaluation of drug-drug interaction potential during drug development, and as a tool to evaluate the mechanism of clinically observed drug-drug interactions.  相似文献   

5.
Drug metabolism is the major determinant of drug clearance, and the factor most frequently responsible for inter-individual differences in drug pharmacokinetics. The expression of drug metabolising enzymes shows significant interspecies differences, and variability among human individuals (polymorphic or inducible enzymes) makes the accurate prediction of the metabolism of a new compound in humans difficult. Several key issues need to be addressed at the early stages of drug development to improve drug candidate selection: a) how fast the compound will be metabolised; b) what metabolites will be formed (metabolic profile); c) which enzymes are involved and to what extent; and d) whether drug metabolism will be affected directly (drug-drug interactions) or indirectly (enzyme induction) by the administered compound. Drug metabolism studies are routinely performed in laboratory animals, but they are not sufficiently accurate to predict the metabolic profiles of drugs in humans. Many of these issues can now be addressed by the use of relevant human in vitro models, which speed up the selection of new candidate drugs. Human hepatocytes are the closest in vitro model to the human liver, and they are the only model which can produce a metabolic profile of a drug which is very similar to that found in vivo. However, the use of human hepatocytes is restricted, because limited access to suitable tissue samples prevents their use in high throughput screening systems. The pharmaceutical industry has made great efforts to develop fast and reliable in vitro models to overcome these drawbacks. Comparative studies on liver microsomes and cells from animal species, including humans, are very useful for demonstrating species differences in the metabolic profile of given drug candidates, and are of great value in the judicious and justifiable selection of animal species for later pharmacokinetic and toxicological studies. Cytochrome P450 (CYP)-engineered cells (or microsomes from CYP-engineered cells, for example, Supersomes) have made the identification of the CYPs involved in the metabolism of a drug candidate more straightforward and much easier. However, the screening of compounds acting as potential CYP inducers can only be conducted in cellular systems fully capable of transcribing and translating CYP genes.  相似文献   

6.
Recently, we have improved the cryopreservation procedures for human hepatocytes, leading to cells that can be cultured after thawing (“plateable” cryopreserved human hepatocytes). The ability to culture cryopreserved human hepatocytes allows application of the cells for prolonged incubations such as long-term (days) metabolism studies, enzyme induction studies, and cytotoxicity studies. We report here the application of the plateable cryopreserved human hepatocytes to evaluate the relationship between xenobiotic metabolism and toxicity. Two assays were developed: The Metabolism Comparative Cytotoxicity Assay (MCCA) and the Cytotoxic Metabolic Pathway Identification Assay (CMPIA). The MCCA was designed for the initial identification of the role of metabolism in cytotoxicity by comparing the cytotoxic potential of a toxicant in a metabolically competent (primary human hepatocytes) and a metabolically incompetent (Chinese hamster ovary (CHO)) cell type, as well as the evaluation of the role of P450 metabolism by comparing the cytotoxicity of the toxicant in question in human hepatocytes in the presence and absence of a nonspecific, irreversible P450 inhibitor, 1-aminobenzotriazole (ABT). The CMPIA was designed for the identification of the P450 isoforms involved in metabolic activation via the evaluation of the cytotoxicity of the toxicant in the presence and absence of isoform-selective P450 inhibitors. Results of a proof-of-concept study with the MCCA and CMPIA with a known hepatotoxicant, aflatoxin B1 (AFB1), are reported. AFB1 is known to require P450 metabolism for its toxicity. In the MCCA, AFB1 was found to have significantly higher cytotoxicity in human hepatocytes than CHO cells, therefore confirming its requirement for biotransformation to be toxic. ABT was found to effectively attenuate AFB1 cytotoxicity, confirming that P450 metabolism was involved in its metabolic activation. In the CMPIA, AFB1 cytotoxicity was found to be attenuated by ketoconazole and diethyldithiocarbamate, but not by furafylline, quinidine, and sulfaphenazole. Results with the isoform-selective inhibitors suggest that the isoforms inhibited by ketoconazole (mainly CYP3A4) and diethyldithiocarbamate (mainly CYP2A6, and CYP2E1), but not the isoforms inhibited by furafylline (mainly CYP1A2), sulfaphenazole (mainly CYP2C9) and quinidine (mainly CYP2D6) are involved in the metabolic activation of AFB1. This proof-of-concept study suggests that MCCA and CMPIA with cryopreserved human hepatocytes are potentially useful for the evaluation of the relationship between human xenobiotic metabolism and toxicity.  相似文献   

7.
The efficient and effective use of hepatocytes from larger species and rare human material requires a reliable storage method for cells not needed on the day of preparation. Cryopreservation would seem to be the only viable alternative. In this study the suitability of a published cryopreservation technique on dog, monkey and human hepatocytes has been examined and the cells were tested for functionality directly after thawing and subsequent to culture using steroid metabolism and hormone responsiveness of glycogen phosphorylase a. Monkey and human hepatocytes appear to survive the freezing and thawing process better than dog cells-the latter losing the ability to respond to adrenergic stimuli and their ability to maintain steroid metabolism in culture. Although monkey and human cells do preserve their steroid metabolising capacity after freeze/thawing, there is not the significant increase in enzyme activity seen during culturing freshly isolated cells. It would appear, therefore, that some damage has occurred to the cells during the freeze/thaw process. As previously noted, Williams' medium E is superior to Ham's F-10 in maintaining enzyme activities in culture. It is suggested that cryopreservation is the way forward for the development of stockpiles of viable hepatocytes for biomedical and toxicological research and development but that further modifications to the process are still necessary to optimise the maintenance of liver-specific functions in the thawed cells.  相似文献   

8.
Isolated human hepatocytes have been shown to represent a valuable in vitro model to investigate the metabolism and cytotoxicity of xenobiotics. In addition, human hepatocyte transplantation and artificial liver support systems using isolated human hepatocytes are currently investigated as treatment for acute and chronic hepatic failure. In this regard, human hepatocyte banking by cryopreservation would be of great interest. In the present study, freshly isolated hepatocytes from resected liver biopsies of 28 separate donors (viability: 88 +/- 2%; plating efficiency: 79 +/- 5%) were cryopreserved using two different protocols, stepwise freezing (SF) or progressive freezing (PF), in combination (PF(+), SF(+)) or not (PF(-), SF(-)) with a 30 min preincubation in culture medium at 37 degrees C. Total recovery was higher after PF (38 +/- 3%) than after SF (12 +/- 2%). Preincubation prior to SF had no effect on plating efficiency of thawed hepatocytes (SF(-): 38 +/- 6% versus SF(+): 46 +/- 7%) while preincubation prior to PF increased plating efficiency of thawed hepatocytes (PF(-): 42 +/- 6% versus PF(+): 64 +/- 4%, p < 0.05). In attached cultured human cryopreserved/thawed hepatocytes (CH) from the PF(+) group, albumin production and glutathione content were not significantly different from those of the freshly isolated hepatocyte (FIH) cultures. Cells in CH monolayers appeared smaller than cells in FIH monolayers. In addition, the pattern of cytochrome P450- and UDP-glucuronosyl transferase-dependent isoenzyme activities and GST activity were different, suggesting a variability in the resistance to cryopreservation of the various liver hepatocyte populations. Taken all together, the results of the present study suggest that recovery of human hepatocytes after isolation prior to progressive freezing should allow human hepatocyte banking for use in pharmacotoxicology and cell therapy research purposes.  相似文献   

9.
This review promotes the value of isolated hepatocytes in modern Drug Discovery programmes and outlines how increased understanding, particularly in the area of in vitro-in vivo extrapolation (IVIVE), has led to more widespread use. The importance of in vitro metabolic intrinsic clearance data for predicting in vivo clearance has been acknowledged for several years and the greater utility of hepatocytes, compared with hepatic microsomes and liver slices, for this application is discussed. The application of hepatocytes in predicting drug-drug interactions (DDIs) resulting from reversible and irreversible (time-dependent) inhibition is relatively novel but affords the potential to study both phase I and phase II processes together with any impact of drug efflux and/or uptake (cellular accumulation). Progress in this area is reviewed along with current opinions on the comparative use of primary hepatocytes and higher throughput reporter gene-based systems for studying cytochrome P450 (CYP) induction. The appreciation of the role of transporter proteins in drug disposition continues to evolve. The study of hepatic uptake using isolated hepatocytes and the interplay between drug transport and metabolism with respect to both clearance and DDIs and subsequent IVIVE is also considered.  相似文献   

10.
Drug metabolism can be a key determinant of drug toxicity. A nontoxic parent drug may be biotransformed by drug metabolizing enzymes to toxic metabolites (metabolic activation). Conversely, a toxic drug may be biotransformed to nontoxic metabolites (detoxification). The approaches to evaluate metabolism-based drug toxicity include the identification of toxic metabolites and the evaluation of toxicity in metabolically competent and metabolically compromised systems. A clear understanding of the role of drug metabolism in toxicity can aid the identification of risk factors that may potentiate drug toxicity, and may provide key information for the development of safe drugs.  相似文献   

11.
Cryopreservation of hepatocytes: a review of current methods for banking   总被引:15,自引:0,他引:15  
Cryopreservation, the freezing of hepatocytes in liquid nitrogen for storage, has been investigated for many years, as a method of long-term storage for hepatocytes. Unfortunately an agreed acceptable protocol has been elusive, in part due to the susceptibility of hepatocytes to the freeze thaw process involved. A method for long-term storage (months, possibly years) of human hepatocytes, in particular, is desirable for the development of a clinically applicable bioartificial liver, hepatocyte transplantation and for pharmacotoxicological research. The sources of human liver tissue from which hepatocytes can be derived are limited. Many groups have modified and improved the process of cryopreservation and many new techniques have been published, including the incorporation of such cryopreserved cells in clinically based studies. Further evaluation is still required to develop a universally acceptable protocol. This article reviews the difficulties involved in cryopreserving hepatocytes for banking and examines recent technical advances within this field.  相似文献   

12.
Terry C  Dhawan A  Mitry RR  Hughes RD 《Cryobiology》2006,53(2):149-159
Hepatocytes isolated from unused donor livers are being used for transplantation in patients with acute liver failure and liver-based metabolic defects. As large numbers of hepatocytes can be prepared from a single liver and hepatocytes need to be available for emergency and repeated treatment of patients it is essential to be able to cryopreserve and store cells with good thawed cell function. This review considers the current status of cryopreservation of human hepatocytes discussing the different stages involved in the process. These include pre-treatment of cells, freezing solution, cryoprotectants and freezing and thawing protocols. There are detrimental effects of cryopreservation on hepatocyte structure and metabolic function, including cell attachment, which is important to the engraftment of transplanted cells in the liver. Cryopreserved human hepatocytes have been successfully used in clinical transplantation, with evidence of replacement of missing function. Further optimisation of hepatocyte cryopreservation protocols is important for their use in hepatocyte transplantation.  相似文献   

13.
Induction of cytochrome-P450 in cryopreserved rat and human hepatocytes.   总被引:4,自引:0,他引:4  
Our laboratory has been routinely using suspended and cultured human hepatocytes for predicting drug metabolism and enzyme induction by drug candidates to aid drug discovery. Increasing limitation and irregular availability of human tissue has indicated the need for maximizing the use of this valuable resource. Cryopreservation of surplus hepatocytes after isolation would greatly increase the potential of this model. However, cryopreservation of hepatocytes by various methods has resulted in cells with poor metabolic activity and unacceptably low survival rates in culture. Recently, Zaleski et al. (Biochem. Pharmacol. 46 (1993) 111-116) reported that cryopreserved rat hepatocytes retained metabolic capacity similar to fresh hepatocytes when the cells were preincubated for 30 min at 37 degrees C in Krebs Ringer bicarbonate buffer prior to freezing. To further explore this methodology, both the functional capacity of the cells in culture as well as their ability to retain CYP inducibility were investigated with thawed cryopreserved hepatocytes. Although human hepatocytes were used in this study the initial work focused on rat hepatocytes as a cell model. Our results showed that while the preincubation step did not appear to effect the initial viability of cryopreserved hepatocytes, survival of the cells in culture was greatly enhanced. Plating efficiencies for nonpreincubated cryopreserved hepatocytes were decreased to approximately 15% of fresh cells after 48 h in culture. In contrast, cells that had been preincubated prior to freezing had an excellent plating efficiency (approximately 60%) and responded to classical CYP inducers dexamethasone, beta-naphthoflavone and phenobarbital in a manner indistinguishable from that of fresh hepatocytes. Experiments with human hepatocytes have also demonstrated similar results. This is the first time to our knowledge that cryopreserved hepatocytes from both rat and human have been shown to reproducibly respond to CYP inducers in culture.  相似文献   

14.
Summary Conventional culture systems for hepatocytes generally involve cells cultured as flat, monolayer cells, with limited cell-cell contact, in a static pool of medium, unlike the liver in vivo where the parenchymal cells are cuboidal, with extensive cell-cell contact, and are continuously perfused with blood. We report here a novel bioreactor system for the culturing of primary hepatocytes with cuboidal cell shape, extensive cell-cell contact, and perfusing medium. The hepatocytes were inoculated into the bioreactor and allowed to recirculate at a rate optimal for them to collide and form aggregates. These newly-formed aggregates were subsequently entrapped in a packed bed of glass beads. The bioreactor was perfused with oxygenated nutrient medium, with controlled oxygen tension, pH, and medium perfusion rate. The hepatocytes were viable for up to the longest time point studied of 15 days in culture based on urea synthesis, albumin synthesis and cell morphology. Light microscopy studies of hepatocytes cultured for 15 days in the bioreactor showed interconnecting three-dimensional structures resembling the hepatic cell plate in the liver organ. Electron microscopy studies on the same cells revealed ultrastructure similar to the hepatocytes in vivo, including the presence of plentiful mitochondria, rough and smooth endoplasmic reticulum, glycogen granules, peroxisomes, and desmosomes. We believe that our hepatocyte bioreactor is a major improvement over conventional culture systems, with important industrial applications including toxicology, drug metabolism, and protein/peptide synthesis. The hepatocyte bioreactor concept may also be used as the basis for the development of a bioartificial liver to provide extracorporeal hepatic support to patients with hepatic failure.  相似文献   

15.
In vitro drug metabolism by cultured rat, rabbit and human adult hepatocytes has been studied, using ketotifen (ZADITEN) as a model substrate because it is biotransformed in vivo by various metabolic pathways in man and animals. The major in vivo pathways were demonstrated in vitro, namely oxidation in rat hepatocytes, oxidation, glucuronidation and sulfation in rabbit hepatocytes, reduction and glucuronidation in human hepatocytes. Human hepatocytes were the most stable in culture, displaying ketotifen biotransformation for at least one week. These results clearly demonstrated that cultured hepatocytes retain their in vivo specific drug metabolizing activities, including inter-species polymorphism, for a few days. Therefore, pure hepatocyte cultures represent a useful system suitable for drug metabolism studies.  相似文献   

16.
Hepatocyte transplantation is considered as an alternative to organ transplantation in particular for the treatment of liver metabolic diseases. However, due to the difficulties to obtain a large number of hepatocytes, new sources of cells are needed. These cells could be either of hepatic origin (hepatic stem cells) or extrahepatic such as mesenchymal stem cells or pluripotent stem cells (human embryonic stem cells [hESC] or iPS). We developed a new method to differentiate hESCs into fetal hepatocytes. These conditions recapitulate the main liver developmental stages, using fully defined medium devoid of animal products or unknown factors. The differentiated cells express many fetal hepatocytes markers (cytochrome P450 3A7, albumin, alpha-1-antitrypsin, etc.). The cells display specific hepatic functions (ammonia metabolism, excretion of indocyanin green) and are capable to engraft and express hepatic proteins two months after transplantation into newborn uPAxrag2gc-/- mouse liver. We have also showed that this approach is transposable to human iPS, and further studies on animal models will allow us to compare the in vivo potential of these two sources of pluripotent cells. Finally, only studies on large animals such as nonhuman primates will validate an eventual clinical application.  相似文献   

17.
Predictions of the absorption, distribution, metabolism, excretion, and toxicity of compounds in pharmaceutical development are essential aspects of the drug discovery process. B-CLEAR is an in vitro system that uses sandwich-cultured hepatocytes to evaluate and predict in vivo hepatobiliary disposition (hepatic uptake, biliary excretion, and biliary clearance), transporter-based hepatic drug-drug interactions, and potential drug-induced hepatotoxicity. Automation of predictive technologies is an advantageous and preferred format in drug discovery. In this study, manual and automated studies are investigated and equivalence is demonstrated. In addition, automated applications using model probe substrates and inhibitors to assess the cholestatic potential of drugs and evaluate hepatic drug transport are examined. The successful automation of this technology provides a more reproducible and less labor-intensive approach, reducing potential operator error in complex studies and facilitating technology transfer.  相似文献   

18.
Metabolism of LB42908, a novel farnesyl transferase inhibitor, was investigated for preclinical development. In vitro hepatic metabolism of LB42908 gave rise to at least 9 metabolites via phase I biotransformation pathways, which were characterized by HPLC-UV, LC-MS, and LC-MS/MS analyses. N-Dealkylation was shown to be a major phase I metabolic pathway. Species-specific in vitro metabolism of LB42908 was studied in liver fractions of rat, dog, monkey, and human. Order of metabolic stability is human≈dog>rat≈monkey in both S9 and microsomal fractions. Tissue-specific metabolism of LB42908 in various tissue homogenates of rats demonstrated that the liver was the major organ responsible for phase I metabolism of LB42908. The results from both qualitative and quantitative metabolism studies such as metabolic profiling and metabolic clearance indicated that dog would be the animal model of choice for preclinical toxicology studies. In addition, LB42908 was a potent CYP3A4 inhibitor in human liver microsomes and induced the activities of several CYP isozymes, implying that it has the potential for drug-drug interactions. Repeated dosing of LB42908 in rats did not significantly affect its own metabolism, indicating that long-term administration of LB42908 would not alter its pharmacokinetic profiles.  相似文献   

19.
While drug toxicity (especially hepatotoxicity) is the most frequent reason cited for withdrawal of an approved drug, no simple solution exists to adequately predict such adverse events. Simple cytotoxicity assays in HepG2 cells are relatively insensitive to human hepatotoxic drugs in a retrospective analysis of marketed pharmaceuticals. In comparison, a panel of pre-lethal mechanistic cellular assays hold the promise to deliver a more sensitive approach to detect endpoint-specific drug toxicities. The panel of assays covered by this review includes steatosis, cholestasis, phospholipidosis, reactive intermediates, mitochondria membrane function, oxidative stress, and drug interactions. In addition, the use of metabolically competent cells or the introduction of major human hepatocytes in these in vitro studies allow a more complete picture of potential drug side effect. Since inter-individual therapeutic index (TI) may differ from patient to patient, the rational use of one or more of these cellular assay and targeted in vivo exposure data may allow pharmaceutical scientists to select drug candidates with a higher TI potential in the drug discovery phase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号