首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 299 毫秒
1.
增强UV-B辐射会对植物生长和生理生化过程产生有害效应。克隆植物中,相连的克隆分株对经常共享资源和激素,然而鲜有关于异质性UV-B辐射下抗氧化酶活力变化的报道。本研究模拟同质(克隆分株片段均处于自然背景辐射)和异质(克隆分株一端处于自然背景辐射,另一端处于补加的UV-B辐射)UV-B辐射,以克隆植物活血丹为材料,进行连接和隔断处理,研究异质性UV-B辐射下,克隆整合对活血丹抗氧化酶(超氧化物歧化酶(SOD),过氧化物酶(POD)和过氧化氢酶(CAT))活力的影响。结果表明:与处于同质UV-B辐射环境相比,异质UV-B辐射下连接处理中的活血丹UV-B辐射端抗氧化酶活力显著增加,说明克隆植物生理整合存在,且克隆整合提高了活血丹抗氧化酶活力。表明异质UV-B辐射环境中,UV-B辐射胁迫端克隆分株通过生理整合从非胁迫端获益,最大化地利用资源。  相似文献   

2.
我们前期研究发现异质性UV-B辐射下NO参与克隆植物紫外吸收物和抗氧化酶活力的整合过程。光合作用在植物生长过程中十分重要,但异质性UV-B辐射下NO在克隆植物光合特性中是否发挥作用仍不清楚。本研究模拟同质(克隆分株片段均处于自然背景辐射)和异质(克隆分株一端处于自然背景辐射,另一端处于补加的UV-B辐射)UV-B辐射,以克隆植物活血丹为材料,研究异质性UV-B辐射下,NO清除剂在克隆整合提高活血丹气体交换参数和叶绿素含量中的作用。结果表明:与处于同质UV-B辐射环境相比,异质UV-B辐射下连接处理中的活血丹UV-B辐射端气体交换参数和叶绿素含量显著增加,但NO清除剂改变了这一趋势,说明NO作为信号分子在克隆植物生理整合提高了活血丹光合生理特性中发挥重要作用,有助于全面认识UV-B辐射在克隆植物生长调控中的作用,为了解异质性UV-B环境下克隆植物生理整合的机理提供理论依据。  相似文献   

3.
钱永强  孙振元  韩蕾  巨关升 《生态学报》2010,30(15):3966-3973
异质环境下,克隆植物通过生理整合机制使资源在分株间实现共享,提高了其对异质性环境的适应能力,具有重要的生态进化意义,研究生理整合机制及其调控机理可为进一步发掘克隆植物应用潜力提供理论依据。以野牛草3个相连分株为材料,对其中一个分株用30%聚乙二醇6000(PEG-6000)模拟水分胁迫,通过Hoagland营养液培养试验,研究了异质水分环境下光合同化物在野牛草相连分株间的生理整合及分株叶片与根系内源激素ABA与IAA含量的变化规律。结果表明,14C-光合同化物在克隆片断内存在双向运输,但以向顶运输为主,异质水分环境下,受胁迫分株光合同化物的输出率明显降低,而与其相邻分株合成的光合同化物向受胁迫分株方向运输率明显增加;异质水分环境下,各分株ABA含量均明显增加,但以受胁迫的分株叶片及根系ABA的含量增加幅度最大,各分株IAA含量较对照均显著下降(P0.05),且以受胁迫分株IAA含量下降幅度最大;各分株叶片与根系ABA/IAA均显著提高(P0.05),相邻分株ABA/IAA增加幅度低于受胁迫分株。异质水分环境影响野牛草克隆分株间光合同化物的生理整合,且ABA与IAA在分株间光合同化物运输与分配过程中具有重要的调节作用。  相似文献   

4.
克隆整合对异质性盐分胁迫下积雪草生长的影响   总被引:1,自引:0,他引:1  
以匍匐茎草本克隆植物积雪草(Centella asiatica)为材料进行盆栽试验,研究了克隆整合特性对异质性盐分胁迫条件下植物生长的影响。试验中将远端分株(较幼分株)分别处于盐分胁迫或正常土壤条件下,切断或保持其与近端分株(较老分株)间的匍匐茎连接。结果表明:盐分胁迫下,克隆整合提高了受胁迫远端分株和整个克隆片断的叶面积和生物量等生长指标;与未遭受盐分胁迫处理相比,匍匐茎连接处理导致远端分株的根冠比显著降低。克隆整合还减轻了盐分胁迫对分株的叶绿素含量和光化学效率的影响,但盐分胁迫下,匍匐茎连接处理远端分株的净光合速率与匍匐茎切断处理远端分株并无显著差异,连接受胁迫的远端分株并没有引起近端分株生物量的明显损耗以及光合速率的补偿性提高。总之,克隆整合促进了积雪草遭受盐分胁迫的分株和整个克隆片段的生长,这对于丰富和发展异质性环境胁迫下克隆植物的生态适应对策具有重要意义。  相似文献   

5.
克隆整合有助于狗牙根抵御水淹   总被引:8,自引:1,他引:7       下载免费PDF全文
尽管国内外开展了大量的克隆整合对克隆植物抵御逆境能力影响的研究, 但整合对植物抵御水淹能力的影响研究仍比较缺乏。该文从克隆整合的角度探讨多年生草本植物狗牙根(Cynodon dactylon)对水淹胁迫的响应。试验模拟了先端分株(相对年幼的分株)分别处于0、5和15 cm三种水淹胁迫环境, 并在每个水淹梯度下实施先端分株与基端分株(相对年长的分株)之间匍匐茎连接或切断处理, 调查水淹一个月后基端分株和先端分株以及整个克隆片段在形态和生理上的表现。研究发现: 切断匍匐茎连接显著降低了狗牙根先端分株的生长, 表现在生物量下降、匍匐茎长度减短和分株数减少等方面; 水淹显著抑制了先端分株的生长, 但对基端分株的生长并未造成显著影响; 在5 cm水淹处理下, 匍匐茎保持连接时, 先端分株和整个克隆片段的生长显著增加; 连接或切断处理在不同水淹梯度下对匍匐茎平均节间长没有显著影响, 对先端分株或基端分株在光化学转化效率上也未表现显著性差异。结果表明: 克隆整合效应促进了狗牙根在水淹胁迫下分株的生长, 并有助于整个克隆片段抵御水淹胁迫。  相似文献   

6.
 采用盆栽试验研究了异质性重金属镉胁迫下, 克隆整合对匍匐茎草本植物积雪草(Centella asiatica)生长的影响。将远端分株(相对年幼的分株)分别置于对照和镉胁迫处理下, 并对远端分株与近端分株(相对年长的分株)之间的匍匐茎进行切断或保持连接处理。研究结果显示: 镉胁迫处理显著降低了积雪草远端分株的净光合速率(Pn)、最大光量子产量(Fv/Fm)、叶绿素含量、叶面积、分株数和生物量; 克隆整合缓解了镉胁迫对远端分株生长的不利影响; 克隆整合不仅未导致相连近端分株的损耗, 而且相连近端分株的光合效率也没有表现出补偿性增加; 克隆整合降低了远端受胁迫分株的根冠比, 从而使之减少了对土壤中重金属镉的吸收; 匍匐茎切断和镉胁迫处理对近端分株、远端分株的叶柄长没有显著的影响。结果表明: 克隆整合提高了积雪草遭受镉胁迫的远端分株的生长, 改变了其生物量分配格局, 并有助于整个克隆片段在异质性重金属胁迫下的生长。该研究对于丰富和发展异质性环境胁迫下克隆整合的生态适应对策具有重要意义。  相似文献   

7.
研究了克隆整合特性对天胡荽在异质性土壤养分环境中繁殖策略的影响。结果表明: 克隆整合可显著提高相连分株中处于低资源条件下近端分株的结果数和坐果率、总种子数量, 及其单个克隆分株的平均结籽数, 但对各处理单果重量的无显著影响。克隆整合有利于促进资源缺乏端的有性繁殖; 促进生理顶端分株的克隆繁殖。在低资源条件下, 克隆整合促进近端分株的有性繁殖以及远端分株的克隆繁殖; 相反则促进远端分株的有性繁殖和克隆繁殖。因此, 克隆整合特性是天胡荽对异质性环境的重要适应对策, 它使天胡荽能够扩展到不适合植物生长的低养分斑块中, 从而增加了天胡荽对恶劣环境的繁殖适合度及适应能力。  相似文献   

8.
通过温室控制试验,分析不同光强及光强对比度处理下克隆植物大米草生长性状的差异,研究同质异质光强条件下克隆整合对大米草响应遮阴能力的修饰作用.结果表明: 在同质条件下,大米草在无遮阴(高光强:温室内自然光照强度)条件下的生物量显著大于中度遮阴(中光强:光照强度为高光强的70%)和深度遮阴(低光强:光照强度为高光强的30%).在低对比度异质性光强条件下(分株对的一个分株不遮阴,另一个分株中度遮阴),大米草遮阴分株的叶片数、根长和生物量均显著高于同质中度遮阴处理,而无遮阴分株各生长指标与同质无遮阴处理相比均无显著差异.因此,在低对比度异质性光强下,大米草受体(遮阴)分株通过克隆整合显著受益;同时,对供体(非遮阴)分株没有显著的耗损.然而,在高对比度处理下(分株对的一个分株不遮阴,另一个分株深度遮阴),克隆整合对受体(遮阴)分株的效应不显著.大米草的克隆整合并不随着光强对比度的增加而增加.在自然生境中度遮阴情况下,克隆整合可以提高大米草的生长和克隆繁殖能力,但在深度遮阴情况下,克隆整合对大米草适应性的作用可能很小.  相似文献   

9.
基于根系形态可塑性的空心莲子草克隆分工特征   总被引:1,自引:0,他引:1  
资源在空间和时间上不均匀分布现象往往形成资源异质性斑块,克隆植物凭借强大的侧向生长能力占据广阔空间,分株间的生理连接促进了其对异质性生境的适应。克隆分株首先通过资源获取结构的功能特化来提高从各种资源富养斑块中的养分获取,然后通过克隆整合作用实现分株间的养分传输,这种功能特化和资源共享模式被称为‘分工’。该文以入侵克隆植物空心莲子草(Alternanthera philoxeroides)为研究对象,研究其根系对资源异质性分布的形态可塑性响应;通过调节光照强度和土壤养分来实现资源的异质性分布,共设置4个处理:1近端分株高光低养—远端分株高光低养(HL-HL),2近端分株低光高养—远端分株低光高养(LH-LH),3近端分株高光低养—远端分株低光高养(HL-LH),4近端分株低光高养—远端分株高光低养(LH-HL);使用WinRHIZO Pro软件分析相关根系指标,SPSS 18.0单因素方差(one-way ANOVA)分析方法分析异质性条件对近、远端分株以及整个克隆片段的影响。结果表明:异质性斑块中经历高光低养的分株分配更多的生物量到地上部分,经历低光高养的分株分配更多的生物量到地下部分,空心莲子草通过调整对地上和地下部分的生物量分配比例实现了克隆分工;异质性斑块中,生长在富养斑块中的空心莲子草分株根系有更高的根生物量、根长、根表面积、根体积以及分枝系数等,表明空心莲子草分株根系通过对异质性斑块的形态可塑性变化提高了土壤养分的吸收能力。由此可见,空心莲子草通过对资源获取结构的功能特化提高了其资源吸收能力,这可能是其具强入侵能力的重要原因。  相似文献   

10.
生境异质性是自然生态系统的基本特征,植物生长的必需资源和环境胁迫因子均存在着复杂的时间和空间异质性。克隆植物是指在自然条件下具有克隆特性的植物,即可通过与母株相连的芽、根茎、分蘖或枝条等繁殖体产生无性繁殖的植物,这些繁殖体一旦定居便可成为潜在的独立个体。克隆植物具有独特的生境适应策略(如形态可塑性、克隆整合、克隆分工、觅食行为、风险分摊等),面对异质性的生境条件,它可以通过调整自身的生理和形态结构来适应异质生境。目前,对于克隆植物在异质生境适应行为的研究已有很多报道,然而系统性的归纳和总结尚有欠缺。综述了克隆植物在不同资源异质生境(光照、养分、水分)和不同胁迫生境(盐碱胁迫、风沙胁迫、重金属胁迫)下独特的适应对策。最后,针对克隆植物对异质生境的适应对策,进行了总结并对未来的重点研究方向提出建议:(1)时间异质性尺度上的考量;(2)异质性生境中生物因子的调控作用;(3)克隆植物入侵机制;(4)克隆植物在生态修复中的应用潜力。  相似文献   

11.
Physiological integration has been documented in many clonal plants growing under resource heterogeneity. Little is still known about the response of physiological integration to heterogeneous ultraviolet-B radiation. In this paper, the changes in intensity of physiological integration and of physiological parameters under homogeneous and heterogeneous ultraviolet-B radiation (280-315 nm) were measured in order to test the hypothesis that in addition to resource integration a defensive integration in Trifolium repens might exist as well. For this purpose, homogeneous and heterogeneous ultraviolet-B radiation was applied to pairs of connected and severed ramets of the stoloniferous herb Trifolium repens. Changes in intensity of water and nutrient integration were followed with acid fuchsin dye and 15N-isotope labeling of the xylem water transport. In order to assess the patterns of physiological integration contents of chlorophyll, ultraviolet-B absorbing compounds, soluble sugar and protein were determined and activities of superoxide dismutase (SOD) and peroxidase (POD) measured. When ramets were connected and exposed to heterogeneous UV-B radiation, the velocity of water transportation from the UV-B treated ramet to its connected sister ramet was markedly lower and the percentage of 15N left in labelled ramets that suffered from enhanced UV-B radiation was higher and their transfer to unlabelled ramets lower. In comparison with clones under homogeneous ultraviolet-B radiation, the content of chlorophyll, ultraviolet-B absorbing compounds, soluble sugar and activities of SOD and POD increased notably if ultraviolet-B stressed ramets were connected to untreated ramets. Chlorophyll and UV-B absorbing compounds were shared between connected ramets under heterogeneous UV-B radiation. This indicated that physiological connection improved the performance of whole clonal plants under heterogeneous ultraviolet-B radiation. The intensity of physiological integration of T. repens for resources decreased under heterogeneous ultraviolet-B radiation in favor of the stressed ramets. Ultraviolet-B stressed ramets benefited from unstressed ramets by physiological integration, supporting the hypothesis that clonal plants are able to optimize the efficiency of their resistance maintaining their presence also in less favorable sites. The results could be helpful for further understanding of the function of heterogeneous UV-B radiation on growth regulation and microevolution in clonal plants.  相似文献   

12.
Several studies have found the photosynthetic integration in clonal plants to response to resource heterogeneity, while little is known how it responses to heterogeneity of UV-B radiation. In this study, the effects of heterogeneous UV-B radiation (280–315 nm) on gas exchange and chlorophyll fluorescence of a clonal plant Trifolium repens were evaluated. Pairs of connected and severed ramets of the stoloniferous herb T. repens were grown under the homogeneity (both of ramets received only natural background radiation, ca. 0.6 kJ m−2 d−1) and heterogeneity of UV-B radiation (one of the ramet received only natural background radiation and the other was exposed to supplemental UV-B radiation, 2.54 kJ m−2 d−1) for seven days. Stomatal conductance (g s), intercellular CO2 concentration (C i) and transpiration rate (E) showed no significant differences in connected and severed ramets under homogenous and heterogeneous UV-B radiation, however, net photosynthetic rate (P N) and maximum photosynthetic rate (P max) of ramets suffered from supplemental increased UV-B radiation and that of its connected sister ramet decreased significantly. Moreover, additive UV-B radiation resulted in a notable decrease of the minimal fluorescence of dark-adapted state (Fo), the electron transport rate (ETR) and photochemical quenching coefficient (qP) and an increase of nonphotochemical quenching (NPQ) under supplemental UV-B radiation, while physiological connection reverse the results. In all, UV-B stressed ramets could benefit from unstressed ramets by physiological integration in photosynthetic efficiency, and clonal plants are able to optimize the efficiency to maintain their presence in less favourable sites.  相似文献   

13.

Background and Aims

One of the most striking attributes of clonal plants is their capacity for physiological integration, which enables movement of essential resources between connected ramets. This study investigated the capacity of physiological integration to buffer differences in resource availability experienced by ramets of the clonal wild strawberry plant, Fragaria vesca. Specifically, a study was made of the responses of connected and severed offspring ramets growing in environments with different water availability conditions (well watered or water stressed) and nitrogen forms (nitrate or ammonium).

Methods

The experimental design consisted of three factors, ‘integration’ (connected, severed) ‘water status’ (well watered, water stressed) and ‘nitrogen form’ (nitrate, ammonium), applied in a pot experiment. The effects of physiological integration were studied by analysing photochemical efficiency, leaf spectral reflectance, photosynthesis and carbon and nitrogen isotope discrimination, the last of which has been neglected in previous studies.

Key Results

Physiological integration buffered the stress caused by water deprivation. As a consequence, survival was improved in water-stressed offspring ramets that remained connected to their parent plants. The nitrogen isotope composition (δ15N) values in the connected water-stressed ramets were similar to those in ramets in the ammonium treatment; however, δ15N values in connected well-watered ramets were similar to those in the nitrate treatment. The results also demonstrated the benefit of integration for offspring ramets in terms of photochemical activity and photosynthesis.

Conclusions

This is the first study in which carbon and nitrogen isotopic discrimination has been used to detect physiological integration in clonal plants. The results for nitrogen isotope composition represent the first evidence of preferential transport of a specific form of nitrogen to compensate for stressful conditions experienced by a member clone. Water consumption was lower in plants supplied with ammonium than in plants supplied with nitrate, and therefore preferential transport of ammonium from parents to water-stressed offspring could potentially optimize the water use of the whole clone.  相似文献   

14.
Sui Y  He W  Pan X  Dong M 《Annals of botany》2011,107(4):693-697

Background and Aims

Mechanical stimulation (MS) often induces plants to undergo thigmomorphogenesis and to synthesize an array of signalling substances. In clonal plants, connected ramets often share resources and hormones. However, little is known about whether and how clonal integration influences the ability of clonal plants to withstand MS. We hypothesized that the effects of MS may be modulated by clonal integration.

Methods

We conducted an experiment in which ramet pairs of Leymus secalinus were subjected to three treatments: (1) connected ramet pairs under a homogeneous condition [i.e. the proximal (relatively old) and distal (relatively young) ramets were not mechanically stressed]; (2) connected ramet pairs under a heterogeneous condition (i.e. the proximal ramet was mechanically stressed but the distal ramet was not); and (3) disconnected ramet pairs under the same condition as in treatment 2. At the end of the experiment, we harvested all plants and determined their biomass and allocation.

Key Results

Clonal integration had no significant influence on measured traits of distal L. secalinus ramets without MS. However, under MS, plants with distal ramets that were connected to a mother ramet produced more total plant biomass, below-ground biomass, ramets and total rhizome length than those that were not connected. Partial MS exerted local effects on stimulated ramets and remote effects on connected unstimulated ramets. Partial MS increased total biomass, root/shoot ratio, number of ramets and total rhizome length of stimulated proximal ramets, and increased total biomass, root weight ratio, number of ramets and total rhizome length of connected unstimulated ramets due to clonal integration.

Conclusions

These findings suggest that thigmomorphogenesis may protect plants from the stresses caused by high winds or trampling and that thigmomorphogenesis can be strongly modulated by the degree of clonal integration.  相似文献   

15.
The capacity to exchange resources and non-resource agents is one of the most outstanding features of clonal plants. Contrast between patches in a heterogeneous environment is the main external driving force behind integration effects. It was hypothesized, on the basis of the source–sink hypothesis, that assimilate demand from drought-stressed ramets will result in enhancement of the photosynthesis of well-watered ramets by a mechanism of feedback regulation, that the negative effect of drought on the photosynthesis of drought-stressed ramets will be ameliorated by physiological integration, and that these effects will be enhanced by increasing contrast. A pot experiment was conducted with clonal fragments consisting of two interconnected ramets of Fragaria orientalis. In the experiment, both the connected and the disconnected clonal fragments were divided into three water contrast groups: (1) homogeneous (no contrast) group; (2) low-contrast group; (3) high-contrast group. The photosynthesis and stress tolerance of drought-stressed ramets did not decrease under the support of well-watered ramets when they were connected, allowing clones to maintain their performance in less favorable environments. But the photosynthesis and stress tolerance of drought-stressed ramets decreased with increasing drought-stress when stolons were disconnected. With a feedback regulation process, the photosynthesis of well-watered ramets connected to drought-stressed ramets was enhanced by the latter, which can compensate, at least partially, for the cost of maintaining the stressed ramets. Drought-stressed ramets gained more benefits in a high-contrast environment than in a lower-contrast environment; this can enhance the survival of drought-stressed ramets in unfavorable habitats, especially stressed patches that would otherwise be unexploitable by independent ramets. But photosynthesis of well-watered ramets did not increase with increasing water availability contrast. It can be concluded that photosynthesis and stress tolerance of F. orientalis was affected by clonal integration and by contrasts of water availability.  相似文献   

16.
廖咏梅  雷泞菲  陈劲松   《广西植物》2006,26(5):503-506
通过盆栽实验,研究了匍匐茎草本野草莓在异质性光照条件下的克隆整合。结果显示克隆整合显著增强了野草莓胁迫分株段的生长,损—益分析表明未受胁迫分株没有显著损耗,整个克隆片段的生长得到显著提高。在局部遮荫处理,克隆整合对克隆形态可塑性的修饰作用没有观察到。最后,讨论了克隆植物对环境的生态适应意义。  相似文献   

17.
Most work on clonal growth in plants has focused on the advantages of clonality in heterogeneous habitats. We hypothesized (1) that physiological integration of connected ramets within a clone can also increase plant performance in homogeneous environments, (2) that this effect depends on whether ramets differ in ability to take up resources, and (3) that only ramets with relatively low uptake ability benefit. We tested these hypotheses using the perennial amphibious herb Alternanthera philoxeroides. We grew clonal fragments and varied numbers of rooted versus unrooted ramets, connection between the apical and basal parts of fragments, and availability of nitrogen. Patterns of final size and mass of fragments did not support these hypotheses. By some measures, severance did reduce the growth of more apical ramets and increase the growth of less apical ones, consistent with net apical transfer of resources. Rooting of individual ramets strongly influenced their growth: second and third most apical ramets each grew most when they were the most apical rooted ramet, and this pattern was more pronounced under higher nitrogen levels. This adds to the evidence that signalling between ramets is an important aspect of clonal integration. Overall, the results indicate that physiological integration between ramets within clones in homogeneous environments can alter the allocation of resources between connected ramets even when it does not affect the total growth of clonal fragments.  相似文献   

18.
To explore the mechanisms underlying water regulation in clonal plants and its effects on carbon assimilation under water stress, we studied the responses of water status, gas exchange and abscisic acid (ABA) contents to water stress in leaves of pairs of strawberry ramets that consist of mother and daughter ramets. There was a greater decrease in photosynthetic rates (Pn) and stomatal conductance (Gs) in the disconnected mother ramets than the connected mother ramets upon exposure to water stress, indicating that water stress in mother ramets was alleviated by water translocation from the well‐watered daughter ramets. Conversely, the connected mother ramets displayed enhanced symptoms of water stress when the connected daughter ramets were exposed to water deficit. The mother ramets had lower water potential (ψw) due to their stronger osmotic adjustment than in well‐watered daughter ramets; this resulted in water flow from the connected daughter ramets to mother ramets, thus alleviating water stress of mother ramets. During soil drying, there was a striking increase in ABA concentrations in leaves of the disconnected mother ramets, whereas leaf bulk ABA was much lower in the connected and water‐stressed mother ramets than that in the drought‐affected mother ramets in the disconnected group. In this study, though Gs was linearly correlated with leaf bulk ABA and ψw, Gs in water‐stressed mother ramets in disconnected group exhibited less sensitivity to the variation in leaf bulk ABA and ψw than that in connected and water‐stressed mother ramets. Taken together, these results indicate that: (1) the flux of water translocation between the connected ramets is determined by a water potential gradient; (2) water translocation between connected ramets helps to keep sensitivity of Gs to ABA and ψw in drought‐affected ramets, thereby benefit to effectively maintain the homeostasis of leaf water status and (3) the improvements in Pn in water‐stressed ramets due to water translocation from well‐watered ramets suggest the advantages of physiological integration in clonal plants in environments with heterogeneous water distribution.  相似文献   

19.
Background and Aims The advantage of clonal integration (resource sharing between connected ramets of clonal plants) varies and a higher degree of integration is expected in more stressful and/or more heterogeneous habitats. Clonal facultative epiphytes occur in both forest canopies (epiphytic habitats) and forest understories (terrestrial habitats). Because environmental conditions, especially water and nutrients, are more stressful and heterogeneous in the canopy than in the understorey, this study hypothesizes that clonal integration is more important for facultative epiphytes in epiphytic habitats than in terrestrial habitats.Methods In a field experiment, an examination was made of the effects of rhizome connection (connected vs. disconnected, i.e. with vs. without clonal integration) on survival and growth of single ramets, both young and old, of the facultative epiphytic rhizomatous fern Selliguea griffithiana (Polypodiaceae) in both epiphytic and terrestrial habitats. In another field experiment, the effects of rhizome connection on performance of ramets were tested in small (10 × 10 cm2) and large (20 × 20 cm2) plots in both epiphytic and terrestrial habitats.Key Results Rhizome disconnection significantly decreased survival and growth of S. griffithiana in both experiments. The effects of rhizome disconnection on survival of single ramets and on ramet number and growth in plots were greater in epiphytic habitats than in terrestrial habitats.Conclusions Clonal integration contributes greatly to performance of facultative epiphytic ferns, and the effects were more important in forest canopies than in forest understories. The results therefore support the hypothesis that natural selection favours genotypes with a higher degree of integration in more stressful and heterogeneous environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号