首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patients with ER/HER2-positive breast cancer have a poor prognosis and are less responsive to selective estrogen receptor modulators; this is presumably due to the crosstalk between ER and HER2. Fatty acid synthase (FASN) is essential for the survival and maintenance of the malignant phenotype of breast cancer cells. An intimate relationship exists between FASN, ER and HER2. We hypothesized that FASN may be the downstream effector underlying ER/HER2 crosstalk through the PI3K/AKT/mTOR pathway in ER/HER2-positive breast cancer. The present study implicated the PI3K/AKT/mTOR pathway in the regulation of FASN expression in ER/HER2-positive breast cancer cells and demonstrated that rapamycin, an mTOR inhibitor, inhibited FASN expression. Cerulenin, a FASN inhibitor, synergized with rapamycin to induce apoptosis and inhibit cell migration and tumorigenesis in ER/HER2-positive breast cancer cells. Our findings suggest that inhibiting the mTOR-FASN axis is a promising new strategy for treating ER/HER2-positive breast cancer.  相似文献   

2.
目的:探究Rab11a在胰腺癌中的表达模式及其对肿瘤生长和转移的影响。方法:通过免疫组织化学法、RT-PCR和Western blot检测60例胰腺癌患者的癌组织和癌旁组织中Rab11a的表达。通过对人胰腺癌细胞系PANC1转染靶向Rab11a的小干扰RNA或过表达Rab11a的pcDNA3.1质粒考察Rab11a对细胞增殖、凋亡、迁移和侵袭的影响。通过Western blot检测PANC1细胞中PI3K、AKT、Ras、MEK、ERK1/2和GSK3β的磷酸化水平。结果:胰腺癌组织中Rab11a的表达水平均高于癌旁组织(P<0.05)。Rab11a的表达水平与TNM分期和淋巴结转移有关(P<0.05)。CCK-8测试和细胞集落形成实验显示,下调Rab11a抑制了PANC1细胞的增殖(P<0.05)。流式细胞术显示,下调Rab11a促进了PANC1细胞的凋亡(P<0.05)。细胞划痕实验显示,下调Rab11a抑制了PANC1细胞的迁移能力(P<0.05)。Matrigel Transwell实验显示,下调Rab11a抑制了PANC1细胞的侵袭能力(P<0.05)。然而,上调Rab11a则促进了PANC1细胞的增殖、迁移和侵袭,并抑制了细胞凋亡(P<0.05)。蛋白质印迹分析显示,下调Rab11a抑制了PANC1细胞中PI3K/AKT和Ras/MEK/ERK信号通路的活化(P<0.05)。此外,应用PI3K/AKT和Ras/MEK/ERK信号通路的选择性抑制剂处理PANC1细胞可阻断Rab11a对细胞增殖的促进作用(P<0.05)。结论:Rab11a的高表达是胰腺癌预后恶化的潜在生物标志物。靶向抑制Rab11a可通过抑制PI3K/AKT和Ras/MEK/ERK信号通路来降低胰腺癌的生长和转移能力。  相似文献   

3.
Aberrations within the phosphoinositide-3-kinase (PI3K) pathway occur in greater than 45% of ovarian carcinomas. The PI3K cascade transmits signals from ErbB receptors downstream to S6 and 4EBP1, which are involved in protein biosynthesis. Many ovarian carcinomas reveal hyperactivation of ErbB1 (epidermal growth factor receptor) or ErbB2 (HER2/neu). Unfortunately, the benefit of anti-ErbB drugs is yet rather limited in ovarian carcinomas. Thus, novel targeting strategies are needed for ovarian carcinomas. The lipogenic enzyme fatty acid synthase (FASN) is overexpressed in approximately 80% of ovarian carcinomas. It stimulates cell growth and signifies poor prognosis. FASN inhibition impedes (ErbB) membrane receptor signaling and sensitizes cells against anti-ErbB drugs. Here, we show that the FASN inhibitor C75 and FASN-targeting siRNAs abrogate growth, induce apoptosis, and downregulate phosphorylation/expression of the PI3K effectors AKT, mTOR, p70S6K, S6, and 4EBP1. In contrast, FASN inhibition impairs expression but only weakly affects phosphorylation of ERK1/2 mitogen-activated protein kinases in ovarian carcinoma cells. Cycloheximide-mediated blockade of protein translation reveals that C75- or FASN siRNA-induced shutdown of FASN accelerates decomposition of signaling proteins. This effect is caused by C75- or FASN siRNA-dependent stimulation of ubiquitination followed by lysosomal-autophagosomal proteolysis. In contrast, PI3K inhibitor LY294002 blocks phosphorylation but does not reduce expression/stability of PI3K effectors. Forced expression of hyperactive (HA) AKT1, unlike HA-MEK1, impairs the growth-inhibitory action of C75. We provide first evidence that the anticancer action of FASN inhibitors is at least partially mediated by drug-dependent proteolysis of PI3K effectors. FASN is a promising cancer target, whose inhibition not only abrogates lipogenesis, which is indispensable for cancer growth, but also downregulates oncogenic PI3K signaling.  相似文献   

4.
为了探讨臭椿酮(ailanthone,AIL)对急性骨髓性白血病(acute myelogenous leukemia,AML)细胞恶性生物学行为的影响,用不同浓度(0.2、0.4、0.8、1.6、3.2 μmol·L-1)的AIL处理对数生长期的HL-60细胞,将miR-449a mimic质粒、mimic对照质粒、miR-449a inhibitor质粒、inhibitor对照质粒分别转染至未经任何处理的HL-60细胞,并用1.0 μmol·L-1浓度的AIL处理细胞24 h。采用CCK-8法检测细胞增殖水平,细胞划痕实验检测细胞迁移水平,Transwell小室法检测细胞侵袭水平,Annexin V-FITC/PI双染法检测细胞凋亡水平,qRT-PCR法检测miR-449a mRNA表达水平,Western blot法检测磷脂酰肌醇3-激酶(PI3K)、磷酸化PI3K(p-PI3K)、蛋白激酶B(AKT)、磷酸化AKT(p-AKT)蛋白表达水平。结果显示,AIL干预后HL-60细胞增殖抑制率、凋亡率升高,细胞迁移率及细胞侵袭数降低(P<0.05),miR-449a mRNA表达量升高(P<0.05)。过表达miR-449a可以抑制HL-60细胞增殖、迁移和侵袭,并诱导细胞凋亡(P<0.05),抑制miR-449a的表达可以起到逆转AIL抑制HL-60细胞增殖、迁移和侵袭,诱导细胞凋亡的作用(P<0.05)。AIL能够显著降低HL-60细胞中p-PI3K/PI3K和p-AKT/AKT比值(P<0.05),抑制miR-449a表达可以逆转AIL对HL-60细胞p-PI3K/PI3K和p-AKT/AKT比值的下调作用(P<0.05)。结果表明,AIL可通过上调miR-449a抑制AML细胞的增殖、迁移和侵袭,并诱导细胞凋亡,其作用机制可能与抑制PI3K/AKT信号通路有关。结果表明,AIL有望成为AML治疗的候选药物。  相似文献   

5.
6.
Apigenin is a low toxicity and non-mutagenic phytopolyphenol and protein kinase inhibitor. It exhibits anti-proliferating effects on human breast cancer cells. Here we examined several human breast cancer cell lines having different levels of HER2/neu expression and found that apigenin exhibited potent growth-inhibitory activity in HER2/neu-overexpressing breast cancer cells but was much less effective for those cells expressing basal levels of HER2/neu. Induction of apoptosis was also observed in HER2/neu-overexpressing breast cancer cells in a dose- and time-dependent manner. However, the one or more molecular mechanisms of apigenin-induced apoptosis in HER2/neu-overexpressing breast cancer cells remained to be elucidated. A cell survival pathway involving phosphatidylinositol 3-kinase (PI3K), and Akt is known to play an important role in inhibiting apoptosis in response to HER2/neu-overexpressing breast cancer cells, which prompted us to investigate whether this pathway plays a role in apigenin-induced apoptosis in HER2/neu-overexpressing breast cancer cells. Our results showed that apigenin inhibits Akt function in tumor cells in a complex manner. First, apigenin directly inhibited the PI3K activity while indirectly inhibiting the Akt kinase activity. Second, inhibition of HER2/neu autophosphorylation and transphosphorylation resulting from depleting HER2/neu protein in vivo was also observed. In addition, apigenin inhibited Akt kinase activity by preventing the docking of PI3K to HER2/HER3 heterodimers. Therefore, we proposed that apigenin-induced cellular effects result from loss of HER2/neu and HER3 expression with subsequent inactivation of PI3K and AKT in cells that are dependent on this pathway for cell proliferation and inhibition of apoptosis. This implies that the inhibition of the HER2/HER3 heterodimer function provided an especially effective strategy for blocking the HER2/neu-mediated transformation of breast cancer cells. Our results also demonstrated that apigenin dissociated the complex of HER2/neu and GRP94 that preceded the depletion of HER2/neu. Apigenin-induced degradation of mature HER2/neu involves polyubiquitination of HER2/neu and subsequent hydrolysis by the proteasome.  相似文献   

7.
脂肪细胞增强子结合蛋白2(AEBP2)作为多梳抑制复合物2(PRC2)的组成蛋白质,参与多种肿瘤细胞的增殖和迁移,然而其在肝癌中的作用尚不清楚。本研究基于UALCAN和Kaplan-Meier Plotter数据库分析发现,AEBP2在肝癌组织中高表达,并且与患者的不良预后呈正相关。实时荧光定量PCR和蛋白质印迹结果证实,AEBP2在肝癌细胞中的表达高于正常肝细胞。在HepG2和Huh-7细胞中转染AEBP2 siRNA,平板克隆、CCK-8、流式细胞术、划痕愈合和Transwell结果显示,沉默AEBP2可以抑制肝癌细胞增殖、迁移和侵袭,并促进细胞凋亡(P<0.05)。免疫荧光检测和蛋白质印迹结果显示,沉默AEBP2能够抑制肝癌细胞上皮-间质转化(EMT)(P<0.05)。生物信息学分析结果表明,AEBP2参与调控PI3K/Akt信号通路。蛋白质印迹结果证实,沉默AEBP2能下调PI3K、p-AKT (S473)、mTOR、MMP-2和MMP-9的蛋白质表达水平(P<0.05)。此外,沉默AEBP2对HepG2细胞迁移和侵袭的影响可被PI3K/Akt通路激动剂胰岛素样生长因子1(IGF-1)部分逆转(P<0.01)。综上所述,AEBP2可能通过调节PI3K/Akt途径促进肝癌细胞增殖和迁移。本研究为AEBP2在肝癌中的作用提供理论依据。  相似文献   

8.
To investigate the potential regulation of sphingosine kinase 1 (SPHK1) on the migration, invasion, and matrix metalloproteinase (MMP) expression in human rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS). RA-FLS were transfected control siRNA or SPHK1 siRNA. The migration and invasion of unmanipulated control, control siRNA or SPHK1 siRNA- transfected RA-FLS in vitro were measured by the transwell system. The relative levels of SPHK1, PI3K, and AKT as well as AKT phosphorylation in RA-FLS were determined by Western blot. The levels of MMP-2/9 secreted by RA-FLS were detected by ELISA. Knockdown of SPHK1 significantly inhibited the spontaneous migration and invasion of RA-FLS, accompanied by significantly reduced levels of PI3K expression and AKT phosphorylation. Similarly, treatment with LY294002, an inhibitor of the PI3K/AKT pathway, inhibited the migration and invasion of RA-FLS. Knockdown of SPHK1 and treatment with the inhibitor synergistically inhibited the migration and invasion of RA-FLS, by further reducing the levels of PI3K expression and AKT phosphorylation. In addition, knockdown of SPHK1 or treatment with LY294002 inhibited the secretion of MMP-2 and MMP-9, and both synergistically reduced the production of MMP-2 and MMP-9 in RA-FLS in vitro. Knockdown of SPHK1 expression inhibits the PI3K/AKT activation, MMP-2 and MMP-9 expression, and human RA-FLS migration and invasion in vitro. Potentially, SPHK1 may be a novel therapeutic target for RA.  相似文献   

9.
Cervical cancer is common cancer among women with high morbidity. MicroRNAs (miRs) are involved in the progression and development of cervical cancer. This study aimed to explore the effect of miR-99b-5p (miR-99b) on invasion and migration in cervical cancer through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway. The microarray-based analysis was used to screen out differentially expressed miRNAs. Expression of miR-99b, PI3K, AKT, mTOR, and ribosomal protein S6 kinase (p70S6K) was determined in both cervical cancer tissues and paracancerous tissues. Next, alteration of miR-99b expression in cervical cancer was conducted to evaluate levels of PI3K, AKT, mTOR, p70S6K matrix metallopeptidase 2, epithelial cell adhesion molecule, and intercellular adhesion molecule 1, as well as the effect of miR-99b on cell proliferation, invasion, migration, cell cycle distribution, and apoptosis. The results demonstrated that miR-99b expression was decreased and levels of PI3K, AKT, mTOR, and p70S6K were elevated in cervical cancer tissues. More important, overexpressed miR-99b repressed the PI3K/AKT/mTOR signaling pathway, inhibited cell proliferation, invasion, and migration, blocked cell cycle entry, and promoted apoptosis in cervical cancer. These results indicate that miR-99b attenuates the migration and invasion of human cervical cancer cells through downregulation of the PI3K/AKT/mTOR signaling pathway, which provides a therapeutic approach for cervical cancer treatment.  相似文献   

10.
Systems biology approaches that combine experimental data and theoretical modelling to understand cellular signalling network dynamics offer a useful platform to investigate the mechanisms of resistance to drug interventions and to identify combination drug treatments. Extending our work on modelling the PI3K/PTEN/AKT signalling network (SN), we analyse the sensitivity of the SN output signal, phospho-AKT, to inhibition of HER2 receptor. We model typical aberrations in this SN identified in cancer development and drug resistance: loss of PTEN activity, PI3K and AKT mutations, HER2 overexpression, and overproduction of GSK3β and CK2 kinases controlling PTEN phosphorylation. We show that HER2 inhibition by the monoclonal antibody pertuzumab increases SN sensitivity, both to external signals and to changes in kinetic parameters of the proteins and their expression levels induced by mutations in the SN. This increase in sensitivity arises from the transition of SN functioning from saturation to non-saturation mode in response to HER2 inhibition. PTEN loss or PIK3CA mutation causes resistance to anti-HER2 inhibitor and leads to the restoration of saturation mode in SN functioning with a consequent decrease in SN sensitivity. We suggest that a drug-induced increase in SN sensitivity to internal perturbations, and specifically mutations, causes SN fragility. In particular, the SN is vulnerable to mutations that compensate for drug action and this may result in a sensitivity-to-resistance transition. The combination of HER2 and PI3K inhibition does not sensitise the SN to internal perturbations (mutations) in the PI3K/PTEN/AKT pathway: this combination treatment provides both synergetic inhibition and may prevent the SN from acquired mutations causing drug resistance. Through combination inhibition treatments, we studied the impact of upstream and downstream interventions to suppress resistance to the HER2 inhibitor in the SN with PTEN loss. Comparison of experimental results of PI3K inhibition in the PTEN upstream pathway with PDK1 inhibition in the PTEN downstream pathway shows that upstream inhibition abrogates resistance to pertuzumab more effectively than downstream inhibition. This difference in inhibition effect arises from the compensatory mechanism of an activation loop induced in the downstream pathway by PTEN loss. We highlight that drug target identification for combination anti-cancer therapy needs to account for the mutation effects on the upstream and downstream pathways.  相似文献   

11.
The glucose-regulated endoplasmic reticulum chaperone protein 94 (GRP94) is required for many biological processes, such as secretion of immune factors and mesoderm induction. Here, we demonstrated that GRP94 promotes muscle differentiation in vitro and in vivo. Moreover, GRP94 inhibited the PI3K/AKT/mTOR signaling pathway. Using both in vitro and in vivo approaches, in myoblasts, we found that this inhibition resulted in reduced proliferation and increased differentiation. To further investigate the mechanism of GRP94-induced muscle differentiation, we used co-immunoprecipitation and proximity ligation assays and found that GRP94 interacted with PI3K-interacting protein 1 (Pik3ip1). The latter protein promoted muscle differentiation by inhibiting the PI3K/AKT/mTOR pathway. Furthermore, GRP94 was found to regulate Pik3ip1 expression. Finally, when Pik3ip1 expression was inhibited, GRP94-induced promotion of muscle differentiation was diminished. Taken together, our data demonstrated that GRP94 promoted muscle differentiation, mediated by Pik3ip1-dependent inhibition of the PI3K/AKT/mTOR signaling pathway.  相似文献   

12.
Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is a pan-negative regulator of the epidermal growth factor receptor (EGFR) signaling pathway. The aim of this study was to investigate the underlying mechanism of LRIG1 in the regulation of vasculogenic mimicry (VM) formation in glioma cells. We constructed an enhanced green fluorescent protein plasmid (pEGFP) system, pEGFP-C1-LRIG1, for overexpression of LRIG1, and transfected it into human glioma cell line SHG-44. Under hypoxic conditions induced by CoCl2, we investigated the effects of LRIG1 overexpression on VM formation and VM-dependent malignant behaviors including migration, invasion, and proliferation. Additionally, we explored the effects of LRIG1 on the expression levels of major components of the EGFR/PI3K/AKT pathway as well as E-cadherin and vimentin. We found that LRIG1 overexpression is able to inhibit hypoxia-induced VM formation, migration, invasion, and proliferation. Furthermore, LRIG1 overexpression counteracts hypoxia-induced increase in the expression of phosphorylated EGFR (pEGFR), PI3K (pPI3K), and AKT (pAKT) and reverts hypoxia-induced alteration in E-cadherin and vimentin expression levels. In LRIG1 knockdown SHG-44 cells, however, hypoxia-induced VM formation and alteration in E-cadherin and vimentin expression levels were exacerbated. These results suggest that the inhibitory effects of LRIG1 are most likely mediated by suppression of the EGFR/PI3K/AKT pathway and epithelial-mesenchymal transition (EMT) process. Our findings provide compelling evidence implicating LRIG1 in glioma pathophysiology, suggesting that gene therapy using LRIG1 may serve as a treatment for this disease.  相似文献   

13.
Ovarian cancer is the leading cause of death from gynecological malignancy for women. The amplification of the PI3K catalytic subunit (p110) and the lost function of PTEN are frequently detected in ovarian cancer cells. PI3K plays an important role in tumorigenesis. To specifically inhibit PI3K activity in ovarian cancer cells, we constructed small interfering RNA (siRNA) against p110. The expression of p110 siRNA significantly decreased cell migration, invasion, and proliferation compared to the siSCR control cells. The expression of p110 siRNA induced CDK inhibitor p27KIP1 levels, and decreased levels of cyclin D1, CDK4, and phosphorylated retinoblastoma protein. PI3K transmits the mytogenic signal through AKT. AKT has three isoforms in the cells: AKT1, AKT2 and AKT3. We found that inhibition of AKT1 is sufficient to affect cell migration, invasion, and proliferation. Expression of AKT1 siRNA had a similar effect as p110 siRNA in the cells. We showed the roles of specific PI3K and AKT isoforms in the cells, which are important to understanding the mechanism of PI3K/AKT signaling in ovarian cancer cells. Both p110 and AKT1 siRNA-expressing cells decreased the activation of p70S6K1. Inhibition of p70S6K1 activity by its siRNA also decreased cell migration, invasion, and proliferation associated with the induction of p27KIP1 levels, and with the inhibition of cell cycle-associated proteins including cyclin D1, CDK2, and phosphorylated retinoblastoma protein. This study demonstrates the important role of the PI3K/AKT/mTOR/p70S6K1 pathway in cell proliferation, migration, and invasion in ovarian cancer cells by using siRNA-mediated gene silencing as a reverse genetic method.  相似文献   

14.
15.
《Phytomedicine》2014,21(12):1717-1724
BackgroundThe lichen compound (+)-protolichesterinic acid (+)-PA, isolated from Iceland moss, has anti-proliferative effects on several cancer cell lines. The chemical structure of (+)-PA is similar to a known fatty acid synthase (FASN) inhibitor C75.AimsTo test whether the anti-proliferative activity of (+)-PA is associated with effects on FASN and HER2 (human epidermal growth factor receptor 2) and major signalling pathways. Synergism between (+)-PA and lapatinib, a HER2 active drug, was also evaluated.Materials and methodsPure compound was isolated by preparative high-performance liquid chromatography (HPLC) and purity of (+)-PA analyzed by analytical HPLC. Cell viability was assessed using Crystal violet staining. FASN and HER2 expression was estimated by immunofluorescence. The Meso Scale Discovery (MSD)® assay was used to measure activation of ERK1/2 and AKT. Synergism was estimated by the CalcuSyn software.ResultsTreatment with (+)-PA increased FASN expression in SK-BR-3 cells, which overexpress FASN and HER2, implying a compensatory response to inhibition of FASN activity. HER2 expression was decreased suggesting secondary downregulation. ERK1/2 and AKT signalling pathways were inhibited, probably due to reduced levels of HER2. No effects were observed in T-47D cells. Synergism between (+)-PA and lapatinib was observed in the SK-BR-3 cells.ConclusionResults suggest that the primary effect of (+)-PA is inhibition of FASN activity. Synergistic effects with lapatinib were seen only in SK-BR-3 cells, and not T-47D cells, further supporting the notion that (+)-PA acts by inhibiting FASN with secondary effects on HER2 expression and signalling. (+)-PA could therefore be a suitable agent for further testing, alone or in combination treatment against HER2-overexpressing breast cancer.  相似文献   

16.
Various studies demonstrated that bone morphogenetic proteins (BMPs) and their antagonists contribute to the development of cancers. Chordin-like 2 (CHRDL2) is a member of BMP antagonists. However, the role and its relative mechanism of CHRDL2 in osteosarcoma remains unclear. In the present study, we demonstrated that the expression of CHRDL2 was significantly upregulated in osteosarcoma tissues and cell lines compared with adjacent tissues and human normal osteoblast. Inhibition of CHRDL2 decreased the proliferation and colony formation of osteosarcoma cells in vitro, as well as the migration and invasion. CHRDL2 overexpression induced the opposite effects. CHRDL2 can bind with BMP-9, thus decreasing BMP-9 expression and the combination to its receptor protein kinase ALK1. It was predicted that BMP-9 regulates PI3K/AKT pathways using gene set enrichment analysis. Inhibition of CHRDL2 decreased the activation of PI3K/AKT pathway, while overexpression of CHRDL2 upregulated the activation. Increasing the expression of BMP-9 reversed the effects of CHRDL2 overexpression on the activation of PI3K/AKT pathway, as well as the proliferation and metastasis of osteosarcoma cells. Take together, our present study revealed that CHRDL2 upregulated in osteosarcoma tissues and cell lines, and promoted osteosarcoma cell proliferation and metastasis through the BMP-9/PI3K/AKT pathway. CHRDL2 maybe an oncogene in osteosarcoma, as well as novel biomarker for the diagnosis of osteosarcoma.  相似文献   

17.
Breast cancer (BC) is a common malignancy which is the most frequently diagnosed cancer in women all over the worldwide. This study aimed to investigate the roles of miR-1469 in the development of BC, as well as its regulatory mechanism. The expression levels of miR-1469 in BC tissues, serum, and cell lines were determined. Effects of overexpression of miR-1469 on MCF7 cell viability, colony-forming ability, apoptosis, migration, and invasion were then investigated. Furthermore, the potential target of miR-1469 in MCF7 cells was explored. Besides, the association between miR-1469, PTEN/PI3K/AKT, and Wnt/β-catenin pathways was elucidated. Notably, confirmatory experiments by downregulation of miR-1469 in SK-BR-3 cells were further performed. The miR-1469 expression was significantly downregulated in BC tissues, serum, and cell lines. The overexpression of miR-1469 significantly inhibited the proliferation, arrested cell-cycle at G2/M phase, increased apoptosis, suppressed migration, and invasion of MCF-7 cells. In addition, HOXA1 was verified as a direct target of miR-1469, and the effects of overexpression of miR-1469 on the malignant behaviors of MCF7 cells were significantly counteracted by overexpression of HOXA1 concurrently. Furthermore, the overexpression of miR-1469 suppressed the activation of PTEN/PI3K/AKT and Wnt/β-catenin pathways, which was reversed overexpression of HOXA1 concurrently. Besides, confirmatory experiments showed that the inhibition of miR-1469 promoted the malignant behaviors of SK-BR-3 cells, which was inversed after miR-1469 inhibition and HOXA1 knockdown at the same time. Our findings reveal that downregulation of miR-1469 may promote the development of BC by targeting HOXA1 and activating PTEN/PI3K/AKT and Wnt/β-catenin pathways. MiR-1469 may serve as a promising target for BC therapy.  相似文献   

18.
《Cancer epidemiology》2014,38(6):765-772
In breast cancer cells, overexpression of human epidermal growth factor receptor 2 (HER2) increases the translation of fatty acid synthase (FASN) by altering the activity of PI3K/Akt signaling pathways. Cancer chemotherapy causes major side effects and is not effective enough in slowing down the progression of the disease. Earlier studies showed a role for resveratrol in the inhibition of FASN, but the molecular mechanisms of resveratrol-induced inhibition are not known. In the present study, we examined the novel mechanism of resveratrol on Her2-overexpressed breast cancer cells.The effect of resveratrol on the growth of breast cancer cells was assessed as percent cell viability by cytotoxicity-based MTT assay and the induction of apoptosis was determined by cell-death detection ELISA and flow cytometric analysis of Annexin-V–PI binding. Western immunobloting was used to detect signaling events in human breast cancer (SKBR-3) cells.Data showed that resveratrol-mediated down-regulation of FASN and HER2 genes synergistically induced apoptotic death in SKBR-3 cells. This concurrently caused a prominent up-regulation of PEA3, leads to down-regulation of HER2 genes. Resveratrol also alleviated the PI3K/Akt/mTOR signaling by down-regulation of Akt phosphorylation and up-regulation of PTEN expression.These findings suggest that resveratrol alters the cell cycle progression and induce cell death via FASN inhibition in HER2 positive breast cancer.  相似文献   

19.
Synovial fibroblasts (SFs) of rheumatoid arthritis (RA) are phenotypically aggressive, typically progressing into arthritic cartilage degradation. Throughout our study, we made explorations into the effects of microRNA-135a (miR-135a) on the SFs involved in RA by mediating the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway via regulation of phosphatidylinositol 3-kinase regulatory subunit 2 (PIK3R2). The expression of PI3K was higher, the expression of PIK3R2 was lower, and AKT was phosphorylated in the RA synovial tissues, relative to the levels found in the normal synovial tissues. We predicted miR-135a to be a candidate miR targeting PIK3R2 using an online website, microRNA.org, which was verified with a dual-luciferase reporter gene assay. Subsequently, high miR-135a expression was observed in RA synovial tissues. To study the effect of the interaction between miR-135a and PIK3R2 in RA, the SFs isolated from RA samples were cultured and transfected with mimic, inhibitor, and small interfering RNA. The proliferation, invasion, and apoptosis of the SFs were detected after the transfection. The cells transfected with miR-135a inhibitor showed inhibited cell proliferation, migration, and invasion, while also displaying promoted cell apoptosis, G0/G1 cell ratio, and decreased S cell ratio, through upregulation of PIK3R2 and inactivation of the PI3K/AKT signaling pathway. These findings provided evidence that downregulation of miR-135a inhibits proliferation, migration, and invasion and promotes apoptosis of SFs in RA by upregulating the PIK3R2 coupled with inactivating the PI3K/AKT signaling pathway. The downregulation of miR-135a might be a potential target in the treatment of RA.  相似文献   

20.
Gastric cancer (GC) is a common heterogeneous disease. The critical roles of microRNA-340 (miR-340) in the development and progression of GC were emphasized in accumulating studies. This study aims to examine the regulatory mechanism of miR-340 in GC cellular processes. Initially, microarray technology was used to identify differentially expressed genes and regulatory miRs in GC. After that, the potential role of miR-340 in GC was determined via ectopic expression, depletion, and reporter assay experiments. Expression of secreted phosphoprotein 1 (SPP1), miR-340, phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway, and epithelial–mesenchymal transition (EMT)-related genes was measured. Moreover, to further explore the function of miR-340 in vivo and in vitro, proliferation, apoptosis, migration, invasion, and tumorigenic capacity were evaluated. SPP1 was a target gene of miR-340 which could then mediate the PI3K/AKT signaling pathway by targeting SPP1 in GC. Furthermore, miR-340 levels were reduced and SPP1 was enriched in GC tissues and cells, with the PI3K/AKT signaling pathway being activated. Inhibitory effects of upregulated miR-340 on SPP1 and the PI3K/AKT signaling pathway were confirmed in vivo and in vitro. Overexpression of miR-340 or the silencing of SPP1 inhibited GC cell proliferation, invasion, migration, and EMT process, but promoted apoptosis of GC cells. Typically, targeting of SPP1 by miR-340 may contribute to the inhibition of proliferation, migration, invasion, and EMT of GC cells via suppression of PI3K/AKT signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号