首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 209 毫秒
1.
Cadherins are the primary adhesion molecules in adherens junctions and desmosomes and play essential roles in embryonic development. Although significant progress has been made in understanding cadherin structure and function, we lack a clear vision of how cells confer plasticity upon adhesive junctions to allow for cellular rearrangements during development, wound healing and metastasis. Endocytic membrane trafficking has emerged as a fundamental mechanism by which cells confer a dynamic state to adhesive junctions. Recent studies indicate that the juxtamembrane domain of classical cadherins contains multiple endocytic motifs, or “switches,” that can be used by cellular membrane trafficking machinery to regulate adhesion. The cadherin‐binding protein p120‐catenin (p120) appears to be the master regulator of access to these switches, thereby controlling cadherin endocytosis and turnover. This review focuses on p120 and other cadherin‐binding proteins, ubiquitin ligases, and growth factors as key modulators of cadherin membrane trafficking.   相似文献   

2.
The formation of distinct subdomains of the cell surface is crucial for multicellular organism development. The most striking example of this is apical‐basal polarization. What is much less appreciated is that underpinning an asymmetric cell surface is an equally dramatic intracellular endosome rearrangement. Here, we review the interplay between classical cell polarity proteins and membrane trafficking pathways, and discuss how this marriage gives rise to cell polarization. We focus on those mechanisms that regulate apical polarization, as this is providing a number of insights into how membrane traffic and polarity are regulated at the tissue level.   相似文献   

3.
Cell polarity genes have important functions in photoreceptor morphogenesis. Based on recent discovery of stabilized microtubule cytoskeleton in developing photoreceptors and its role in photoreceptor cell polarity, microtubule associated proteins might have important roles in controlling cell polarity proteins' localizations in developing photoreceptors. Here, Tau, a microtubule associated protein, was analyzed to find its potential role in photoreceptor cell polarity. Tau colocalizes with acetylated/stabilized microtubules in developing pupal photoreceptors. Although it is known that tau mutant photoreceptor has no defects in early eye differentiation and development, it shows dramatic disruptions of cell polarity proteins, adherens junctions, and the stable microtubules in developing pupal photoreceptors. This role of Tau in cell polarity proteins' localization in photoreceptor cells during the photoreceptor morphogenesis was further supported by Tau's overexpression studies. Tau overexpression caused dramatic expansions of apical membrane domains where the polarity proteins localize in the developing pupal photoreceptors. It is also found that Tau's role in photoreceptor cell polarity depends on Par‐1 kinase. Furthermore, a strong genetic interaction between tau and crumbs was found. It is found that Tau has a crucial role in cell polarity protein localization during pupal photoreceptor morphogenesis stage, but not in early eye development including eye cell differentiation.  相似文献   

4.
Our understanding of how membrane trafficking pathways function to direct morphogenetic movements and the planar polarization of developing tissues is a new and emerging field. While a central focus of developmental biology has been on how protein asymmetries and cytoskeletal force generation direct cell shaping, the role of membrane trafficking in these processes has been less clear. Here, we review recent advances in Drosophila and vertebrate systems in our understanding of how trafficking events are coordinated with planar cytoskeletal function to drive lasting changes in cell and tissue topologies. We additionally explore the function of trafficking pathways in guiding the complex interactions that initiate and maintain core PCP (planar cell polarity) asymmetries and drive the generation of systematically oriented cellular projections during development.   相似文献   

5.
The creation of cellular tubes is one of the most vital developmental processes, resulting in the formation of most organ types. Cells have co‐opted a number of different mechanisms for tube morphogenesis that vary among tissues and organisms; however, generation and maintenance of cell polarity is fundamental for successful lumenogenesis. Polarized membrane transport has emerged as a key driver not only for establishing individual epithelial cell polarity, but also for coordination of epithelial polarization during apical lumen formation and tissue morphogenesis. In recent years, much work has been dedicated to identifying membrane trafficking regulators required for lumenogenesis. In this review we will summarize the findings from the past couple of decades in defining the molecular machinery governing lumenogenesis both in 3D tissue culture models and during organ development in vivo.   相似文献   

6.

Background

Planar cell polarity (PCP) is a phenomenon in which epithelial cells are polarized along the plane of a tissue. PCP is critical for a variety of developmental processes and is regulated by a set of evolutionarily conserved PCP signaling proteins. Many of the PCP proteins adopt characteristic asymmetric localizations on the opposing cellular boundaries. Currently, the molecular mechanisms that establish and maintain this PCP asymmetry remain largely unclear. Newly synthesized integral PCP proteins are transported along the secretory transport pathway to the plasma membranes. Once delivered to the plasma membranes, PCP proteins undergo endocytosis. Recent studies reveal insights into the intracellular trafficking of PCP proteins, suggesting that intracellular trafficking of PCP proteins contributes to establishing the PCP asymmetry.

Objective

To understand the intracellular trafficking of planar cell polarity proteins in the secretory transport pathway and endocytic transport pathway.

Methods

This review summarizes our current understanding of the intracellular trafficking of PCP proteins. We highlights the molecular mechanisms that regulate sorting of PCP proteins into transport vesicles and how the intracellular trafficking process regulates the asymmetric localizations of PCP proteins.

Results

Current studies reveal novel insights into the molecular mechanisms mediating intracellular trafficking of PCP proteins. This process is critical for delivering newly synthesized PCP proteins to their specific destinations, removing the unstable or mislocalized PCP proteins from the plasma membranes and preserving tissue polarity during proliferation of mammalian skin cells.

Conclusion

Understanding how PCP proteins are delivered in the secretory and endocytic transport pathway will provide mechanistic insights into how the asymmetric localizations of PCP proteins are established and maintained.
  相似文献   

7.
POU‐V class proteins like Oct4 are crucial for keeping cells in an undifferentiated state. An Oct4 homologue in Xenopus laevis, Oct25, peaks in expression during early gastrulation, when many cells are still uncommitted. Nevertheless, extensive morphogenesis is taking place in all germ layers at that time. Phenotypical analysis of embryos with Oct25 overexpression revealed morphogenesis defects, beginning during early gastrulation and resulting in spina‐bifida‐like axial defects. Analysis of marker genes and different morphogenesis assays show inhibitory effects on convergence and extension and on mesoderm internalization. On a cellular level, cell–cell adhesion is reduced. On a molecular level, Oct25 overexpression activates expression of PAPC, a functional inhibitor of the cell adhesion molecule EP/C‐cadherin. Intriguingly, Oct25 effects on cell–cell adhesion can be restored by overexpression of EP/C‐cadherin or by inhibition of the PAPC function. Thus, Oct25 affects morphogenesis via activation of PAPC expression and subsequent functional inhibition of EP/C‐cadherin.  相似文献   

8.
Herpes simplex virus 1 (HSV1) is an enveloped virus that uses undefined transport carriers for trafficking of its glycoproteins to envelopment sites. Screening of an siRNA library against 60 Rab GTPases revealed Rab6 as the principal Rab involved in HSV1 infection, with its depletion preventing Golgi‐to‐plasma membrane transport of HSV1 glycoproteins in a pathway used by several integral membrane proteins but not the luminal secreted protein Gaussia luciferase. Knockdown of Rab6 reduced virus yield to 1% and inhibited capsid envelopment, revealing glycoprotein exocytosis as a prerequisite for morphogenesis. Rab6‐dependent virus production did not require the effectors myosin‐II, bicaudal‐D, dynactin‐1 or rabkinesin‐6, but was facilitated by ERC1, a factor involved in linking microtubules to the cell cortex. Tubulation and exocytosis of Rab6‐positive, glycoprotein‐containing membranes from the Golgi was substantially augmented by infection, resulting in enhanced and targeted delivery to cell tips. This reveals HSV1 morphogenesis as one of the first biological processes shown to be dependent on the exocytic activity of Rab6.   相似文献   

9.
Investigating the mechanisms controlling the asymmetric division of neocortical progenitors that generate neurones in the mammalian brain is crucial for understanding the abnormalities of cortical development. Partitioning of fate determinants is a key instructive step and components of the apical junctional complex (adherens junctions), including the polarity proteins PAR3 and aPKC as well as adhesion molecules such as N‐cadherin, have been proposed to be candidate determinants. In this study, however, we found no correlation between the partitioning of N‐cadherin and fate determination. Rather, we show that adherens junctions comprise three membrane domains, and that during asymmetrical division these are split such that both daughters retain the adhesive proteins that control cell position, but only one daughter inherits the polarity proteins along with the apical membrane. This provides a molecular explanation as to how both daughters remain anchored to the ventricular surface after mitosis, while adopting different fates.  相似文献   

10.
Hepatocytes display a unique biaxial polarity with shared apical luminal connections between adjacent hepatocytes that merge into a network of bile canaliculi. Belicova et al. (2021. J. Cell Biol. https://doi.org/10.1083/jcb.202103003) discovered that hepatocyte apical membranes generate Rab35-dependent extensions that traverse the lumen and are essential for bile canalicular formation and maintenance.

Many crucial functions of the hepatocyte, the predominant liver cell, are dependent on its unique “biaxial” polarity (1)—none more so than the generation and secretion of bile. Hepatocytes receive nutrients from venous blood via sinusoids and secrete bile into bile canaliculi (BC) that merge into larger ducts lined with cholangiocyte epithelial cells with simple “vectorial” polarity (1). Any disturbance in this complicated minute irrigation system can lead to severe and often fatal disease (2). Better understanding of the molecular mechanism of liver parenchymal morphogenesis will uncover therapeutic targets essential for developing effective treatments.Hepatocyte membrane molecular exchange is extremely efficient due to the highly expanded canalicular surface and transporter proteins specifically localized to canalicular or basolateral membranes. Moreover, each hepatocyte generates multiple apices by creating connections with several adjacent hepatocytes. BC-like structures can be mimicked when cells are cultured in 3D; hepatocyte apical connections can become confluent and form continuous BC channels (3). Several pathways have been proposed to play key roles in BC morphogenesis such as mitosis, cytokinesis and endosomal trafficking (4, 5, 6), nevertheless the mechanistic studies are lacking. Belicova and colleagues set out to investigate the basic mechanisms for BC formation (7).The authors generated a cell model of lumen morphogenesis by terminally differentiating primary mouse hepatoblasts isolated from embryonic livers into hepatocytes. The cultured differentiated cells were able to generate BC structures. Using time-lapse microscopy, it was possible to observe how single hepatocytes formed the initial individual lumina by interacting with neighboring cells. From a small point contact, the lumina elongated spanning the whole surface of the cell–cell interaction. Astonishingly, the authors detected in real-time how two lumina fused and thus created an elongated channel (Fig. 1 A). Furthermore, one lumen could branch forming a three-cell contact. At the same time, to their great surprise, they saw stripes being formed in a transverse direction to the lumen elongation. The stripes contained a high concentration of F-actin and were localized as projections into the BC lumen rather than formations outside of it.Open in a separate windowFigure 1.Rab35 impacts the BC formation and stability. (A) WT levels of Rab35 allow the formation of bulkheads in the BC lumen facilitating the hepatocyte biaxial polarity and elongation of BC between neighboring hepatocytes. The formed BC have a radii <6 µm and are not divided into discrete compartments by the bulkheads. (B) Reduction of Rab35 expression by RNA interference leads to bulkheads decreasing in size. This creates luminal bile duct–like structures with radii >6 µm surrounded by 4–5 conical shape hepatocytes. TJ, tight junctions.The authors then used EM and 3D reconstruction of serial sections to establish the nature of these newly discovered intracanalicular projections. The reconstructions showed that each cell participating in a luminal contact generated projections that met in the middle of the lumen and their connection was sealed by tight junctions (TJs) thus forming a structure that completely traversed the BC lumen. They hypothesized that such structure would provide additional tensile strength to the luminal wall just like bulkheads strengthen a boat shell against pressure. Belicova et al. found that the processes they named “bulkheads” had plate-/ridge-like 3D shapes and never completely isolated the BC compartments, thus allowing continuous bile flow along the canaliculus. To test whether bulkheads were present in vivo, they studied EM sections of embryonic day 15.5 (E15.5) and adult mouse livers as well as cultured primary mouse hepatocytes. The 3D reconstruction again showed the presence of bulkheads that originated from the opposing hepatocyte luminal membranes and their contact points sealed by the TJs.To understand whether bulkheads are essential for BC morphogenesis and the molecular mechanisms governing their formation, the authors performed an RNAi screen in their BC cell model. They selected 25 genes of potential interest due to their known involvement in hepatocyte polarity pathways such as apical junction formation, cytoskeleton regulation, and polarized trafficking. One of the identified phenotypes was seen to be of particular interest. The knockdown of small GTPase Rab35 did not affect cell polarity marker localization but changed lumen morphology (Fig. 1 B). Silencing of Rab35 produced elongated tubes with increased radius and large cysts that were still connected to the remaining BCs and their appearance resembled formations of cholangiocytes, although they did not express cholangiocyte marker Sox9. Reintroduction of Rab35 reduced the lumen to the original size.Live-cell time-lapse microscopy was used to investigate the function of Rab35 in BC morphogenesis. Rab35 is typically an endosomal protein, and in the liver cell model it was enriched at the apical surface, lateral plasma membrane, and cytoplasmic vesicles. Moreover, it was also present at the transverse connections within forming lumina. Upon Rab35 depletion, hepatocytes reshaped their apical surface, forming multicellular cysts lined by cells with vectorial polarity. This spherical expansion of the lumen was associated with the absence of actin-rich bulkheads.To test whether the cell model findings stay true in vivo, they targeted E13.5 mouse embryo livers, injecting lipid nanoparticle-coated siRNA against Rab35. 3D tissue reconstruction showed the changes in tissue architecture in siRNA-injected livers in striking detail. As predicted, large tubule formation was seen in contrast to the normal BCs seen in the mock-injected liver parenchyma. The 3D analysis demonstrated that the enlargement of the tubular lumina was not due to pure dilatation but the tissue reorganisation from typical biaxial polarity into a bile duct–like structure with vectorial polarity where multiple (4–5 in number) cells lined the single lumen (Fig. 1 B). Furthermore, the cells changed shape from a typical hepatocyte octagon to a conical profile while they still expressed the usual hepatocyte markers and not those typical of cholangiocytes.Bile canalicular morphogenesis requires anisotropy of surface tension and/or rigidity of the wall to progress from the initial point contact of apical surfaces of the two adjacent hepatocytes toward elongation, branching, and fusion with other canalicular lumina (8). The authors discovered that presence of transverse connections (bulkheads) was associated with maintenance of narrow lumen, which elongates under inner pressure. Thus, similar to their use in boatbuilding, BC bulkheads provide mechanical stability to the elongating BC lumen. It is possible that bulkheads could provide directionality to the bile flow in liver parenchyma. Positional location of the bulkheads may be determined by the sensing mechanisms coupled to the tension and curvature through actin mesh. Primary cilia are assigned a function in sensing directional flow and controlling tissue morphogenesis. Unlike cholangiocytes and many other epithelial cells, hepatocytes lack cilia and the molecular components of the tension sensing mechanism in hepatocytes remain to be determined.Belicova and colleagues showed that Rab35 is required for bulkhead formation and hepatocyte lumen shape. Rab35 was previously found to regulate endosomal recycling and thus it may control intracellular trafficking of proteins required for bulkhead formation, such as the components of TJs. It may also support the fusion of the two projections along the T-shaped TJs. Furthermore, the authors report that their unpublished observations suggest that clusters of Rab35-positive vesicles are seen at the base of the bulkhead, and it may coordinate trafficking and organize actin cytoskeleton or regulate actin remodelling as previously described in neurons (9).Elucidation of the mechanism of hepatocyte canalicular morphogenesis is one of the important research questions highly relevant to understanding the basic processes in both healthy and diseased liver. Liver cirrhosis was one of the top 10 causes of death in low- and middle-income countries in 2019 (10). Cirrhotic changes in the liver architecture include destruction of BC, and the new information provided by Belicova and colleagues may eventually lead to discoveries of effective treatments for devastating liver diseases.  相似文献   

11.
Epithelial cadherin (E‐cadherin) is a 120 kDa cell–cell adhesion molecule involved in the establishment of epithelial adherens junctions. It is connected to the actin cytoskeleton by adaptor proteins such as β‐catenin. Loss of E‐cadherin expression/function has been related to tumor progression and metastasis. Several molecules associated with down‐regulation of E‐cadherin have been described, within them neural cadherin, Twist and dysadherin. Human breast cancer cell lines IBH‐6 and IBH‐4 were developed from ductal primary tumors and show characteristic features of malignant epithelial cells. In this study expression of E‐cadherin and related proteins in IBH‐6 and IBH‐4 cell lines was evaluated. In IBH‐6 and IBH‐4 cell extracts, only an 89 kDa E‐cadherin form (Ecad89) was detected, which is truncated at the C‐terminus and is present at low levels. Moreover, no accumulation of the 86 kDa E‐cadherin ectodomain and of the 38 kDa CTF1 fragment was observed. IBH‐6 and IBH‐4 cells showed an intracellular scattered E‐cadherin localization. β‐catenin accompanied E‐cadherin localization, and actin stress fibers were identified in both cell types. E‐cadherin mRNA levels were remarkably low in IBH‐6 and IBH‐4 cells. The E‐cadherin mRNA and genomic sequence encoding exons 14–16 could not be amplified in either cell line. Neither the mRNA nor the protein of neural cadherin and dysadherin were detected. Up‐regulation of Twist mRNA was found in both cell lines. In conclusion, IBH‐6 and IBH‐4 breast cancer cells show down‐regulation of E‐cadherin expression with aberrant protein localization, and up‐regulation of Twist; these features can be related to their invasive/metastatic characteristics. J. Cell. Physiol. 222: 596–605, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Chen G  Rogers AK  League GP  Nam SC 《PloS one》2011,6(1):e16127

Background

Cell polarity genes including Crumbs (Crb) and Par complexes are essential for controlling photoreceptor morphogenesis. Among the Crb and Par complexes, Bazooka (Baz, Par-3 homolog) acts as a nodal component for other cell polarity proteins. Therefore, finding other genes interacting with Baz will help us to understand the cell polarity genes'' role in photoreceptor morphogenesis.

Methodology/Principal Findings

Here, we have found a genetic interaction between baz and centrosomin (cnn). Cnn is a core protein for centrosome which is a major microtubule-organizing center. We analyzed the effect of the cnn mutation on developing eyes to determine its role in photoreceptor morphogenesis. We found that Cnn is dispensable for retinal differentiation in eye imaginal discs during the larval stage. However, photoreceptors deficient in Cnn display dramatic morphogenesis defects including the mislocalization of Crumbs (Crb) and Bazooka (Baz) during mid-stage pupal eye development, suggesting that Cnn is specifically required for photoreceptor morphogenesis during pupal eye development. This role of Cnn in apical domain modulation was further supported by Cnn''s gain-of-function phenotype. Cnn overexpression in photoreceptors caused the expansion of the apical Crb membrane domain, Baz and adherens junctions (AJs).

Conclusions/Significance

These results strongly suggest that the interaction of Baz and Cnn is essential for apical domain and AJ modulation during photoreceptor morphogenesis, but not for the initial photoreceptor differentiation in the Drosophila photoreceptor.  相似文献   

13.
14.
Planar cell polarity (PCP) controls the orientation of cells within tissues and the polarized outgrowth of cellular appendages. So far, six PCP core proteins including the transmembrane proteins Frizzled (Fz), Strabismus (Stbm) and Flamingo (Fmi) have been identified. These proteins form asymmetric PCP domains at apical junctions of epithelial cells. Here, we demonstrate that VhaPRR, an accessory subunit of the proton pump V‐ATPase, directly interacts with the protocadherin Fmi through its extracellular domain. It also shows a striking co‐localization with PCP proteins during all pupal wing stages in Drosophila. This localization depends on intact PCP domains. Reversely, VhaPRR is required for stable PCP domains, identifying it as a novel PCP core protein. VhaPRR performs an additional role in vesicular acidification as well as endolysosomal sorting and degradation. Membrane proteins, such as E‐Cadherin and the Notch receptor, accumulate at the surface and in intracellular vesicles of cells mutant for VhaPRR. This trafficking defect is shared by other V‐ATPase subunits. By contrast, the V‐ATPase does not seem to have a direct role in PCP regulation. Together, our results suggest two roles for VhaPRR, one for PCP and another in endosomal trafficking. This dual function establishes VhaPRR as a key factor in epithelial morphogenesis.  相似文献   

15.
Alibardi, L. 2011. Cell junctions during morphogenesis of feathers: general ultrastructure with emphasis on adherens junctions. —Acta Zoologica (Stockholm) 92 : 89–100. The present ultrastructural and immunocytochemical study analyzes the cell junctions joining barb/barbule cells versus cell junctions connecting supportive cells in forming feathers. Differently from the epidermis or the sheath, desmosomes are not the prevalent junctions among feather cells. Numerous adherens junctions, some gap junctions and fewer tight junctions are present among differentiating barb/barbule cells during early stages of their differentiation. Adherens junctions are frequent also among differentiating supportive cells and show weak immunolabeling for both N‐cadherin and neural‐cell adhesion molecule (N‐CAM). Differentiating barb and barbule cells do not show labeled junctions for N‐cadherin and N‐CAM. The labeling occurs at patches in the cytoplasm of supportive cells but is more frequently seen in the external cytoplasm and along the extra‐cellular space (glycocalix) covering the plasma membrane of supportive cells. Labeling for N‐cadherin is also found in medium‐dense 0.1‐ to 0.3‐μm granules present in supportive cells and sometimes is associated with coarse filaments or periderm granules. The study indicates that adherens junctions form most of the transitional connections among supportive cells before their degeneration. Keratinizing barb and barbule cells loose the labeling for adherens junctions (N‐CAM and N‐chaderin) while their adhesion is strengthened by the incorporation of cell junctions in the corneous mass forming the barbules.  相似文献   

16.
The establishment and maintenance of cell polarity is important to a wide range of biological processes ranging from chemotaxis to embryogenesis. An essential feature of cell polarity is the asymmetric organization of proteins and lipids in the plasma membrane. In this article, we discuss how polarity regulators such as small GTP-binding proteins and phospholipids spatially and kinetically control vesicular trafficking and membrane organization. Conversely, we discuss how membrane trafficking contributes to cell polarization through delivery of polarity determinants and regulators to the plasma membrane.Cell polarity is essential in most if not all eukaryotes for their development and physiological functions at the tissue and organism level. Although there are significant differences in gross morphology and function among various tissues and organisms, at the cellular level, the establishment and maintenance of cell polarity tend to follow common themes.A basic feature of cell polarity is the asymmetric organization of the plasma membrane (see McCaffrey and Macara 2009; Nelson 2009). This is mostly achieved through membrane trafficking along cytoskeleton tracks under the control of signaling molecules. In general, membrane trafficking occurs through sequential budding, transport, and fusion of vesicles from donor membranes to acceptor membranes (for recent reviews, see Bonifacino and Glick 2004; Cai et al. 2007). During budding, protein complexes interact with phospholipids to induce membrane curvature and generate vesicular carriers that capture different cargos from the donor compartments. After vesicles form, they are delivered to their acceptor compartments, most often along the cytoskeletons. Vesicle fusion at the acceptor membrane is mediated by the assembly of SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors) complexes. Before membrane fusion, proteins or protein complexes tether the vesicles to the acceptor membranes and likely promote SNARE assembly. The Arf and Rab family of small GTPases are localized to different membrane compartments and regulate various stages of membrane trafficking.Polarized distribution of proteins at the plasma membrane often results from a balance of vesicle delivery and fusion with the plasma membrane (“exocytosis”), two-dimensional spread through the plasma membrane (“diffusion”), and internalization and membrane recycling (“endocytosis”). There are two main layers of regulation that control polarized protein transport and incorporation to the plasma membrane. The first involves sorting at the trans-Golgi network (TGN) and endosomal compartments, such as the recycling endosomes. Protein sorting involves recognition of sorting signals in the cargo proteins by the adaptor protein (AP) complexes. There are a number of different AP complexes, and each is localized to different membrane compartments and captures distinct sets of cargo proteins before targeting to their correct destination. Protein sorting before delivery to different domains of the plasma membrane has been best characterized in epithelial cells, which have distinctive basolateral and apical domains separated by junctional complexes. This layer of regulation has been discussed in a recent review (Mellman and Nelson 2008) and is further discussed by Nelson (Nelson 2009), so it will not be discussed further here. The second layer of regulation of membrane protein polarization is through the polarized tethering and docking of vesicles at specific domains of the plasma membrane (Fig. 1). Tethering proteins (i.e., the exocyst) target secretory vesicles to specific domains of the plasma membrane and SNARE assembly eventually drives membrane fusion. Proteins at the plasma membrane can be retrieved back into the cell via endocytosis. These proteins are internalized via clathrin-coated pits, and transported through different endosomal compartments either for degradation in the lysosomes or for recycling back to the plasma membrane. The endosomal compartment that mediates the transport of internalized plasma membrane proteins back to the cell surface is called the “recycling endosome.” Recycling endosomes are major sources of cargo destined to the plasma membrane for exocytosis in many types of cells.Open in a separate windowFigure 1.Membrane trafficking to the plasma membrane. Schematic of the endocytic and exocytic routes involving trans-Golgi network (TGN), endosomal compartments, and the plasma membrane. During exocytosis, cargo leaves the TGN or recycling endosomes in vesicular carriers to the plasma membrane. Once on the membrane, proteins can be internalized and transported to early endosomes, and then either travel through late endosomes to the lysosome to be degraded or return to the plasma membrane through the recycling endosomes. Early endosomes may serve as sorting stations for the next stages of cargo transport.Signaling molecules such as the Rho family of small GTPases spatially and kinetically regulate membrane trafficking during cell polarization (see McCaffrey and Macara 2009; Slaughter et al. 2009). Reversely, vesicular trafficking is required for the polarized deposition and accrual of these regulators. In the first part of this article, we examine the membrane organization and dynamics of cell polarity, focusing on the polarized tethering and docking of vesicles at the plasma membrane. We highlight key components and regulators of polarized exocytosis including the exocyst, small GTPases, and phospholipids. We also use different organisms and systems to show analogous mechanisms during cell polarization. In the second part of this article, we focus on the aforementioned reciprocal effects of cell polarity and membrane trafficking using two representative examples, one from yeast (Cdc42 polarization) and one in mammalian epithelial cells (E-cadherin trafficking).  相似文献   

17.
Host cytosolic proteins are endocytosed by Toxoplasma gondii and degraded in its lysosome‐like compartment, the vacuolar compartment (VAC), but the dynamics and route of endocytic trafficking remain undefined. Conserved endocytic components and plant‐like features suggest T. gondii endocytic trafficking involves transit through early and late endosome‐like compartments (ELCs) and potentially the trans‐Golgi network (TGN) as in plants. However, exocytic trafficking to regulated secretory organelles, micronemes and rhoptries, also proceeds through ELCs and requires classical endocytic components, including a dynamin‐related protein, DrpB. Here, we show that host cytosolic proteins are endocytosed within 7 minutes post‐invasion, trafficked through ELCs en route to the VAC, and degraded within 30 minutes. We could not definitively interpret if ingested protein is trafficked through the TGN. We also found that parasites ingest material from the host cytosol throughout the parasite cell cycle. Ingested host proteins colocalize with immature microneme proteins, proM2AP and proMIC5, in transit to the micronemes, but not with the immature rhoptry protein proRON4, indicating that endocytic trafficking of ingested protein intersects with exocytic trafficking of microneme proteins. Finally, we show that conditional expression of a DrpB dominant negative mutant increases T. gondii ingestion of host‐derived proteins, suggesting that DrpB is not required for parasite endocytosis.   相似文献   

18.

Background

Tissue morphogenesis and organogenesis require that cells retain stable cell-cell adhesion while changing shape and moving. One mechanism to accommodate this plasticity in cell adhesion involves regulated trafficking of junctional proteins.

Methodology/Principal Findings

Here we explored trafficking of junctional proteins in two well-characterized model epithelia, the Drosophila embryonic ectoderm and amnioserosa. We find that DE-cadherin, the transmembrane protein of adherens junctions, is actively trafficked through putative vesicles, and appears to travel through both Rab5-positive and Rab11-positive structures. We manipulated the functions of Rab11 and Rab5 to examine the effects on junctional stability and morphogenesis. Reducing Rab11 function, either using a dominant negative construct or loss of function alleles, disrupts integrity of the ectoderm and leads to loss of adherens junctions. Strikingly, the apical junctional regulator Crumbs is lost before AJs are destabilized, while the basolateral protein Dlg remains cortical. Altering Rab5 function had less dramatic effects, not disrupting adherens junction integrity but affecting dorsal closure.

Conclusions/Significance

We contrast our results with what others saw when disrupting other trafficking regulators, and when disrupting Rab function in other tissues; together these data suggest distinct mechanisms regulate junctional stability and plasticity in different tissues.  相似文献   

19.
VE-cadherin: adhesion at arm's length   总被引:8,自引:0,他引:8  
VE-cadherin was first identified in the early 1990s and quickly emerged as an important endothelial cell adhesion molecule. The past decade of research has revealed key roles for VE-cadherin in vascular permeability and in the morphogenic events associated with vascular remodeling. The details of how VE-cadherin functions in adhesion became apparent with structure-function analysis of the cadherin extracellular domain and with the identification of the catenins, a series of cytoplasmic proteins that bind to the cadherin tail and mediate interactions between cadherins and the cytoskeleton. Whereas early work focused on the armadillo family proteins -catenin and plakoglobin, more recent investigations have identified p120-catenin (p120ctn) and a related group of armadillo family members as key binding partners for the cadherin tail. Furthermore, a series of new studies indicate a key role for p120ctn in regulating cadherin membrane trafficking in mammalian cells. These recent studies place p120ctn at the hub of a cadherin-catenin regulatory mechanism that controls cadherin plasma membrane levels in cells of both epithelial and endothelial origin. endothelial cell; cytoskeleton; -catenin; p120ctn; cell adhesion; vascular endothelial cadherin  相似文献   

20.
MCF7 human breast cancer cells were cultured under normal gravity (1 g) and on a random positioning machine (RPM) preventing sedimentation. After 2 weeks, adherent 1 g‐control and adherent RPM cells (AD) as well as multicellular spheroids (MCS) were harvested. AD and MCS had been exposed to the RPM in the same culture flask. In a subsequent proteome analysis, the majority of the proteins detected showed similar label‐free quantification (LFQ) scores in each of the respective subpopulations, but in both AD or MCS cultures, proteins were also found whose LFQs deviated at least twofold from their counterparts in the 1 g‐control cells. They included the cell junction protein E‐cadherin, which was diminished in MCS cells, where proteins of the E‐cadherin autodegradation pathway were enhanced and c‐Src (proto‐oncogene tyrosine‐protein kinase c‐Src) was detected. Spheroid formation was prevented by inhibition of c‐Src but promoted by antibodies blocking E‐cadherin activity. An interaction analysis of the detected proteins that are involved in forming and regulating junctions or adhesion complexes and in E‐cadherin autodegradation indicated connections between the two protein groups. This suggests that the balance of proteins that up‐ or downregulate E‐cadherin mediates the tendency of MCF7 cells to form MCS during RPM exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号