首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
One of the major goals in ecology is to determine the mechanisms that drive the asymptotic increase in ecosystem productivity with plant species diversity. Niche complementarity, the current paradigm for the asymptotic diversity-productivity pattern, posits that the addition of species to a community increases productivity because each species specializes on different resources and thus can more thoroughly utilize the available resources. At higher diversity the increase in productivity decreases because resources become limiting, resulting in the classic asymptotic diversity-productivity pattern. An alternative but less tested explanation is that density-dependent disease from species-specific soil microbes drive the diversity-productivity relationship by increasing disease and thus decreasing productivity at low diversity. At higher diversity, productivity asymptotes because disease decreases with increasing diversity until it reaches a uniformly low level. Using a series of field experiments, we found that the classic asymptotic diversity-productivity pattern existed only when soil microbes were present. Soil microbes created the well-known pattern by depressing plant growth at low productivity though negative density dependent disease. In contrast, niche complementarity played only a weak role in explaining the diversity-productivity relationship because productivity remained high at low abundance in the absence of soil microbes. Based on our findings, the ongoing loss of species in natural ecosystems will likely increase per capita plant disease and lower ecosystem productivity. Furthermore, recent evidence suggests that negative density dependent disease maintains plant species diversity, and thus this single mechanism appears to link diversity maintenance to the diversity-productivity curve—two important ecological processes.Key words: density dependence, diversity-productivity, negative feedback, pathogens, species richness, soil microbesThe asymptotically saturating increase in ecosystem productivity with increasing diversity is a well know pattern in nature14 (Fig. 1). The pattern has been used as an argument for the importance of species diversity,5 and understanding the mechanisms that drive the pattern is critical to determine the potential loss in productivity with ongoing and accelerating species loss in many ecosystems. The cause of the diversity-productivity pattern can be explained by either bottom-up control, such as plant resource competition, or top-down control from plant herbivores or pathogens. Most contemporary explanations for the pattern are centered on the bottom-up concept of niche-based resource competition, in which different species utilize different resources. The commonly accepted explanation, the niche complementarity hypothesis, states that the increase in species diversity increases productivity because each additional species uses a differ set of resources (e.g., nutrients) and thus more thoroughly utilizes whole-ecosystem resources.3,4,6 At high diversity, however, the resource requirements of additional species overlap with existing ones and thus productivity no longer increases with diversity, resulting in the asymptotic diversity-productivity pattern (Fig. 1).Open in a separate windowFigure 1Theoretical relationship between species number and biomass. As diversity increases, total biomass increases asymptotically.Top-down control from plant enemies may also produce the asymptotic diversity-productivity pattern if the enemies are species-specific and have a strong negative density-dependent effect at low diversity. One general group of enemies is plant pathogens and parasites (bacterial, fungal, viral) that live in the soil and infect plant roots (hereafter referred to as soil pathogens). The specificity of soil pathogens has been shown in various studies and is now generally accepted.1,7,8 The negative density dependent effect of plant pathogens at low diversity is likely because when diversity is low the relative abundance of each remaining species is high,911 which leads to most individuals growing in close proximity of conspecifics and thus a greater probability of species-specific disease transmission. Unlike other plant enemies, such as foliar pathogens or insect and mammalian herbivores, which can be broadly dispersed, soil-borne pathogens may be a particularly effective driver of negative density dependent effects because they have low mobility and thus are more likely to infect nearby conspecifics, which causes increased disease at low diversity.911 As diversity increases, the effect of soil-borne pathogens decreases because there is a lower likelihood of growing near a conspecific and there are lower concentrations of host-specific soil enemies.10 Consequently, soil-borne, species-specific disease may limit ecosystem productivity through top-down density-dependent regulation, even in the absence of niche-based explanations. Few studies, however, have considered the role of plant soil pathogens in driving the classic diversity-productivity relationship1 (see also ref. 2) and, until now, no study has compared the two potential drivers simultaneously.1We used a modeling approach to first demonstrate that both niche complementarity and species-specific soil pathogens can both theoretically drive the well-known diversity-productivity pattern.1 We then used a series of complementary field experiments in grasslands in North America (Ontario, Canada and Minnesota, USA) to determine how plant disease and productivity change over a gradient of plant species richness in the presence and absence of soil microbes, and whether feedback between plants and their species-specific soil biota influenced the diversity-productivity pattern.1 We first tested whether the asymptotic diversity-ecosystem productivity relationship arose in the presence of soil pathogens (a test of the negative density dependence hypothesis) or in the absence of soil pathogens (a test of the niche complementarity hypothesis). We then confirmed that soil biota were species specific and examined the decrease in plant disease and increase in productivity with increasing plant diversity.  相似文献   

2.
Which processes drive the productivity benefits of biodiversity remain a critical, but unanswered question in ecology. We tested whether the soil microbiome mediates the diversity‐productivity relationships among late successional plant species. We found that productivity increased with plant richness in diverse soil communities, but not with low‐diversity mixtures of arbuscular mycorrhizal fungi or in pasteurised soils. Diversity‐interaction modelling revealed that pairwise interactions among species best explained the positive diversity‐productivity relationships, and that transgressive overyielding resulting from positive complementarity was only observed with the late successional soil microbiome, which was both the most diverse and exhibited the strongest community differentiation among plant species. We found evidence that both dilution/suppression from host‐specific pathogens and microbiome‐mediated resource partitioning contributed to positive diversity‐productivity relationships and overyielding. Our results suggest that re‐establishment of a diverse, late successional soil microbiome may be critical to the restoration of the functional benefits of plant diversity following anthropogenic disturbance.  相似文献   

3.
Decreasing species diversity is thought to both reduce community productivity and increase invasibility to other species. However, it remains unclear whether identical mechanisms drive both diversity-productivity and diversity-invasibility relationships. We found a positive diversity-productivity relationship and negative diversity-invasibility and productivity-invasibility relationships using microcosm communities constructed from spatial niche specialist genotypes of the bacterium Pseudomonas fluorescens. The primary mechanism driving these relationships was a dominance (or selection) effect: more diverse communities were more likely to contain the most productive and least invasible type. Statistical elimination of the dominance effect greatly weakened the diversity-invasibility relationship and eliminated the diversity-productivity relationship, but also revealed the operation of additional mechanisms (niche complementarity, positive and negative interactions) for particular combinations of niche specialists. However, these mechanisms differed for invasibility and productivity responses, resulting in the invasibility-productivity relationship changing from strongly negative to weakly positive. In the absence of the dominance effect, which may be an experimental artefact, decreasing diversity can have unexpected or no effects on ecosystem properties.  相似文献   

4.
The specific shape of the relationship between plant diversity and productivity and the causal mechanism(s) behind the observed pattern(s) are still highly debated. Recent advances suggest that the relationship depends on several environmental variables and may change with the observational scale. In this study, a multivariate, multiscale approach was used to identify the variables that determine the relationship between species richness and annual production along a forest/old field edge in southern Québec (Canada). Various relationships between richness and production were found at different distances to the edge. In the forest, most relationships were positive and linear, while in the old field the relationship shifted from positive linear to non-significant with increasing distance from the edge. In the forest or in the old field, the shape of the relationship (all distances from the edge combined) was unimodal. Path analyses showed that species richness was determined mostly by production, which was influenced by different limiting resources, depending on the community (forest or old field). An increasing range in production created by pooling across community types can confound the resources and/or conditions determining the diversity-productivity relationship.  相似文献   

5.
生物多样性与生态系统生产力之间的关系是当前生态学领域的热点问题。短花针茅(Stipa breviflora)草原是内蒙古荒漠草原的主要类型, 生态系统脆弱, 气候波动剧烈, 研究内蒙古短花针茅草原生物多样性与生产力的关系具有十分重要的意义。该研究在内蒙古短花针茅草原区设置了202个样地进行群落调查, 在干旱区及半干旱区两种资源供给下, 分析了物种丰富度、功能群丰富度与生产力的关系, 旨在解决两个科学问题: 1)物种多样性和功能群多样性中, 哪一种与生产力关系更为密切?2)资源供给对多样性和生产力关系的影响。结果表明: 1)物种丰富度、群落生产力与年降水量呈正相关关系, 而功能群丰富度与年降水量之间不存在显著相关性; 2)群落生产力随物种丰富度的增加而增加, 且两者间呈正线性关系, 功能群丰富度与生产力之间不存在显著相关关系; 3)资源供给会影响多样性与生产力之间的关系, 资源供给低时, 多样性对生产力贡献较低, 资源供给高时, 多样性对生产力的贡献较高。该研究丰富了多样性与生产力关系的研究, 同时, 考虑到植物功能性状的研究在近几年受到生态学家的重视, 且多数研究集中于小尺度的人工控制实验, 因此, 在大尺度自然生态系统中开展功能性状多样性与生态系统功能关系的研究将十分必要。  相似文献   

6.
Soil microbial communities are essential for regulating the dynamics of plant productivity. However, how soil microbes mediate temporal stability of plant productivity at large scales across various soil fertility conditions remains unclear. Here, we combined a regional survey of 51 sites in the temperate grasslands of northern China with a global grassland survey of 120 sites to assess the potential roles of soil microbial diversity in regulating ecosystem stability. The temporal stability of plant productivity was quantified as the ratio of the mean normalized difference vegetation index to its standard deviation. Soil fungal diversity, but not bacterial diversity, was positively associated with ecosystem stability, and particular fungal functional groups determined ecosystem stability under contrasting conditions of soil fertility. The richness of soil fungal saprobes was positively correlated with ecosystem stability under high-fertility conditions, while a positive relationship was observed with the richness of mycorrhizal fungi under low-fertility conditions. These relationships were maintained after accounting for plant diversity and environmental factors. Our findings highlight the essential role of fungal diversity in maintaining stable grassland productivity, and suggest that future studies incorporating fungal functional groups into biodiversity–stability relationships will advance our understanding of their linkages under different fertility conditions.  相似文献   

7.
山地是高寒草甸的主要分布区,地形变化引起了土壤温湿度和物种的差异性分布,进而影响到草地生态系统生产功能。为明晰高寒草甸山地环境因子(土壤温湿度)和物种多样性(丰富度、多度、均匀度、优势度)与初级生产力的关系,本研究以青藏高原东北缘马牙雪山支脉的高寒草甸山体为研究对象,选择阶地、阴坡、山脊和阳坡与3个海拔梯度段,调查了189个样方的植物群落组成和土壤温湿度。采用线性回归法分析土壤温湿度和物种多样性与初级生产力之间的关系。结果表明:(1)以山地高寒草甸整体为研究单元,初级生产力只随物种多度的增加而显著增加(R~2=0.07 P=0.01)。(2)坡向影响初级生产力的因素不同,阴坡初级生产力与物种丰富度正线性相关;山脊初级生产力与土壤湿度正线性相关,也随物种丰富度增加而显著增加;阳坡初级生产力与物种多度正线性相关;阶地初级生产力随均匀度增加而显著增加,随优势度增加而显著降低。(3)只有低海拔区(2860-2910 m)初级生产力随物种多度和丰富度的增加而显著增加。综上所述,山地高寒草甸土壤温湿度和物种多样性与初级生产力关系受坡向比海拔的影响更大,且物种多样性对初级生产力的影响大于土壤温湿度。建议山地高寒草甸生态系统生产和生态管理过程中要重点考虑坡向对植物多样性和初级生产力的影响。  相似文献   

8.
Plant community functional structure may drive ecosystem functions in relation with (i) the trait values characterizing dominant species, according to the “biomass ratio hypothesis” proposed by Grime, and (ii) thanks to trait dissimilarity among species, according to the “diversity hypothesis” proposed by Tilman. Both propositions have already yielded support but their relative importance and how they impact biomass production in field situations is still not well known. This study therefore tested (i) whether or not there was a close relationship between biomass production and the community-weighted mean trait values (CWM), as expected from the “biomass ratio hypothesis”, and (ii) the impact of the functional diversity (FDQ) on biomass production, which is expected to be positive according to the “diversity-hypothesis”. The study considered a range of plant assemblages occurring in a wet grassland and five above-ground and four below-ground plant traits were measured to characterize their functional structure. The effects of species diversity, soil water content, soil nitrogen availability and grazing intensity on biomass production were also determined.We showed that biomass production was not related either to species richness and diversity or to any of the resource and disturbance parameters considered. Conversely, the functional structure was found to explain up to 55% of the variability of the biomass production. The results obtained clearly supported the “biomass-ratio hypothesis”. Functional diversity was mainly found to negatively impact biomass production with only poor support to the “diversity hypothesis”. We suggest that such a dilution effect of increasing FDQ on community primary production may be typical of fertile habitats.In order to significantly improve our understanding of the relationship between functional diversity and ecosystem processes, further studies should consider plant assemblages that have been shaped over the long term and habitats across a wide range of productivity.  相似文献   

9.
Understanding the link between community diversity and ecosystem function is a fundamental aspect of ecology. Systematic losses in biodiversity are widely acknowledged but the impact this may exert on ecosystem functioning remains ambiguous. There is growing evidence of a positive relationship between species richness and ecosystem productivity for terrestrial macro‐organisms, but similar links for marine micro‐organisms, which help drive global climate, are unclear. Community manipulation experiments show both positive and negative relationships for microbes. These previous studies rely, however, on artificial communities and any links between the full diversity of active bacterial communities in the environment, their phylogenetic relatedness and ecosystem function remain hitherto unexplored. Here, we test the hypothesis that productivity is associated with diversity in the metabolically active fraction of microbial communities. We show in natural assemblages of active bacteria that communities containing more distantly related members were associated with higher bacterial production. The positive phylogenetic diversity–productivity relationship was independent of community diversity calculated as the Shannon index. From our long‐term (7‐year) survey of surface marine bacterial communities, we also found that similarly, productive communities had greater phylogenetic similarity to each other, further suggesting that the traits of active bacteria are an important predictor of ecosystem productivity. Our findings demonstrate that the evolutionary history of the active fraction of a microbial community is critical for understanding their role in ecosystem functioning.  相似文献   

10.
Soil microbes play key roles in ecosystems, yet the impact of their diversity on plant communities is still poorly understood. Here we demonstrate that the diversity of belowground plant-associated soil fungi promotes plant productivity and plant coexistence. Using additive partitioning of biodiversity effects developed in plant biodiversity studies, we demonstrate that this positive relationship can be driven by complementarity effects among soil fungi in one soil type and by a selection effect resulting from the fungal species that stimulated plant productivity the most in another soil type. Selection and complementarity effects among fungal species contributed to improving plant productivity up to 82% and 85%, respectively, above the average of the respective fungal species monocultures depending on the soil in which they were grown. These results also indicate that belowground diversity may act as insurance for maintaining plant productivity under differing environmental conditions.  相似文献   

11.
根间相互作用对玉米与马铃薯响应异质氮的调控   总被引:1,自引:0,他引:1  
近年研究表明养分异质促进植物多样性与群落生产力的正相关性。然而,相关的促进机制还很不清楚。以农田生态系统下作物多样性群体(玉米马铃薯间作体系)为例,在盆栽条件下采用控释性氮肥构建养分异质性,通过目标植物法设计根间作用处理,探讨根系的觅养行为,植株个体生长和总生产力对土壤氮空间分布和根间作用的响应特征。结果表明:根间作用提高作物的觅养精确度(F=3.017,P=0.094),在异质性条件下马铃薯的根冠比增加(P=0.001),而玉米的根冠比则不论在均质性还是异质性条件下均显著降低(F=4.781,P=0.039);氮异质性显著地提高在根间作用下两作物的生物量生产(P=0.021),明显增加总生产力LER(Land equivalent ratio)(F=4.171,P=0.064),显著地降低相对关系指数RII(Relative interaction index)值(F=5.636,P=0.026),显著降低玉米的根冠比(F=4.273,P=0.049),增加根间作用下马铃薯的根冠比,而在无竞争下则降低。上述结果说明,非资源性的根间作用激发玉米和马铃薯对异质性氮的觅养能力,这可能是为什么异质性养分环境促进植物多样性与群体生产力正向关系的重要原因;结果还表明觅养能力的激发主要来自非资源性的根间作用机制,因此本研究验证了植物对异质性养分和竞争者的协同响应理论。而有关的非资源性根间作用机制,例如种间识别作用等值得进一步深入探讨。  相似文献   

12.
功能多样性-生产力关系研究结果支持质量比假说和多样性假说, 但对于这两种假说的适用条件尚有争议。通过对吉林省西部草甸和沼泽植物群落的地上生物量、2个物种多样性指标(物种丰富度和Shannon-Weaver指数)、7种植物性状的两类功能多样性指标(群落权重均值和Rao二次熵), 以及土壤环境因子进行调查测量, 研究了群落功能多样性与生产力的关系。结果表明: 1)功能多样性与生产力的关系比物种多样性与生产力的关系更为密切; 2)功能群落权重均值解释生产力变异的能力好于Rao二次熵, 即优势物种对群落生产力的影响作用更大; 3)水淹条件影响着功能多样性与生产力的关系, 以群落权重均值为基础的质量比假说适于解释草甸群落功能多样性与生产力的关系, 而以Rao二次熵为基础的多样性假说适于解释有强烈环境筛(水淹)的沼泽群落功能多样性与生产力的关系。  相似文献   

13.
应用样线法对放牧对内蒙古草原沿水分梯度分布的主要植物群落:小针茅(Stipaklemenzii)群落、大针茅(Stipagrandis)群落、羊草(Leymuschinensis)群落和羊草杂类草群落多样性、生产力以及两者关系的影响进行了研究,结果表明,除羊草杂类草群落外,物种多样性、生活型多样性和水分生态类型多样性随放牧强度的加大而降低,但适度放牧增加了羊草杂类草群落的上述多样性指标。群落地上现存量一般随放牧强度的增大而下降,但小针茅群落反之,主要与1年生植物猪毛菜(Salsolacollina)的生物量迅速增加有关。除羊草群落外,其他群落0~10cm地下生物量随放牧强度的变化不显著;放牧显著降低羊草群落和羊草杂类草群落0~30cm地下生物量。多样性和生产力间的关系在群落水平上的趋势是不同的,但放牧影响下内蒙古草原4种群落多样性与生产力总体而言呈线性增加关系;同时两者之间的关系还和采用哪种多样性指标和生产力指标有关,用水分生态类型多样性比物种多样性更能反映与地上地下总生产力间的关系,得到放牧影响下内蒙古草原植物群落地上地下总生物量与水分生态类型多样性的回归方程。  相似文献   

14.
高寒草甸不同草地群落物种多样性与生产力关系研究   总被引:33,自引:3,他引:30  
生态系统的结构和功能、生物多样性与生产力的关系问题是近年来群落生态学中研究的中心问题,其中,生态系统生产力水平是其功能的重要表现形式,用4种不同草地类型探讨自然群落的物种多样性与生产力关系.结果表明,矮嵩草草甸、小嵩草草甸和金露梅灌丛群落中物种多样性与生产力的关系呈线性增加关系,藏嵩草沼泽化草甸群落中线性增加关系不显著,这表明群落生产力除受物种多样性的影响外,也受物种本身特征和环境资源的影响.不同的环境资源和环境异质性是形成群落结构特征、物种多样性分布格局差异的主要原因之一.  相似文献   

15.
Fungi have important roles as decomposers, mycorrhizal root symbionts and pathogens in forest ecosystems, but there is limited information about their diversity and composition at the landscape scale. This work aimed to disentangle the factors underlying fungal richness and composition along the landscape‐scale moisture, organic matter and productivity gradients. Using high‐throughput sequencing, we identified soil fungi from 54 low‐productivity Pinus sylvestris‐dominated plots across three study areas in Estonia and determined the main predictors of fungal richness based on edaphic, floristic and spatial variables. Fungal richness displayed unimodal relationship with organic matter and deduced soil moisture. Plant richness and productivity constituted the key predictors for taxonomic richness of functional guilds. Composition of fungi and the main ectomycorrhizal fungal lineages and hyphal exploration types was segregated by moisture availability and soil nitrogen. We conclude that plant productivity and diversity determine the richness and proportion of most functional groups of soil fungi in low‐productive pine forests on a landscape scale. Adjacent stands of pine forest may differ greatly in the dominance of functional guilds that have marked effects on soil carbon and nitrogen cycling in these forest ecosystems.  相似文献   

16.
AM真菌物种多样性:生态功能、影响因素及维持机制   总被引:1,自引:0,他引:1  
杨海水  熊艳琴  王琪  郭伊  戴亚军  许明敏 《生态学报》2016,36(10):2826-2832
AM真菌物种多样性是土壤生态系统生物多样性的重要组分之一。尽管对AM真菌多样性已有多年研究,但是,已有研究绝大多数仅停留在对AM真菌群落种属解析层面上,对AM真菌物种多样性生态功能及维持机制方面的认识较浅。从生态功能、影响因素及维持机制3个方面系统地综述了近年来AM真菌多样性领域的研究进展。认为AM真菌多样性对植物群落生产力的调控机制及结合理论与实践解析AM真菌多样性维持机制是该领域未来的重点研究方向。  相似文献   

17.
Aims Soil organisms can influence the plant diversity-productivity relationship at species level; however, little is known about their role in the relationship at an intraspecific level. This study aimed to investigate the interaction between the effects of plant intraspecific diversity and a root-knot nematode on primary production and community evenness.  相似文献   

18.
Understanding the mechanisms of community coexistence and ecosystem functioning may help to counteract the current biodiversity loss and its potentially harmful consequences. In recent years, plant–soil feedback that can, for example, be caused by below‐ground microorganisms has been suggested to play a role in maintaining plant coexistence and to be a potential driver of the positive relationship between plant diversity and ecosystem functioning. Most of the studies addressing these topics have focused on the species level. However, in addition to interspecific interactions, intraspecific interactions might be important for the structure of natural communities. Here, we examine intraspecific coexistence and intraspecific diversity effects using 10 natural accessions of the model species Arabidopsis thaliana (L.) Heynh. We assessed morphological intraspecific diversity by measuring several above‐ and below‐ground traits. We performed a plant–soil feedback experiment that was based on these trait differences between the accessions in order to determine whether A. thaliana experiences feedback at intraspecific level as a result of trait differences. We also experimentally tested the diversity–productivity relationship at intraspecific level. We found strong differences in above‐ and below‐ground traits between the A. thaliana accessions. Overall, plant–soil feedback occurred at intraspecific level. However, accessions differed in the direction and strength of this feedback: Some accessions grew better on their own soils, some on soils from other accessions. Furthermore, we found positive diversity effects within A. thaliana: Accession mixtures produced a higher total above‐ground biomass than accession monocultures. Differences between accessions in their feedback response could not be explained by morphological traits. Therefore, we suggest that they might have been caused by accession‐specific accumulated soil communities, by root exudates, or by accession‐specific resource use based on genetic differences that are not expressed in morphological traits. Synthesis. Our results provide some of the first evidence for intraspecific plant–soil feedback and intraspecific overyielding. These findings may have wider implications for the maintenance of variation within species and the importance of this variation for ecosystem functioning. Our results highlight the need for an increased focus on intraspecific processes in plant diversity research to fully understand the mechanisms of coexistence and ecosystem functioning.  相似文献   

19.
Ecosystems worldwide are increasingly impacted by multiple drivers of environmental change, including climate warming and loss of biodiversity. We show, using a long‐term factorial experiment, that plant diversity loss alters the effects of warming on productivity. Aboveground primary productivity was increased by both high plant diversity and warming, and, in concert, warming (≈1.5 °C average above and belowground warming over the growing season) and diversity caused a greater than additive increase in aboveground productivity. The aboveground warming effects increased over time, particularly at higher levels of diversity, perhaps because of warming‐induced increases in legume and C4 bunch grass abundances, and facilitative feedbacks of these species on productivity. Moreover, higher plant diversity was associated with the amelioration of warming‐induced environmental conditions. This led to cooler temperatures, decreased vapor pressure deficit, and increased surface soil moisture in higher diversity communities. Root biomass (0–30 cm) was likewise consistently greater at higher plant diversity and was greater with warming in monocultures and at intermediate diversity, but at high diversity warming had no detectable effect. This may be because warming increased the abundance of legumes, which have lower root : shoot ratios than the other types of plants. In addition, legumes increase soil nitrogen (N) supply, which could make N less limiting to other species and potentially decrease their investment in roots. The negative warming × diversity interaction on root mass led to an overall negative interactive effect of these two global change factors on the sum of above and belowground biomass, and thus likely on total plant carbon stores. In total, plant diversity increased the effect of warming on aboveground net productivity and moderated the effect on root mass. These divergent effects suggest that warming and changes in plant diversity are likely to have both interactive and divergent impacts on various aspects of ecosystem functioning.  相似文献   

20.
生物多样性和生态系统功能的关系直接或间接地影响着生产力, 是生态学研究的关键问题。本研究旨在定量探讨亚热带自然林演替后期森林生态系统树木多样性与生物量或生产力的关系。本研究基于中国南亚热带长期永久性样地的群落调查数据以及地形和土壤养分数据, 分析了南亚热带常绿阔叶林树木多样性与生物量和生产力的关联及其影响因素。相关性分析结果表明, 物种多样性与生物量呈显著负相关, 与生产力呈显著正相关; 结构多样性与生物量呈显著正相关, 与生产力呈显著负相关。此外, 不同环境因子对多样性、生物量和生产力的影响具有显著差异, 其中土壤含水量对生产力有显著影响, 物种多样性指标与部分地形和土壤因子均有相关性, 而群落结构多样性指标与土壤因子的相关性更强。方差分解结果表明, 结构多样性对生物量和生产力的单独效应的解释率最大, 分别为35.39%和5.21%; 其次是结构多样性和物种多样性的共同效应, 对生物量和生产力的解释率分别为13.66%和3.53%; 地形和土壤因子的解释率较小。同时, 结构方程结果也表明, 结构多样性对生物量有较强的直接正影响; 生物量对生产力有强烈的直接负影响, 结构多样性通过增加生物量明显地减少了生产力; 土壤和地形因子主要是通过物种和结构多样性间接影响生物量和生产力。综上, 本研究认为在南亚热带森林演替顶极群落中, 群落结构复杂性和物种多样性的提高对促进群落生产力和生物量具有重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号