首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The innate immune response to inhaled bacteria, such as the opportunist Pseudomonas aeruginosa, is initiated by TLR2 displayed on the apical surface of airway epithelial cells. Activation of TLR2 is accompanied by an immediate Ca(2+) flux that is both necessary and sufficient to stimulate NF-kappaB and MAPK proinflammatory signaling to recruit and activate polymorphonuclear leukocytes in the airway. In human airway cells, gap junction channels were found to provide a regulated conduit for the movement of Ca(2+) from cell to cell. In response to TLR2 stimulation, by either lipid agonists or P. aeruginosa, gap junctions functioned to transiently amplify proinflammatory signaling by communicating Ca(2+) fluxes from stimulated to adjacent, nonstimulated cells thus increasing epithelial CXCL8 production. P. aeruginosa stimulation also induced tyrosine phosphorylation of connexin 43 and association with c-Src, events linked to the closure of these channels. By 4 h postbacterial stimulation, gap junction communication was decreased indicating an autoregulatory control of the connexins. Thus, gap junction channels comprised of connexin 43 and other connexins in airway cells provide a mechanism to coordinate and regulate the epithelial immune response even in the absence of signals from the immune system.  相似文献   

4.
Lung inflammation resulting from bacterial infection of the respiratory mucosal surface in diseases such as cystic fibrosis and pneumonia contributes significantly to the pathology. A major consequence of the inflammatory response is the recruitment and accumulation of polymorphonuclear cells (PMNs) at the infection site. It is currently unclear what bacterial factors trigger this response and exactly how PMNs are directed across the epithelial barrier to the airway lumen. An in vitro model consisting of human PMNs and alveolar epithelial cells (A549) grown on inverted Transwell filters was used to determine whether bacteria are capable of inducing PMN migration across these epithelial barriers. A variety of lung pathogenic bacteria, including Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa are indeed capable of inducing PMN migration across A549 monolayers. This phenomenon is not mediated by LPS, but requires live bacteria infecting the apical surface. Bacterial interaction with the apical surface of A549 monolayers results in activation of epithelial responses, including the phosphorylation of ERK1/2 and secretion of the PMN chemokine IL-8. However, secretion of IL-8 in response to bacterial infection is neither necessary nor sufficient to mediate PMN transepithelial migration. Instead, PMN transepithelial migration is mediated by the eicosanoid hepoxilin A3, which is a PMN chemoattractant secreted by A549 cells in response to bacterial infection in a protein kinase C-dependent manner. These data suggest that bacterial-induced hepoxilin A3 secretion may represent a previously unrecognized inflammatory mechanism occurring within the lung epithelium during bacterial infections.  相似文献   

5.
Activation of an innate immune response in airway epithelia by the human pathogen Pseudomonas aeruginosa requires bacterial expression of flagellin. Addition of flagellin (10(-7) M) to airway epithelial cell monolayers (Calu-3, airway serous cell-like) increased Cl(-) secretion (I(Cl)) beginning after 3-10 min, reaching a plateau after 20-45 min at DeltaI(Cl) = 15-50 microA/cm(2). Similar, although 10-fold smaller, responses were observed in well-differentiated bronchial epithelial cultures. Flagellin stimulated I(Cl) in the presence of maximally stimulating doses of the purinergic agonist ATP, but had no effects following forskolin. IL-1beta (produced by both epithelia and neutrophils during infections) stimulated I(Cl) similar to flagellin. Flagellin-, IL-1beta-, ATP-, and forskolin-stimulated I(Cl) were inhibited by cystic fibrosis transmembrane conductance regulator (CFTR) blockers GlyH101, CFTRinh172, and glibenclamide. Neither flagellin nor IL-1beta altered transepithelial fluxes of membrane-impermeant dextran (10 kDa) or lucifer yellow (mol wt = 457), but both activated p38, NF-kappaB, and IL-8 secretion. Blockers of p38 (SB-202190 and SB-203580) reduced flagellin- and IL-1beta-stimulated I(Cl) by 33-50% but had smaller effects on IL-8 and NF-kappaB. It is concluded that: 1) flagellin and IL-1beta activated p38, NF-kappaB, IL-8, and CFTR-dependent anion secretion without altering tight junction permeability; 2) p38 played a role in regulating I(Cl) and IL-8 but not NF-kappaB; and 3) p38 was more important in flagellin- than IL-1beta-stimulated responses. During P. aeruginosa infections, flagellin and IL-1beta are expected to increase CFTR-dependent ion and fluid flow into and bacterial clearance from the airways. In cystic fibrosis, the secretory response would be absent, but activation of p38, NF-kappaB, and IL-8 would persist.  相似文献   

6.
In many model systems, cystic fibrosis (CF) phenotype airway epithelial cells in culture respond to P. aeruginosa with greater interleukin (IL)-8 and IL-6 secretion than matched controls. In order to test whether this excess inflammatory response results from the reported increased adherence of P. aeruginosa to the CF cells, we compared the inflammatory response of matched pairs of CF and non CF airway epithelial cell lines to the binding of GFP-PAO1, a strain of pseudomonas labeled with green fluorescent protein. There was no clear relation between GFP-PAO1 binding and cytokine production in response to PAO1. Treatment with exogenous aGM1 resulted in greater GFP-PAO1 binding to the normal phenotype compared to CF phenotype cells, but cytokine production remained greater from the CF cell lines. When cells were treated with neuraminidase, PAO1 adherence was equalized between CF and nonCF phenotype cell lines, but IL-8 production in response to inflammatory stimuli was still greater in CF phenotype cells. The polarized cell lines 16HBEo-Sense (normal phenotype) and Antisense (CF phenotype) cells were used to test the effect of disrupting tight junctions, which allows access of PAO1 to basolateral binding sites in both cell lines. IL-8 production increased from CF, but not normal, cells. These data indicate that increased bacterial binding to CF phenotype cells cannot by itself account for excess cytokine production in CF airway epithelial cells, encourage investigation of alternative hypotheses, and signal caution for therapeutic strategies proposed for CF that include disruption of tight junctions in the face of pseudomonas infection.  相似文献   

7.
8.
Pseudomonas aeruginosa is an opportunistic pathogen involved in nosocomial infections. Flagellin is a P. aeruginosa virulence factor involved in host response to this pathogen. We examined the role of flagellin in P. aeruginosa-induced mucus secretion. Using a mouse model of pulmonary infection we showed that PAK, a wild type strain of P. aeruginosa, induced airway mucus secretion and mucin muc5ac expression at higher levels than its flagellin-deficient mutant (ΔFliC). PAK induced expression of MUC5AC and MUC2 in both human airway epithelial NCI-H292 cell line and in primary epithelial cells. In contrast, ΔFliC infection had lower to no effect on MUC5AC and MUC2 expressions. A purified P. aeruginosa flagellin induced MUC5AC expression in parallel to IL-8 secretion in NCI-H292 cells. Accordingly, ΔFliC mutant stimulated IL-8 secretion at significantly lower levels compared to PAK. Incubation of NCI-H292 cells with exogenous IL-8 induced MUC5AC expression and pre-incubation of these cells with an anti-IL-8 antibody abrogated flagellin-mediated MUC5AC expression. Silencing of TLR5 and Naip, siRNA inhibited both flagellin-induced MUC5AC expression and IL-8 secretion. Finally, inhibition of ERK abolished the expression of both PAK- and flagellin-induced MUC5AC. We conclude that: (i) flagellin is crucial in P. aeruginosa-induced mucus hyper-secretion through TLR5 and Naip pathways; (ii) this process is mediated by ERK and amplified by IL-8. Our findings help understand the mechanisms involved in mucus secretion during pulmonary infectious disease induced by P. aeruginosa, such as in cystic fibrosis.  相似文献   

9.
The progression of lung disease in cystic fibrosis (CF) is characterized by an exuberant inflammatory response mounted by the respiratory epithelium that is further exacerbated by bacterial infection. Recent studies have demonstrated upregulation of nuclear factor-kappaB (NF-kappaB) in response to infection in genetically modified cell culture models, which is associated with expression of interleukin (IL)-8. Using human airway epithelial cells grown in primary culture, we examined in vitro activation of NF-kappaB in cells isolated from five CF (DeltaF508/DeltaF508) and three non-CF (NCF) patients in response to Pseudomonas aeruginosa. Immunofluorescence, gel-shift, and immunoblot assays demonstrated a rapid translocation of NF-kappaB subunits (p50 and p65) to the nucleus in both CF and NCF cell cultures. However, nuclear extracts from CF cells both before and following P. aeruginosa stimulation revealed elevated NF-kappaB activation compared with NCF cells. Additionally, elevated nuclear levels of the NF-kappaB inhibitor IkappaBalpha were detected in nuclei of CF cells after P. aeruginosa stimulation, but this increase was transient. There was no difference in IL-8 mRNA levels between CF and NCF cells early after stimulation, whereas expression was higher and sustained in CF cells at later times. Our results also demonstrated increased baseline translocation of NF-kappaB to nuclei of primary CF epithelial cell cultures, but intranuclear IkappaBalpha may initially block its effects following P. aeruginosa stimulation. Thus, IL-8 mRNA expression was prolonged after P. aeruginosa stimulation in CF epithelial cells, and this sustained IL-8 expression may contribute to the excessive inflammatory response in CF.  相似文献   

10.
We tested whether cystic fibrosis (CF) airway epithelia have larger innate immune responses than non-CF or cystic fibrosis transmembrane conductance regulator (CFTR)-corrected cells, perhaps resulting from ER stress due to retention of DeltaF508CFTR in the endoplasmic reticulum (ER) and activation of cytosolic Ca(2+) (Ca(i)) and nuclear factor (NF)-kappaB signaling. Adenovirus infections of a human CF (DeltaF508/DeltaF508) nasal cell line (CF15) provided isogenic comparisons of wild-type (wt) CFTR and DeltaF508CFTR. In the absence of bacteria, there were no or only small differences among CF15, CF15-lacZ (beta-galactosidase-expressing), CF15-wtCFTR (wtCFTR-corrected), and CF15-DeltaF508CFTR (to test ER retention of DeltaF508CFTR) cells in NF-kappaB activity, interleukin (IL)-8 secretion, Ca(i) responses, and ER stress. Non-CF and CF primary cultures of human bronchial epithelial cells (HBE) secreted IL-8 equivalently. Upon infection with Pseudomonas aeruginosa (PA) or flagellin (key activator for airway epithelia), CF15, CF15-lacZ, CF15-wtCFTR, and CF15DeltaF508CFTR cells exhibited equal PA binding, NF-kappaB activity, and IL-8 secretion; cells also responded similarly to flagellin when both CFTR (forskolin) and Ca(i) signaling (ATP) were activated. CF and non-CF HBE responded similarly to flagellin + ATP. Thapsigargin (Tg, releases ER Ca(2+)) increased flagellin-stimulated NF-kappaB and ER stress similarly in all cells. We conclude that ER stress, Ca(i), and NF-kappaB signaling and IL-8 secretion were unaffected by wt- or DeltaF508CFTR in control and during exposure to PA, flagellin, flagellin + ATP, or flagellin + ATP + forskolin. Tg, but not wt- or DeltaF508CFTR, triggered ER stress. Previous measurements showing hyperinflammatory responses in CF airway epithelia may have resulted from cell-specific, rather than CFTR- or DeltaF508CFTR-specific effects.  相似文献   

11.
Interleukin (IL)-8, the C-X-C chemokine, is a potent neutrophil chemoattractant that has been implicated in a number of inflammatory airway diseases such as cystic fibrosis. Here we tested the hypothesis that bradykinin, an inflammatory mediator and chloride secretagogue, would increase IL-8 generation in airway epithelial cells through autocrine generation of endogenous prostanoids. Bradykinin increased IL-8 generation in both a non-cystic fibrosis (A549) and cystic fibrosis epithelial cell line (CFTE29) that was inhibited by the nonselective cyclooxygenase (COX) inhibitor indomethacin and the COX-2 selective inhibitor NS-398. COX-2 was the only isoform of COX expressed in both cell lines. Furthermore, the COX substrate arachidonic acid and exogenous prostaglandin E(2) both increased IL-8 release in A549 cells. These results suggest that bradykinin may contribute to neutrophilic inflammation in the airway by generation of IL-8 from airway epithelial cells. The dependence of this response on endogenous production of prostanoids by COX-2 suggests that selective COX-2 inhibitors may have a role in the treatment of airway diseases characterized by neutrophilic inflammation such as cystic fibrosis or chronic obstructive pulmonary disease.  相似文献   

12.
Airways function as an innate immune organ against airborne bacteria that are inhaled and deposited in airways. One of the mechanisms of host defense is to recruit neutrophils into airways to clear the invaders. Airway epithelial cells produce neutrophil chemoattractant interleukin (IL)-8 in response to invading bacteria. In this study we show a signaling pathway on the plasma surface of human airway epithelial NCI-H292 cells that regulate IL-8 production in response to a model inflammatory stimulus, phorbol 12-myristate 13-acetate, and a pathophysiological stimulus, gram-negative bacterial lipopolysaccharide. First, we show that EGF receptor (EGFR) and MAP kinase ERK1/2 are involved in IL-8 expression by these stimuli. Second, we show that EGFR ligand transforming growth factor (TGF)-alpha mediates IL-8 production. Third, we show that tumor necrosis factor-alpha-converting enzyme (TACE) is required for IL-8 production by cleaving EGFR proligand proTGF-alpha into soluble TGF-alpha, activating EGFR. Last, we show that dual oxidase 1 (Duox1), a homolog of NADPH oxidase in airways, mediates TACE activation and IL-8 expression via generation of reactive oxygen species. In summary, we describe a signaling pathway, Duox1-TACE-TGF-alpha-EGFR, on the surface of airway epithelial (NCI-H292) cells that mediates airway epithelial defense against bacterial infection by producing IL-8. This pathway, which also regulates mucin production in human airways, provides mechanisms for killing foreign organisms and for their clearance.  相似文献   

13.
Dysregulation of nuclear factor kappa B (NF-(kappa)B) and increased Ca(2+) signals have been reported in airway epithelial cells of patients with cystic fibrosis (CF). The hypothesis that Ca(2+) signaling may regulate NF-(kappa)B activation was tested in a CF bronchial epithelial cell line (IB3-1, CFTR genotype DeltaF508/W1282X) and compared to the CFTR-corrected epithelial cell line S9 using fluorescence microscopy to visualized in situ NF-(kappa)B activation at the single cell level. Upon stimulation with IL-1beta,we observed a slow but prolonged [Ca(2+)](i) increase (up to 10 min) in IB3-1 cells compared to S9 cells. The IL-1beta-induced [Ca(2+)](i) response was accompanied by an activation of NF-(kappa)B in IB3-1 but not in S9 cells. Pretreatment of IB3-1 cells with the ER Ca(2+) pump inhibitor thapsigargin inhibited the IL-1beta-induced [Ca(2+)](i) response. Treatment with either the calcium chelator BAPTA or an inhibitor of I(kappa)Balpha phosphorylation (digitoxin) led to a drastic [Ca(2+)](i) decrease accompanied by an inhibition of NF-(kappa)B activation of IL-1beta-stimulated IB3-1 cells in comparison to untreated cells. In IB3-1 cells cultured at low temperature (26 degrees C) for 16 h, the IL-1beta-induced [Ca(2+)](i) response was inhibited and no significant NF-(kappa)B activation was observed. To our knowledge, this is the first report of visualization of the Ca(2+)-mediated activation of NF-(kappa)B in individual living airway epithelial cells. Our results support the concept that [Ca(2+)](i) is a key regulator of NF-(kappa)B activation in CF airway epithelial cells.  相似文献   

14.
Staphylococcus aureus is a major cause of pulmonary infection, particularly in cystic fibrosis (CF) patients. However, few aspects of the interplay between S. aureus and host airway epithelial cells have been investigated thus far. We investigated by videomicroscopy the time- and bacterial concentration-dependent (10(4), 10(6), and 10(8) CFU/ml) effect of S. aureus on adherence, internalization, and the associated damage of the airway epithelial cells. The balance between the secretion by S. aureus of the alpha-toxin virulence factor and by the airway cells of the antibacterial secretory leukoproteinase inhibitor (SLPI) was also analyzed. After 1 h of interaction, whatever the initial bacterial concentration, a low percentage of S. aureus (<8%) adhered to airway cells, and no airway epithelial cell damage was observed. In contrast, after 24 h of incubation, more bacteria adhered to airway epithelial cells, internalized bacteria were observed, and a bacterial concentration-dependent effect on airway cell damage was observed. At 24 h, most airway cells incubated with bacteria at 10(8) CFU/ml exhibited a necrotic phenotype. The necrosis was preceded by a transient apoptotic process. In parallel, we observed a time- and bacterial concentration-dependent decrease in SLPI and increase in alpha-toxin expression. These results suggest that airway cells can defend against S. aureus in the early stages of infection. However, in later phases, there is a marked imbalance between the bactericidal capacity of host cells and bacterial virulence. These findings reinforce the potential importance of S. aureus in the pathogenicity of airway infections, including those observed early in CF patients.  相似文献   

15.
The pathophysiology of cystic fibrosis (CF) inflammatory lung disease is not well understood. CF airway epithelial cells respond to inflammatory stimuli with increased production of proinflammatory cytokines as a result of increased NF-kappaB activation. Peroxisome proliferator-activated receptor-gamma (PPARgamma) inhibits NF-kappaB activity and is reported to be reduced in CF. If PPARgamma participates in regulatory dysfunction in the CF lung, perhaps PPARgamma ligands might be useful therapeutically. Cell models of CF airway epithelium were used to evaluate PPARgamma expression and binding to NF-kappaB at basal and under conditions of inflammatory stimulation by Pseudomonas aeruginosa or TNFalpha/IL-1beta. An animal model of CF was used to evaluate the potential of PPARgamma agonists as therapeutic agents in vivo. In vitro, PPARgamma agonists reduced IL-8 and MMP-9 release from airway epithelial cells in response to PAO1 or TNFalpha/IL-1beta stimulation. Less NF-kappaB bound to PPARgamma in CF than normal cells, in two different assays; PPARgamma agonists abrogated this reduction. PPARgamma bound less to its target DNA sequence in CF cells. To test the importance of the reported PPARgamma inactivation by phosphorylation, we observed that inhibitors of ERK, but not JNK, were synergistic with PPARgamma agonists in reducing IL-8 secretion. In vivo, administration of PPARgamma agonists reduced airway inflammation in response to acute infection with P. aeruginosa in CF, but not wild-type, mice. In summary, PPARgamma inhibits the inflammatory response in CF, at least in part by interaction with NF-kappaB in airway epithelial cells. PPARgamma agonists may be therapeutic in CF.  相似文献   

16.
Mutations in cystic fibrosis transmembrane conductance regulator (CFTR) protein cause cystic fibrosis, a disease characterized by exaggerated airway epithelial production of the neutrophil chemokine interleukin (IL)-8, which results in exuberant neutrophilic inflammation. Because activation of an epidermal growth factor receptor (EGFR) signaling cascade induces airway epithelial IL-8 production, we hypothesized that normal CFTR suppresses EGFR-dependent IL-8 production and that loss of CFTR at the surface exaggerates IL-8 production via activation of a pro-inflammatory EGFR cascade. We examined this hypothesis in human airway epithelial (NCI-H292) cells and in normal human bronchial epithelial (NHBE) cells containing normal CFTR treated with a CFTR-selective inhibitor (CFTR-172), and in human airway epithelial (IB3) cells containing mutant CFTR versus isogenic (C38) cells containing wild-type CFTR. In NCI-H292 cells, CFTR-172 induced IL-8 production EGFR-dependently. Pretreatment with an EGFR neutralizing antibody or the metalloprotease TACE inhibitor TAPI-1, or TACE siRNA knockdown prevented CFTR-172-induced EGFR phosphorylation (EGFR-P) and IL-8 production, implicating TACE-dependent EGFR pro-ligand cleavage in these responses. Pretreatment with neutralizing antibodies to IL-1R or to IL-1alpha, but not to IL-1beta, markedly suppressed CFTR-172-induced EGFR-P and IL-8 production, suggesting that binding of IL-1alpha to IL-1R stimulates a TACE-EGFR-IL-8 cascade. Similarly, in NHBE cells, CFTR-172 increased IL-8 production EGFR-, TACE-, and IL-1alpha/IL-1R-dependently. In IB3 cells, constitutive IL-8 production was markedly increased compared to C38 cells. EGFR-P was increased in IB3 cells compared to C38 cells, and exaggerated IL-8 production in the IB3 cells was EGFR-dependent. Activation of TACE and binding of IL-1alpha to IL-1R contributed to EGFR-P and IL-8 production in IB3 cells but not in C38 cells. Thus, we conclude that normal CFTR suppresses airway epithelial IL-8 production that occurs via a stimulatory EGFR cascade, and that loss of normal CFTR activity exaggerates IL-8 production via activation of a pro-inflammatory EGFR cascade.  相似文献   

17.
采用绿脓杆菌培养上清及绿脓菌素刺激人呼吸道上皮细胞株A549和SPC-A-1,用ELISA方法检测细胞IL-8分泌水平,并使用免疫印迹(Western blot)方法观察绿脓菌素对细胞内重要的炎症信号传导途径NF—κB及丝裂原激活蛋白激酶(MAPKs)的激活作用。实验发现,绿脓杆菌培养上清及绿脓菌素可诱导呼吸道上皮细胞株IL-8分泌增加,且具有剂量依赖效应。绿脓菌素刺激细胞可使细胞内IκB—α发生降解,同时使MAPK家族蛋白分子(ERK1/2、p38、JNK)发生磷酸化。MEK1/2(ERK1/2激酶)抑制剂U0126(10μmol/L)和p38MAPK抑制剂SB203580(10μmol/L)可降低绿脓菌素诱导A549细胞IL-8的合成。以上结果显示绿脓菌素通过MAPK信号传导通路增强呼吸道上皮细胞IL-8的表达;NF-κB通路也参与了绿脓菌素调控细胞IL-8表达的过程。  相似文献   

18.
19.
The role of epithelial polarity and bacterial factors in the control of the innate immune response of airway epithelial cells to Pseudomonas aeruginosa PAK was investigated using a human, nasal cystic fibrosis (DeltaF508/DeltaF508) epithelial cell line CF15 grown as confluent layers on permeable supports. Addition of PAK to the basal surface of CF15 layers caused significant expression changes in 1525 different genes (out of 12 625 examined), including the cytokines IL-6, IL-8, IL-1beta and TNF-alpha, as well as genes associated with leucocyte adhesion, antibacterial factors, and NF-kappaB signalling. Confocal microscopy showed that nuclear migration of NF-kappaB in all CF15 cells was preceded by PAK binding to the basal and lateral surfaces of some cells. Addition of PAK to the apical surface of CF15 monolayers elicited changes in expression of only 602 genes, including 256 not affected during basolateral PAK exposure. Over time, cytokine expression during apical PAK was similar to that exhibited by basal PAK, but the magnitudes during apical treatment were much smaller with little/no nuclear migration of NF-kappaB in CF15 cells. Furthermore, these responses depended on the presence of flagellin, but not pili on the bacteria. Thus, P. aeruginosa triggered a strong innate immune response that depended on the apical versus basolateral polarity of CF15 cells and the presence of flagellin on the bacteria.  相似文献   

20.
Interleukin-8 (IL-8) activates neutrophils via the chemokine receptors CXCR1 and CXCR2. However, the airways of individuals with cystic fibrosis are frequently colonized by bacterial pathogens, despite the presence of large numbers of neutrophils and IL-8. Here we show that IL-8 promotes bacterial killing by neutrophils through CXCR1 but not CXCR2. Unopposed proteolytic activity in the airways of individuals with cystic fibrosis cleaved CXCR1 on neutrophils and disabled their bacterial-killing capacity. These effects were protease concentration-dependent and also occurred to a lesser extent in individuals with chronic obstructive pulmonary disease. Receptor cleavage induced the release of glycosylated CXCR1 fragments that were capable of stimulating IL-8 production in bronchial epithelial cells via Toll-like receptor 2. In vivo inhibition of proteases by inhalation of alpha1-antitrypsin restored CXCR1 expression and improved bacterial killing in individuals with cystic fibrosis. The cleavage of CXCR1, the functional consequences of its cleavage, and the identification of soluble CXCR1 fragments that behave as bioactive components represent a new pathophysiologic mechanism in cystic fibrosis and other chronic lung diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号