首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
太湖梅梁湾大型控藻围栏对浮游甲壳动物群落结构的影响   总被引:1,自引:0,他引:1  
2005年对太湖梅梁湾大型鲢、鳙控藻围栏内外浮游甲壳动物群落结构的季节变化进行了监测.结果表明:围栏内外的环境因子、浮游植物生物量、浮游甲壳动物种类组成无显著差异.但鲢、鳙放养对浮游甲壳动物的生物量产生了较大的影响,围栏内浮游甲壳动物的总生物量和枝角类的生物量显著低于围栏外.总体上,枝角类各种类的生物量受鲢、鳙放养的影响程度大于桡足类的种类.太湖梅梁湾浮游甲壳动物的季节演替明显,大部分种类只是季节性出现.冬季和春季以溞(Daphnia sp.)和近邻剑水蚤(Cyclops vicnus)等大型种类为主,夏季和秋季以象鼻溞(Bosmina sp.)、角突网纹溞(Ceriodaphnia cornuta)和中华窄腹剑水蚤(Limnoithona sinensis)等小型种类为主.典范对应分析表明,透明度、温度和浮游植物的生物量是影响浮游甲壳动物季节变化的主要因素.  相似文献   

2.
A combination of enclosure nutrient enrichment experiments and historical data analysis was used to identify the factors controlling seasonal dynamics and competition of the phytoplankton community in the Curonian lagoon (Southeast Baltic Sea). Experiments using different nutrient (N, P and Si) manipulations were performed in 10-l enclosures for 48 h. Changes in chlorophyll a concentrations, inorganic nutrient concentrations, and plankton cell density were monitored. Results revealed that phytoplankton development in the lagoon is strongly affected by ambient physical factors (wind, temperature). Nutrient limitation, however, also plays an important role in seasonal succession mechanisms showing quite distinct seasonal development patterns. Based on the data, available phytoplankton seasonal succession in the Curonian lagoon could be described as composed by three phases corresponding to different domination and regulatory mechanisms.  相似文献   

3.
Summary The seasonal succession of the plankton in the marine brackish Lake Grevelingen, a closed sea arm in the S.W.-Netherlands, comprises the initial stagessensu Margalef and is characterized by predominantly small phytoplankton (flagellates, diatoms) and zooplankton (rotifers, tintinnids, copepods), maintaining relatively high levels of production from early spring (February) to late summer (September). The structure of the plankton in the course of seasonal succession is in agreement with the concepts of Margalef.Simplification of the pelagic food web in Lake Grevelingen has occurred as a consequence of the elimination of the tides. Some examples are given in relation to the composition of the phyto- and zooplankton and of its significance. The occurrence of rotifer-dominated zooplankton blooms in early spring is emphasized.Closed sea arms such as Lake Grevelingen, showing the same morphometry as the previous tidal estuary, contain extended shallow areas which influence strongly the pelagic zone. The abundance in the zooplankton of larval stages of several littoral-benthic species demonstrate these influences clearly. The shallows of the lake, occupied by eelgrass beds (Zostera marina) in summer, influence the pelagic zone in several ways: large quantities of detritus are given off after the growing season, sheltered habitats are supplied for small pelagic animals, and eelgrass leaves represent a substrate for epifauna species.Contribution no. 168 of the Delta Institute for Hydrobiological Research.  相似文献   

4.
1. Zooplankton density and biomass was examined in a Danube River floodplain section with highly variable hydrological dynamics. Temporal patterns were analysed to assess the effects of hydrological conditions on zooplankton community structure and the differential response of the two major zooplankton taxa, rotifers and crustaceans.
2. Calculated floodplain water age was used as an integrated parameter describing hydrological conditions and connectivity.
3. Total zooplankton biomass, crustacean biomass and crustacean species number were significantly positively related to water age. Rotifer biomass followed a hump-shaped relationship with water age, and rotifer species number decreased with increasing water age.
4. Rotifers dominated the community in periods of low to medium water ages. In periods of higher water ages the community was dominated by crustaceans.
5. We propose that the hydrological regime of floodplains is crucial for zooplankton biomass patterns and succession, through the alternation of washing-out effects, taxon-specific potential of reproduction and biological interactions. Flood events and high water levels reset the community to an early successional phase.  相似文献   

5.
鄱阳湖浮游甲壳动物群落结构特征   总被引:8,自引:3,他引:5  
刘宝贵  刘霞  吴瑶  钟正  陈宇炜 《生态学报》2016,36(24):8205-8213
鄱阳湖是中国第一大淡水湖,具有"丰水为湖,枯水为河"的独特特点。为探讨鄱阳湖浮游甲壳动物群落结构及其时空分布的特征,于2009年全年采集其不同季节、不同水位期的浮游甲壳动物样品进行定量分析。结果显示,鄱阳湖浮游甲壳动物群落结构总体与河流浮游甲壳群落具有相似性。无节幼体、象鼻溞、剑水蚤等河流优势类群在鄱阳湖浮游甲壳动物中占优势;而哲水蚤和溞属仅在低水位季节占优势,枝角类丰度仅在高温、高水位、流速缓的季节高过桡足类。丰水期浮游甲壳动物平均丰度和生物量远远高于枯水期,可达枯水期的50倍,差异极其显著(P0.01)。温度和水位变化引起的环境因子改变是导致鄱阳湖浮游甲壳动物发生季节演替的主要原因;而营养盐对浮游甲壳动物的影响并不显著。空间上浮游甲壳动物群落构成明显不同,年均丰度最高和最低的点均出现在河口地区。因此:对于换水周期短,水交换速率快的水体,应该充分考虑水文条件对生物的影响。  相似文献   

6.

The seasonal dynamics of river phytoplankton was analyzed using succession rate indices based on data collected from year-round observations of two small plain rivers in the Upper Ob Basin (Western Siberia). The study revealed a generally clear seasonal pattern of structural changes in the phytoplankton of the lower reaches of the studied rivers. The dynamics of succession rate indices reflects the key events in the life of phytoplankton in the Bolshaya Losikha and Barnaulka Rivers, showing mainly changes in the dominant species during the main phases of the hydrological cycle. The most significant changes in phytoplankton structure tend to occur in the period between the spring flood decline and the beginning of summer–autumn low water. These changes coincide with the most drastic changes in both environmental conditions and phytoplankton successional stages. Use of succession rate indices to analyze the seasonal dynamics of phytoplankton allowed us to distinguish between periods of abrupt change and periods of comparatively low-intensity changes in plankton composition in small lowland temperate rivers.

  相似文献   

7.
A prominent response of temperate aquatic ecosystems to climate warming is changes in phenology – advancements or delays in annually reoccurring events in an organism's life cycle. The exact seasonal timing of warming, in conjunction with species-specific life-history events such as emergence from resting stages, timing of spawning, generation times, or stage-specific prey requirements, may determine the nature of a species' response. We demonstrate that recent climate-induced shifts in the phenology of lake phytoplankton and zooplankton species in a temperate eutrophic lake (Müggelsee, Germany) differed according to differences in their characteristic life cycles. Fast-growing plankton in spring (diatoms, Daphnia ) showed significant and synchronous forward movements by about 1 month, induced by concurrent earlier ice break-up dates (diatoms) and higher spring water temperature ( Daphnia ). No such synchrony was observed for slow-growing summer zooplankton species with longer and more complex life cycles (copepods, larvae of the mussel Dreissena polymorpha ). Although coexisting, the summer plankton responded species specifically to seasonal warming trends, depending on whether the timing of warming matched their individual thermal requirements at decisive developmental stages such as emergence from diapause (copepods), or spawning ( Dreissena ). Others did not change their phenology significantly, but nevertheless, increased in abundances. We show that the detailed seasonal pattern of warming influences the response of phyto- and zooplankton species to climate change, and point to the diverse nature of responses for species exhibiting complex life-history traits.  相似文献   

8.
Within the framework of the international research project MELMARINA, seasonal dynamics of plankton communities in three North African coastal lagoons (Merja Zerga, Ghar El Melh, and Lake Manzala) were investigated. The sampling period extended from July 2003 to September 2004 with the aim of evaluating hydrological and other influences on the structure, composition and space-time development of these communities in each lagoon. Phytoplankton in Merja Zerga showed a quasi-permanent predominance of marine diatoms in the open sea station and in the marine inlet channel. Dinoflagellates were abundant in summer and early autumn in the marine inlet and extended into the central lagoon station. In Ghar El Melh, marine species (especially diatoms and dinoflagellates) dominated despite occasional winter inflows of freshwater. In Lake Manzala, freshwater species generally predominated and the planktonic communities were comparatively very diverse. Chlorophyceae contributed 39% of the total species recorded and diatoms and cyanophyceans were also common; the Dinophyceae, Euglenophyceae, Chrysophyceae and Cryptophyceae less so. Zooplankton communities in both Ghar El Melh and Merja Zerga were dominated by marine copepods. Rotifera, Copepoda, Ostracoda, and Cladocera were recorded in both lagoons as were meroplanktonic larvae of Polychaeta, Cirripedia, Mysidacea and Gastropoda and free living nematodes. Ghar El Melh was the more productive of these two lagoons with spring and early summer being the productive seasons. Zooplankton communities in Lake Manzala were generally dominated by rotifers and highest zooplankton abundances occurred in April (2003). Sampling stations near the marine inlets showed the highest diversity and the zooplankton communities showed considerable spatial variation within this large lagoon. The three lagoons represent very different water bodies contrasted strongly in terms of tidal effects and freshwater availability. Yet, there are some similarities in ecosystem structure. Space-time development of the plankton communities was similar especially in Merja Zerga and Ghar El Melh. Species abundances and specific diversities indicated that seasonal changes in salinity and nutrient concentrations were the main influential factors. Lake Manzala was the most productive lagoon and all the three sites supported toxic algal species. Relatively low plankton biomass in Merja Zerga and Ghar El Melh probably resulted from a combination of factors including highly episodic nutrient inputs, light suppression (by turbidity) and nutrient competition with benthic algae. Water quality variables were largely driven by the hydrological regime specific to each lagoon. Nutrient enrichment and, particularly for Lake Manzala, sea level rise threaten the sustainability of the planktonic ecosystems in all three lagoons. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guest editors: J. R. Thompson & R. J. Flower Hydro-ecological Monitoring and Modelling of North African Coastal Lagoons  相似文献   

9.
陈星  叶麟  谭路  蔡庆华 《水生生物学报》2020,44(5):1070-1079
为了解三峡水库蓄水后期香溪河库湾浮游甲壳动物群落结构及其时空变化, 于2015年1月至2017年12月对香溪河库湾浮游甲壳动物进行了逐月采样分析。共鉴定出浮游甲壳动物23种, 其中枝角类10种, 桡足类13种。出现频率较高的物种均为长江流域常见种, 生物量和密度峰值分别出现在5月和6月, 在1月和2月则未能采集到标本, 生物量和密度在年际间差异显著, 但群落组成差异不显著, 群落季节变化规律表现为春季-夏季以蚤状溞(Daphnia pulex)和僧帽溞(Daphnia cucullata)大型枝角类占优势, 秋季以简弧象鼻溞(Bosmina coregoni)小型种占优势。库中生物多样性指数高于库首和库尾, 库首和库尾生物多样性指数差异不明显, 生物多样性在季节上同样具有一定差异。CCA分析表明水温、叶绿素浓度和水深是解释浮游甲壳动物群落变化重要因素。我们的研究结果表明尽管香溪河库湾营养盐、水温、浮游甲壳动物生物量和密度均未达到稳定状态, 但群落组成在年际间无显著性差异, 浮游甲壳动物物种丰富度也高于蓄水初期, 生物多样性指数存在一定的时空差异, 适当程度的干扰有利于维持浮游甲壳动物较高的生物多样性。  相似文献   

10.
D. Straile 《Oecologia》2000,122(1):44-50
The timing of various plankton successional events in Lake Constance was tightly coupled to a large-scale meteorological phenomenon, the North Atlantic Oscillation (NAO). A causal chain of meteorological, hydrological, and ecological processes connected the NAO as well as winter and early spring meteorological conditions to planktonic events in summer leading to a remarkable memory of climatic effects lasting over almost half a year. The response of Daphnia to meteorological forcing was most probably a direct effect of altered water temperatures on daphnid growth and was not mediated by changes in phytoplankton concentrations. High spring water temperatures during ”high-NAO years” enabled high population growth rates, resulting in a high daphnid biomass as early as May. Hence, a critical Daphnia biomass to suppress phytoplankton was reached earlier in high-NAO years yielding an early and longer-lasting clear-water phase. Finally, an earlier summer decline of Daphnia produced in a negative relationship between Daphnia biomass in July and the NAO. Meteorological forcing of the seasonal plankton dynamics in Lake Constance included simple temporal shifts of processes and successional events, but also complex changes in the relative importance of different mechanisms. Since Daphnia plays an important role in plankton succession, a thorough understanding of the regulation of its population dynamics provides the key for predictions of the response of freshwater planktonic food webs to global climate change. Received: 15 February 1999 / Accepted: 23 August 1999  相似文献   

11.
To examine the seasonal succession of the entire zooplankton community in Lake Biwa, zooplankton biomass (on an areal basis) and its distribution patterns among crustaceans, rotifers and ciliates were studied in the north basin from April 1997 to June 1998. Seasonal changes in phytoplankton and population dynamics of Daphnia galeata were also examined to assess food condition and predation pressure by fish. From March to November, crustaceans dominated zooplankton biomass, but rotifers and ciliates were dominant from December to February. Among crustaceans, Eodiaptomus japonicus was the most abundant species, followed by D. galeata. Zooplankton biomass increased from January to a peak in early April, just before the spring bloom of phytoplankton, then decreased in mid-April when mortality rate of D. galeata increased. From mid-June, zooplankton increased and maintained a high level until the beginning of November. During this period, both birth and mortality rates of D. galeata were relatively high and a number of rotifer and crustacean species were observed. However, their abundances were very limited except for E. japonicus which likely preys on ciliates and rotifers. In Lake Biwa, food sources other than phytoplankton, such as resuspended organic matter from the sediments, seems to play a crucial role in zooplankton succession from winter to early spring, while zooplankton community seems to be regulated mainly by fish predation from summer to fall.  相似文献   

12.
The number of individuals and species of zooplankton were sampled concurrently with Hydrilla biomass and water quality for one year in a small, eutrophic central Florida lake. Throughout the study, rotifer species and individuals dominated the zooplankton. The abundance of the zooplankton tended to remain high when Hydrilla biomass was at its seasonal low during late winter and early spring. When hydrilla growth increased in the late spring and summer months causing a decrease in total alkalinity, specific conductivity, water color, turbidity, orthophosphate and chlorophyll a concentrations; the abundance of the zooplankton declined. During this time, there was a shift from limnetic to littoral species, principally rotifers. Hydrilla growth did not affect the mean number of cladoceran or copepod species, but may have led to an increase in rotifer species.  相似文献   

13.
1. The role of seasonal phenology in the emergence of zooplankton from diapause in patterns of seasonal abundance in the water column was investigated in Oneida Lake, New York. Replicate emergence traps, placed in contact with the lake sediments at two locations (one at a shallow site and one at a deep site), were monitored between May and August.
2. Although six rotifer taxa showed a clear seasonal succession in the water column throughout the study period, all but one taxon emerged exclusively in spring. Three cladoceran and three calanoid copepod species, also present in the water column throughout the study period, again showed predominantly spring emergence. In contrast, three cyclopoid copepod species had distinct seasonal periods of emergence that corresponded, at least in part, to the timing of abundance peaks in the plankton.
3. These results for a single lake are largely consistent with patterns observed or inferred by other investigators for other lakes: variable dependence of abundance in the plankton on diapause emergence for species with long-lived diapausing eggs (i.e. rotifers, cladocerans and calanoid copepods), and much closer dependence for species with short-lived diapausing immature stages (i.e. cyclopoid copepods).  相似文献   

14.
中国近海浮游动物群落结构及季节变化   总被引:21,自引:0,他引:21  
杜明敏  刘镇盛  王春生  张东声  章菁 《生态学报》2013,33(17):5407-5418
2006年7-8月、12月-2007年2月、2007年4-5月、2007年10-12月,对中国近海进行了4个航次生物、化学和水文等专业综合调查.根据采集的浮游动物样品分析鉴定结果,对中国近海浮游动物群落结构、种类组成及优势种的季节变化进行研究.结果表明,中国近海浮游动物有1330种,隶属于7门19大类群,浮游幼体47类,其中,节肢动物为最优势类群,有782种,占58.80%,其次为刺胞动物,有324种,占24.36%.在浮游动物群落结构中,4个海区均以桡足类和水母类的种类和数量占绝对优势.中国近海4个海区浮游动物种类数有明显季节变化,渤海和黄海,浮游动物种类数夏、秋季多于春、冬季;东海和南海,浮游动物种类数春、夏季多于秋、冬季.中国近海浮游动物群落大体可划分为6个主要生态类群:近岸低盐类群、低温高盐类群、高温高盐类群、低温广盐类群、高温广盐类群和广温广盐类群.结合同步调查的其它生物、水文、化学环境参数的分析结果,对中国近海浮游动物群落种类丰度与环境因子进行生物与环境变量关系分析,结果表明,浮游动物群落结构与水温、盐度、水深、溶解氧、硝酸盐和pH存在明显相关关系.水温和盐度是影响浮游动物群落结构最重要的两个环境因子.  相似文献   

15.
In Lake Volvi, phytoplankton dominance was examined in relation to the main phases of the fluctuating physical state of the water column and nutrient levels. Four stages of algal succession were identified. The successional pattern was, in general, similar from year to year. External disturbances such as increased wind mixing and high floods had the effect of setting the succession back to an earlier stage.Nanoplanktic diatoms and flagellates dominated during the first stages of succession. The succession was running from r-selected species in early stages to K-strategists in summer and towards a mixed community in the terminal stage.Diversity was expressed by the indices of Gleason and Shannon (based on physical units and biomass). Interpretation of species diversity took into account the differential variations of its two components, the number of species and the evenness of their distribution. Diversity was more affected by evenness than by number of species.Diversity increased in late stages of succession corresponding to the complexity of the community (high number of species, high evenness). Physical disturbances influenced positively the diversity. The maximal diversity appeared in the transition periods between the compositional changes generated by disturbances and the true successional development. Disturbances may generate a more uniform distribution of diversity throughout the whole water column.The role of physical disturbances in increasing the phytoplankton diversity may be demonstrated from comparisons of diversity — evenness — species number of the same stages under different meteorological conditions.  相似文献   

16.
象山港春、夏季大中型浮游动物空间异质性   总被引:5,自引:0,他引:5  
为探明象山港大中型浮游动物空间分布特征及主要影响因素,分别于2010年4月、7月大、小潮期对浮游动物群落和相关环境因子进行调查。四个航次共检出浮游动物成体14大类64种、浮游幼体10大类14种,春、夏季群落结构差异极显著(P=0.001),物种更替率为66.7%,优势种差异明显,共同优势种仅有短尾类溞状幼虫(Brachyura zoea)和仔鱼(Fish larvae)两类幼体;同一季节大、小潮物种相似度约为60%,群落结构差异较小(P=0.031);春季生物量和丰度高于夏季,但物种多样性低于夏季。温度是浮游动物群落季节变化的主导因素。方差分析、聚类和多维尺度分析显示:浮游动物群落空间异质性分布方式受潮流影响,群落结构在大潮期梯度分布特征明显,小潮期通常呈斑块性分布;生物量、丰度和多样性等参数的空间分布取决于群落的分布特征,并受影响于该参数在狭湾口内外的差异。典范对应分析及环境参数统计分析表明:梯度分布主要由盐度、悬浮物的梯度性特征决定;主导斑块性分布的因素多样,不同情况下可能为水深、叶绿素a、营养盐和内外水团相互作用;梯度性和斑块性分布均受到潮流影响。总体来看,象山港浮游动物空间分布主要受水文因素控制,受化学和生物因素影响较弱,其中叶绿素a浓度仅在春季与浮游动物丰度有一定相关性,溶解氧、酸碱度和营养盐等水质参数对浮游动物空间分布几乎无直接影响。  相似文献   

17.
Abstract Using microscopic analysis of faecal pellets, we compared the seasonal and successional patterns of food resource use of two Australian native rodents, the eastern chestnut mouse (Pseudomys gracilicaudatus) and the swamp rat (Rattus lutreolus) in a coastal heathland at Myall Lakes National Park, New South Wales. Using the Mantel test, the diets of the two mammal species were significantly different in autumn and winter but not in spring and summer. Further, the two species showed differential use of resources at the young and middle-aged stages of vegetation succession following fire. The mean dietary overlaps for pairs of individuals between the two species were relatively high in all seasons and successional stages, but they were significantly lower than those for pairs of individuals within each species in autumn and winter, and at the young and middle successional stages. Analysis of dietary niche position (γ) and breadth (β) showed lower γ and larger β for P. gracilicaudatus than for R. lutreolus, confirming previous observations that R. lutreolus is more specialized, and less opportunistic in diet than P. gracilicaudatus. Overall, the dietary separations of the two species were less marked in canonical space than they were for specific seasons and successional stages. These results, together with previous studies, indirectly suggest that while these two mammal species may be partitioning diet in autumn and winter in the middle stages, for spring and summer in the old successional stage they might need to partition habitats to facilitate their coexistence. Our results indicate that the local community is more dynamic and complex than previously thought and that other mechanisms of coexistence (e.g. temporal rotation of food resources) may be operating rather than traditional habitat and diet separation.  相似文献   

18.
The development of periphyton community structure by exchange of organisms between substratum and water column (noninteractive mechanism) and by interspecific competition for surface (interactive mechanism) was studied during seasonal succession in Akulovsky water supply channel (the Upper Volga basin). The influence of exchange was assumed by similarity between the species composition of plankton and periphyton. At early stages of succession when the diatoms dominated in periphyton the community was formed mainly by phytoplankton sedimentation, while the competition for substratum didn't result in decrease of species diversity because the poor competitors were partly displaced by new colonists from the water column. Later when the green filamentous algae abundantly developed in periphyton, their numbers were probably controlled by factors not related to exchange of propagules. At the same time, the species structure of secondary periphyton cover developing on the thallus of filamentous algae depended mainly on the plankton sedimentation. At the last stages of seasonal succession when periphyton was represented by colonies of cyanobacteria and diatoms closely covering the substratum, the exchange of organisms between substratum and water column was not so important as interspecific competition for surface. As one could suppose, increase in biomass in this period resulted in the decrease of specificity as it was predicted by hypothesis of interactive community. In such a way, both mechanisms (interactive and noninteractive ones) took part in development of periphyton structure. Their relative influence changed in the course of seasonal succession.  相似文献   

19.
20.
The zooplankton-phytoplankton interactions inthe Kuršių Marios lagoon (southeastern Baltic Sea)were investigated in 1995. The objective was toevaluate the role of herbivores (crustaceanzooplankton) in the seasonal succession ofphytoplankton, as well as the influence of foodconditions on structure and dynamics of zooplanktoncommunity. Our results demonstrated that thecrustacean grazing pressure may restrict thedevelopment of small Chlorophyta and Diatomophyceaeand, in turn, favouring growth of Cyanobacteria.Blooms of filamentous Cyanobacteria possibly has aninhibitory effect for Daphnia, decreasing theirbiomass as well possibly explaining the shift ofdominant zooplankton species. The influence ofplanktivory on seasonal plankton succession remainsunclear because of lack of fish data. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号