首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
League GP  Nam SC 《PloS one》2011,6(6):e21218

Background

Crumbs (Crb), a cell polarity gene, has been shown to provide a positional cue for the extension of the apical membrane domain, adherens junction (AJ), and rhabdomere along the growing proximal-distal axis during Drosophila photoreceptor morphogenesis. In developing Drosophila photoreceptors, a stabilized microtubule structure was discovered and its presence was linked to polarity protein localization. It was therefore hypothesized that the microtubules may provide trafficking routes for the polarity proteins during photoreceptor morphogenesis. This study has examined whether Kinesin heavy chain (Khc), a subunit of the microtubule-based motor Kinesin-1, is essential in polarity protein localization in developing photoreceptors.

Methodology/Principal Findings

Because a genetic interaction was found between crb and khc, Crb localization was examined in the developing photoreceptors of khc mutants. khc was dispensable during early eye differentiation and development. However, khc mutant photoreceptors showed a range of abnormalities in the apical membrane domain depending on the position along the proximal-distal axis in pupal photoreceptors. The khc mutant showed a progressive mislocalization in the apical domain along the distal-proximal axis during rhabdomere elongation. The khc mutation also led to a similar progressive defect in the stabilized microtubule structures, strongly suggesting that Khc is essential for microtubule structure and Crb localization during distal to proximal rhabdomere elongation in pupal morphogenesis. This role of Khc in apical domain control was further supported by khc''s gain-of-function phenotype. Khc overexpression in photoreceptors caused disruption of the apical membrane domain and the stabilized microtubules in the developing photoreceptors.

Conclusions/Significance

In summary, we examined the role of khc in the regulation of the apical Crb domain in developing photoreceptors. Since the rhabdomeres in developing pupal eyes grow along the distal-proximal axis, these phenotypes suggest that Khc is essential for the microtubule structures and apical membrane domains during the distal-proximal elongation of photoreceptors, but is dispensable for early eye development.  相似文献   

2.
Chen G  Rogers AK  League GP  Nam SC 《PloS one》2011,6(1):e16127

Background

Cell polarity genes including Crumbs (Crb) and Par complexes are essential for controlling photoreceptor morphogenesis. Among the Crb and Par complexes, Bazooka (Baz, Par-3 homolog) acts as a nodal component for other cell polarity proteins. Therefore, finding other genes interacting with Baz will help us to understand the cell polarity genes'' role in photoreceptor morphogenesis.

Methodology/Principal Findings

Here, we have found a genetic interaction between baz and centrosomin (cnn). Cnn is a core protein for centrosome which is a major microtubule-organizing center. We analyzed the effect of the cnn mutation on developing eyes to determine its role in photoreceptor morphogenesis. We found that Cnn is dispensable for retinal differentiation in eye imaginal discs during the larval stage. However, photoreceptors deficient in Cnn display dramatic morphogenesis defects including the mislocalization of Crumbs (Crb) and Bazooka (Baz) during mid-stage pupal eye development, suggesting that Cnn is specifically required for photoreceptor morphogenesis during pupal eye development. This role of Cnn in apical domain modulation was further supported by Cnn''s gain-of-function phenotype. Cnn overexpression in photoreceptors caused the expansion of the apical Crb membrane domain, Baz and adherens junctions (AJs).

Conclusions/Significance

These results strongly suggest that the interaction of Baz and Cnn is essential for apical domain and AJ modulation during photoreceptor morphogenesis, but not for the initial photoreceptor differentiation in the Drosophila photoreceptor.  相似文献   

3.
Mui UN  Lubczyk CM  Nam SC 《PloS one》2011,6(10):e25965

Background

Crumbs (Crb), a cell polarity gene, has been shown to provide a positional cue for the apical membrane domain and adherens junction during Drosophila photoreceptor morphogenesis. It has recently been found that stable microtubules in developing Drosophila photoreceptors were linked to Crb localization. Coordinated interactions between microtubule and actin cytoskeletons are involved in many polarized cellular processes. Since Spectraplakin is able to bind both microtubule and actin cytoskeletons, the role of Spectraplakin was analyzed in the regulations of apical Crb domain in developing Drosophila photoreceptors.

Methodology/Principal Findings

The localization pattern of Spectraplakin in developing pupal photoreceptors showed a unique intracellular distribution. Spectraplakin localized at rhabdomere terminal web which is at the basal side of the apical Crb or rhabdomere, and in between the adherens junctions. The spectraplakin mutant photoreceptors showed dramatic mislocalizations of Crb, adherens junctions, and the stable microtubules. This role of Spectraplakin in Crb and adherens junction regulation was further supported by spectraplakin''s gain-of-function phenotype. Spectraplakin overexpression in photoreceptors caused a cell polarity defect including dramatic mislocalization of Crb, adherens junctions and the stable microtubules in the developing photoreceptors. Furthermore, a strong genetic interaction between spectraplakin and crb was found using a genetic modifier test.

Conclusions/Significance

In summary, we found a unique localization of Spectraplakin in photoreceptors, and identified the role of spectraplakin in the regulation of the apical Crb domain and adherens junctions through genetic mutational analysis. Our data suggest that Spectraplakin, an actin-microtubule cross-linker, is essential in the apical and adherens junction controls during the photoreceptors morphogenesis.  相似文献   

4.
Spectrins are major proteins in the cytoskeletal network of most cells. In Drosophila, βHeavy‐Spectrin encoded by the karst gene functions together with Crb during photoreceptor morphogenesis. However, the roles of two other Spectrins (α‐ and β‐Spectrins) in developing photoreceptor cells have not been studied. Here, we analyzed the effects of spectrin mutations on developing eyes to determine their roles in photoreceptor morphogenesis. We found that the Spectrins are dispensable for retinal differentiation in eye imaginal discs during larval stage. However, photoreceptors deficient in α‐ or β‐Spectrin display dramatic apical membrane expansions including Crb and show morphogenesis defects during pupal eye development, suggesting that α‐ and β‐Spectrins are specifically required for photoreceptor polarity during pupal eye development. Karst localizes apically, whereas β‐Spectrin is preferentially distributed in the basolateral region. We show that overexpression of β‐Spectrin causes a strong shrinkage of apical membrane domains, and loss of β‐Spectrin causes an expansion of apical domains, implying an antagonistic relationship between β‐Spectrin and Karst. These results indicate that Spectrins are required for controlling photoreceptor morphogenesis through the modulations of cell membrane domains. genesis 47:744–750, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Photoreceptor morphogenesis requires specific and coordinated localization of junctional markers at different stages of development. Here, we provide evidence that Drosophila Klp64D, a homolog of Kif3A motor subunit of the heterotrimeric Kinesin II complex, is essential for viability of developing photoreceptors and localization of junctional proteins. Genetic analysis of mutant clones shows that absence of Klp64D protein in early larval eye disc does not affect initial differentiation, but results in abnormal nuclear position in differentiating photoreceptors. These cells eventually die in the pupal stage, indicating klp64D's role in cell viability. The function of Klp64D protein is cell type specific because the p35 cell death inhibitor can rescue cell death in cone cells but not photoreceptors. In contrast to early induction of mutant clones, late induction during third instar larval stage just prior to pupation allows survival of single‐ or few‐celled clones of klp64D mutant cells. Analysis of these lately induced clones shows that Klp64D function is essential for Bazooka (Par‐3 homolog) and Armadillo localization to the adherens junction (AJ) in pupal photoreceptors. These findings suggest that Kinesin II complex plays a cell type‐specific function in the localization of AJ and cell polarity proteins in the developing retina, thereby contributing to photoreceptor morphogenesis. genesis 48:522–530, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.

Background

Mutations in spastin are the most common cause of hereditary spastin paraplegia, a neurodegenerative disease. In this study, the role of spastin was examined in Drosophila photoreceptor development.

Methodology/Principal Findings

The spastin mutation in developing pupal eyes causes a mild mislocalization of the apical membrane domain at the distal section, but the apical domain was dramatically reduced at the proximal section of the developing pupal eye. Since the rhabdomeres in developing pupal eyes grow from distal to proximal, this phenotype strongly suggests that spastin is required for apical domain maintenance during rhabdomere elongation. This role of spastin in apical domain modulation was further supported by spastin''s gain-of-function phenotype. Spastin overexpression in photoreceptors caused the expansion of the apical membrane domain from apical to basolateral in the developing photoreceptor. Although the localizations of the apical domain and adherens junctions (AJs) were severely expanded, there were no defects in cell polarity.

Conclusions/Significance

These results strongly suggest that spastin is essential for apical domain biogenesis during rhabdomere elongation in Drosophila photoreceptor morphogenesis.  相似文献   

7.
Drosophila eye development is a progressive process including cell fate determination, pattern formation, and rhabdomere morphogenesis. During eye development, a dramatic change in cell shape, which involves turning and extension of the photoreceptor apical surface, occurs in the early pupal stages. It is known that assembly and extension of adherens junctions (AJs) play an important role in this process. In the present study, I show that mutation of the largest subunit of dynactin complexes encoded byGlued (GI) affects the extension and assembly of Ajs in developing photoreceptors. InGl 1/+ mutants and transgenic flies expressing the dominant negative form of Glued, the AJs failed to properly assemble and extend. In addition, the morphogenesis of rhabdomeres was also affected in these flies. Taken together, these results suggest that the extension and assembly of AJs as well as determination of the rhabdomere domain in photoreceptor development areGl dependent.  相似文献   

8.
The cell polarity gene,crumbs (crb), has been shown to participate in the development and degeneration of theDrosophila retina. Mutations inCRB1, the human homologue ofDrosophila crb, also result in retinitis pigmentosa and Leber congential amaurosis. In this study, we used the gain-of-function approach to delineate the roles ofcrb in developingDrosophila eye. In the third-instar larval stage, eye development is initiated with photoreceptor differentiation and positioning of photoreceptor nuclei in the apical cellular compartment of retinal epithelium. In the pupal stage, differentiated photoreceptors begin to form the photosensitive structures, the rhabdomeres, at their apical surface. UsingGMR-Gal4 to drive overexpression of the Crb protein at the third-instar eye disc, we found that differentiation of photoreceptors was disrupted and the nuclei of differentiated photoreceptors failed to occupy the apical compartment. Usinghs-Gal4 to drive Crb overexpression in pupal eyes resulted in interference with extension of the adherens junctions and construction of the rhabdomeres, and these defects were stage-dependent. This gain-of-function study has enabled us to delineate the roles of Crb at selective stages of eye development inDrosophila.  相似文献   

9.
We report that the hindsight (hnt) gene, which encodes a nuclear zinc-finger protein, regulates cell morphology, cell fate specification, planar cell polarity and epithelial integrity during Drosophila retinal development. In the third instar larval eye imaginal disc, HNT protein expression begins in the morphogenetic furrow and is refined to cells in the developing photoreceptor cell clusters just before their determination as neurons. In hnt mutant larval eye tissue, furrow markers persist abnormally posterior to the furrow, there is a delay in specification of preclusters as cells exit the furrow, there are morphological defects in the preclusters and recruitment of cells into specific R cell fates often does not occur. Additionally, genetically mosaic ommatidia with one or more hnt mutant outer photoreceptor cells, have planar polarity defects that include achirality, reversed chirality and misrotation. Mutants in the JNK pathway act as dominant suppressors of the hnt planar polarity phenotype, suggesting that HNT functions to downregulate JUN kinase (JNK) signaling during the establishment of ommatidial planar polarity. HNT expression continues in the photoreceptor cells of the pupal retina. When an ommatidium contains four or more hnt mutant photoreceptor cells, both genetically mutant and genetically wild-type photoreceptor cells fall out of the retinal epithelium, indicating a role for HNT in maintenance of epithelial integrity. In the late pupal stages, HNT regulates the morphogenesis of rhabdomeres within individual photoreceptor cells and the separation of the rhabdomeres of adjacent photoreceptor cells. Apical F-actin is depleted in hnt mutant photoreceptor cells before the observed defects in cellular morphogenesis and epithelial integrity. The analyses presented here, together with our previous studies in the embryonic amnioserosa and tracheal system, show that HNT has a general role in regulation of the F-actin-based cytoskeleton, JNK signaling, cell morphology and epithelial integrity during development.  相似文献   

10.
Establishment and maintenance of apical basal cell polarity are essential for epithelial morphogenesis and have been studied extensively using the Drosophila eye as a model system. Bazooka (Baz), a component of the Par-6 complex, plays important roles in cell polarity in diverse cell types including the photoreceptor cells. In ovarian follicle cells, localization of Baz at the apical region is regulated by Par-1 protein kinase. In contrast, Baz in photoreceptor cells is targeted to adherens junctions (AJs). To examine the regulatory pathways responsible for Baz localization in photoreceptor cells, we studied the effects of Par-1 on Baz localization in the pupal retina. Loss of Par-1 impairs the maintenance of AJ markers including Baz and apical polarity proteins of photoreceptor cells but not the establishment of cell polarity. In contrast, overexpression of Par-1 or Baz causes severe mislocalization of junctional and apical markers, resulting in abnormal cell polarity. However, flies with similar overexpression of kinase-inactive mutant Par-1 or unphosphorylatable mutant Baz protein show relatively normal photoreceptor development. These results suggest that dephosphorylation of Baz at the Par-1 phosphorylation sites is essential for proper Baz localization. We also show that the inhibition of protein phosphatase 2A (PP2A) mimics the polarity defects caused by Par-1 overexpression. Furthermore, Par-1 gain-of-function phenotypes are strongly enhanced by reduced PP2A function. Thus, we propose that antagonism between PP2A and Par-1 plays a key role in Baz localization at AJ in photoreceptor morphogenesis.  相似文献   

11.
Accumulations of Tau, a microtubule‐associated protein (MAP), into neurofibrillary tangles is a hallmark of Alzheimer's disease and other tauopathies. However, the mechanisms leading to this pathology are still unclear: the aggregates themselves could be toxic or the sequestration of Tau into tangles might prevent Tau from fulfilling its normal functions, thereby inducing a loss of function defect. Surprisingly, the consequences of losing normal Tau expression in vivo are still not well understood, in part due to the fact that Tau knockout mice show only subtle phenotypes, presumably due to the fact that mammals express several MAPs with partially overlapping functions. In contrast, flies express fewer MAP, with Tau being the only member of the Tau/MAP2/MAP4 family. Therefore, we used Drosophila to address the physiological consequences caused by the loss of Tau. Reducing the levels of fly Tau (dTau) ubiquitously resulted in developmental lethality, whereas deleting Tau specifically in neurons or the eye caused progressive neurodegeneration. Similarly, chromosomal mutations affecting dTau also caused progressive degeneration in both the eye and brain. Although photoreceptor cells initially developed normally in dTau knockdown animals, they subsequently degenerated during late pupal stages whereas weaker dTau alleles caused an age‐dependent defect in rhabdomere structure. Expression of wild type human Tau partially rescued the neurodegenerative phenotype caused by the loss of endogenous dTau, suggesting that the functions of Tau proteins are functionally conserved from flies to humans. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 1210–1225, 2014  相似文献   

12.
Ten-a is one of the two Drosophila proteins that belong to the Ten M protein family. This protein is a type Ⅱ transmembrane protein and is expressed mainly in the embryonic CNS, in the larval eye imaginal disc and in the compound eye of the pupa. Here, we investigate the role of ten-α during development of the compound eye by using the Gal4/ UAS system to induce ten-α overexpression in the developing eye. We found that overexpression of ten-α can perturb eye development during all stages examined. In an early stage, overexpression of ten-α in eye primordial cells caused small and rough eyes and interfered with photoreceptor cell recruitment, resulting in some ommatidia having fewer or extra photoreceptor cells. Conversely, ten-α overexpression daring ommatidial formation caused severe eye defects due to absence of many cellular components. Interestingly, overexpression of ten-α in the late stage developing ommatidial cluster affected the number of pigment cells, caused cone cells proliferation in many ommatidia, and caused some photoreceptor cell defects. These results suggest that ten-α may be a novel gene required for normal eye morphogenesis.  相似文献   

13.
The neuronal microtubule-associated protein tau plays an important role in establishing cell polarity by stabilizing axonal microtubules that serve as tracks for motor-protein–driven transport processes. To investigate the role of tau in intracellular transport, we studied the effects of tau expression in stably transfected CHO cells and differentiated neuroblastoma N2a cells. Tau causes a change in cell shape, retards cell growth, and dramatically alters the distribution of various organelles, known to be transported via microtubule-dependent motor proteins. Mitochondria fail to be transported to peripheral cell compartments and cluster in the vicinity of the microtubule-organizing center. The endoplasmic reticulum becomes less dense and no longer extends to the cell periphery. In differentiated N2a cells, the overexpression of tau leads to the disappearance of mitochondria from the neurites. These effects are caused by tau''s binding to microtubules and slowing down intracellular transport by preferential impairment of plus-end–directed transport mediated by kinesin-like motor proteins. Since in Alzheimer''s disease tau protein is elevated and mislocalized, these observations point to a possible cause for the gradual degeneration of neurons.  相似文献   

14.
The microtubule-associated protein Tau has its normal function impaired when undergoing post-translational modifications. In this work, molecular modelling techniques were used to infer the effects of acetylation and phosphorylation in Tau's overall conformation, electrostatics, and interactions, but mostly in Tau's ability to bind microtubules. Reported harmful Lys sites were mutated by its acetylated form, generating eight different acetylated Tau (aTau) analogues. Similarly, phosphorylation sites found in normal brains and in Alzheimer’s lesioned brains were considered to design phosphorylated Tau (pTau) analogues. All these designed variants were evaluated in intracellular fluid and near a microtubule (MT) model. Our in silico findings demonstrated that the electrostatic changes, due to the absence of positive Lys’ charges in acetylation cases, or the increasingly negative charge in the phosphorylated forms, hamper the association to the MT tubulins in most cases. Post-translational modifications also pose very distinct conformations to the ones described for native Tau, which hinders the microtubule-binding region (MTBR) and turns difficult the expected binding. Our study elucidates important molecular processes behind Tau abnormal function which can inspire novel therapeutics to address Alzheimer’s disease.  相似文献   

15.
The formation of an anterior-posterior (AP) gradient of microtubules in Drosophila oocytes is essential for specification of the AP axis. Proper microtubule organization in the oocyte requires the function of serine/threonine kinase Par-1. The N1S isoform of Par-1 is enriched at the posterior cortex of the oocyte from stage 7 of oogenesis. Here we report that posterior restriction of Par-1 (N1S) kinase activity is critical for microtubule AP gradient formation. Egg chambers with excessive and ectopic Par-1 (N1S) kinase activity in the germline cells display phenotypes similar to those of egg chambers treated with the microtubule-depolymerizing drug colcemid: depolymerization of microtubules in the oocyte and disruption of oocyte nucleus localization. A phosphorylation target of Par-1, the microtubule-associated protein Tau, is also involved in oocyte polarity formation, and overexpression of Tau alleviates the phenotypes caused by ectopic Par-1 (N1S) kinase activity, suggesting that Par-1 regulates oocyte polarity at least partly through Tau. Our findings reveal that maintaining proper levels of Par-1 at correct position in the oocyte is key to oocyte polarity formation and that the conserved role of Par-1 and Tau is crucial for the establishment of an AP gradient of microtubules and for AP axis specification.  相似文献   

16.
The evolutionary conserved transmembrane protein Crumbs (Crb) regulates morphogenesis of photoreceptor cells in the compound eye of Drosophila and prevents light-dependent retinal degeneration. Here we examine the role of Crb in the ocelli, the simple eyes of Drosophila. We show that Crb is expressed in ocellar photoreceptor cells, where it defines a stalk membrane apical to the adherens junctions, similar as in photoreceptor cells of the compound eyes. Loss of function of crb disrupts polarity of ocellar photoreceptor cells, and results in mislocalisation of adherens junction proteins. This phenotype is more severe than that observed in mutant photoreceptor cells of the compound eye, and resembles more that of embryonic epithelia lacking crb. Similar as in compound eyes, crb protects ocellar photoreceptors from light induced degeneration, a function that depends on the extracellular portion of the Crb protein. Our data demonstrate that the function of crb in photoreceptor development and homeostasis is conserved in compound eyes and ocelli and underscores the evolutionarily relationship between these visual sense organs of Drosophila. The data will be discussed with respect to the difference in apico-basal organisation of these two cell types.  相似文献   

17.
In plants, cortical microtubules anchor to the plasma membrane in arrays and play important roles in cell shape. However, the molecular mechanism of microtubule binding proteins, which connect the plasma membrane and cortical microtubules in cell morphology remains largely unknown. Here, we report that a plasma membrane and microtubule duallocalized IQ67 domain protein, IQD21, is critical for cotyledon pavement cell(PC) morphogenesis in Arabidopsis. iqd21 mutation caused increased indentation wi...  相似文献   

18.
Proper function of visual arrestin is indispensable for rapid signal shut-off in rod photoreceptors. Dramatic light-dependent changes in its subcellular localization are believed to play an important role in light adaptation of photoreceptor cells. Here we show that visual arrestin binds microtubules. The truncated splice variant of visual arrestin, p44, demonstrates dramatically higher affinity for microtubules than the full-length protein (p48). Enhanced microtubule binding of p44 underlies its earlier reported preferential localization to detergent-resistant membranes, where it is anchored via membrane-associated microtubules in a rhodopsin-independent fashion. Experiments with purified proteins demonstrate that arrestin interaction with microtubules is direct and does not require any additional protein partners. Most importantly, arrestin interactions with microtubules and light-activated phosphorylated rhodopsin are mutually exclusive, suggesting that microtubule interaction may play a role in keeping p44 arrestin away from rhodopsin in dark-adapted photoreceptors.  相似文献   

19.
Growing evidence continues to point toward the critical role of beta tubulin isotypes in regulating some intracellular functions. Changes that were observed in the microtubules’ intrinsic dynamics, the way they interact with some chemotherapeutic agents, or differences on translocation specifications of some molecular motors along microtubules, were associated to their structural uniqueness in terms of beta tubulin isotype distributions. These findings suggest that the effects of microtubule associated proteins (MAPs) may also vary on structurally different microtubules. Among different microtubule associated proteins, Tau proteins, which are known as neuronal MAPs, bind to beta tubulin, stabilize microtubules, and consequently promote their polymerizations.In this study, in a set of well controlled experiments, the direct effect of Tau proteins on the polymerization of two structurally different microtubules, porcine brain and breast cancer (MCF7), were tested and compared. Remarkably, we found that in contrast with the promoted effect of Tau proteins on brain microtubules’ polymerization, MCF7 expressed a demoted polymerization while interacting with Tau proteins. This finding can potentially be a novel insight into the mechanism of drug resistance in some breast cancer cells.It has been reported that microtubules show destabilizing behavior in some MCF7 cells with overexpression of Tau protein when treated with a microtubules’ stabilizing agent, Taxol. This behavior has been classified by others as drug resistance, but it may instead be potentially caused by a competition between the destabilizing effect of the Tau protein and the stabilizing effect of the drug on MCF7 microtubules. Also, we quantified the polarization coefficient of MCF7 microtubules in the presence and absence of Tau proteins by the electro-orientation method and compared the values. The two significantly different values obtained can possibly be one factor considered to explain the effect of Tau proteins on the polymerization of MCF7 microtubules.  相似文献   

20.
《Fly》2013,7(4):235-237
Apical basal cell polarity is a fundamental feature of all epithelial cells. Identification of the genes involved in the polarization of epithelial cells has begun to reveal the mechanisms underlying the establishment and maintenance of cell polarity. An important issue is to understand the molecular basis for localization of cell polarity proteins in the context of the developing organism. Bazooka (Baz, Drosophila homolog of Par-3) plays a crucial role in organizing cell polarity in several different tissues. In the ovarian follicle epithelium, Par-1 protein kinase regulates Baz localization to the apical cell cortex by excluding phosphorylated Baz from the lateral region. In photoreceptor cells of retinal epithelium, Baz is targeted to the adherens junction (AJ) instead of the apical domain. Our study suggests that in photoreceptors, Par-1 blocks the localization of Baz to AJ whereas protein phosphatase 2A (PP2A) promotes Baz localization by antagonizing the Par-1 effects. In this extra view, we provide a brief overview and perspective of our findings on the antagonistic function of Par-1 and PP2A in Baz localization during photoreceptor morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号