首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 770 毫秒
1.
Syagrus (Areaceae: Cocoseae) is a New World palm genus occurring through most of South America, with one species in the eastern Caribbean. Relationships within Syagrus, Cocoseae and Attaleinae (Arecaceae) are investigated via cladistic analysis of 130 structural characters in 69 ingroup and three outgroup species. The data resolve relationships and test generic limits of Attaleinae and among the Syagrus complex. Maximum parsimony analysis derived the following relationships: 1) two major clades (butioid and syagroid) are resolved; 2) Syagrus is polyphyletic as presently defined, with Allagoptera (incl. Polyandrococos), Cocos, Voanioala, and Attalea nested within it; 3) all genera studied except Syagrus and Butia are monophyletic; and 4) relationships in Syagrus broadly align with phytogeography and leaflet anatomy. The data suggest that Syagrus is polyphyletic, and presently accepted taxonomy may not predict monophyletic groups. The relationships predicted by the structural data differ from those resolved via molecular means in part, and also show some congruence.  相似文献   

2.
Phylogenetic relationships of the subfamily Combretoideae (Combretaceae) were studied based on DNA sequences of nuclear ribosomal internal transcribed spacer (ITS) regions, the plastid rbcL gene and the intergenic spacer between the psaA and ycf3 genes (PY-IGS), including 16 species of eight genera within two traditional tribes of Combretoideae, and two species of the subfamily Strephonematoideae of Combretaceae as outgroups. Phylogenetic trees based on the three data sets (ITS, rbcL, and PY-IGS) were generated by using maximum parsimony (MP) and maximum likelihood (ML) analyses. Partition-homogeneity tests indicated that the three data sets and the combined data set are homogeneous. In the combined phylogenetic trees, all ingroup taxa are divided into two main clades, which correspond to the two tribes Laguncularieae and Combreteae. In the Laguncularieae clade, two mangrove genera, Lumnitzera and Laguncularia, are shown to be sister taxa. In the tribe Combreteae, two major clades can be classified: one includes three genera Quisqualis, Combretum and Calycopteris, within which the monophyly of the tribe Combreteae sensu Engler and Diels including Quisqualis and Combretum is strongly supported, and this monophyly is then sister to the monotypic genus Calycopteris; another major clade includes three genera Anogeissus, Terminalia and Conocarpus. There is no support for the monophyly of Terminalia as it forms a polytomy with Anogeissus. This clade is sister to Conocarpus. Electronic Publication  相似文献   

3.
In order to construct a molecular phylogeny of Indonesian Dipterocarpoideae (Dipterocarpaceae), PCR-RFLP of the chloroplast regions rbcL, petB, psbA, psaA, and trnL-F was performed with seven restriction enzymes in 129 samples including 58 species from nine genera. In the strict consensus tree with Monotes kerstingii as outgroup Indonesian Dipterocarpaceae were divided into two major clades. One clade (bootstrap value=71) consisted of Upuna, Cotylelobium, Anisoptera, Vatica, Dipterocarpus (tribe Dipterocarpeae, bootstrap value=83) and Dryobalanops (tribe Shoreae, bootstrap value=99) in a basal position. The second clade consisted of Hopea, Parashorea, and Shorea (tribe Shoreae) with 95% bootstrap support. Tribe Dipterocarpeae is monophyletic, tribe Shoreae is polyphyletic since Dryobalanops is sister to tribe Dipterocarpeae. In the neighbour-joining tree the sister group position of Dryobalanops to tribe Dipterocarpeae is not supported by the bootstrap analysis. Alternatively, we used Upuna borneensis as outgroup. The effect of outgroup selection on tree topology, taxonomic classification and the interpretation of character evolution is discussed.  相似文献   

4.
Using sequences from the plastid trnL-F region and nrDNA ITS, we investigated the phylogeny of the fleshy-fruited African tribe Haemantheae of the Amaryllidaceae across 19 species representing all genera of the tribe. ITS and a combined matrix produce the most resolute and well-supported tree with parsimony analysis. Two main clades are resolved, one comprising the monophyletic rhizomatous genera Clivia and Cryptostephanus, and a larger clade that unites Haemanthus and Scadoxus as sister genera to an Apodolirion/Gethyllis subclade. One of four included Gethyllis species, G. lanuginosa, resolves as sister to Apodolirion with ITS. Relationships among the Clivia species are not in agreement with a previous published phylogeny. Biogeographic analysis using the divergence/vicariance method roots the tribe in Eastern South Africa, with several subsequent dispersals to the winter rainfall Western Cape region. Chromosomal change from an ancestral 2n=22 (characteristic of Clivia) is associated with each main clade. Reduction in number has occurred in all but Cryptostephanus, which has 2n=24 chromosomes. Increasing the sampling across all of the species in the tribe will allow a more detailed understanding of the biogeographic patterns inherent in the parsimony topology, which undoubtedly reflect Quaternary climatic changes in Southern Africa.  相似文献   

5.
The tribe Massonieae Baker (Hyacinthaceae-Hyacinthoideae) presently consists of about 19 genera and 230 species distributed from Africa (south of the Sahara) to Madagascar and India. Based on atpB and trnL-F DNA sequences the tribe is monophyletic only when the genus Pseudoprospero is excluded from Massonieae. In most trnL-F trees, this genus occupies a basal position within subfamily Hyacinthoideae and is sister to the rest of the subfamily. Molecular data suggest that the remaining genera of Massonieae do not share common ancestry with the Eurasian/North-African tribe Hyacintheae Dumort. (Scilla, Hyacinthus and allies), and thus a narrow concept of the essentially Eurasian genus Scilla is supported. Members of well-supported clades in Massonieae usually show similarities in seed characteristics as determined by scanning electron microscopy. Phylogenetic position and seed morphology indicate that Massonia angustifolia and M. zeyheri do not belong to the genus Massonia but fall into a clade together with Daubenya, Androsiphon and Amphisiphon. The genus Whiteheadia appears paraphyletic in the 50% majority rule trnL-F tree and occupies a basal position next to Massonia. However, in the strict consensus tree neither monophyly nor polyphyly can be excluded for this genus. Seed appendages are documented for members of the genera Ledebouria and Lachenalia. Within the genera of Massonieae there is a tendency towards bending of the seed axis. This phenomenon is most obvious within the genus Lachenalia. Delimitation of genera based on seed morphology largely agrees with the results of molecular studies. Correlation between number, size and color of seeds, geographical distribution and phylogenetic position of the genera are discussed. Electronic Publication  相似文献   

6.
A Bayesian analysis, utilizing a combined data set developed from the small subunit (SSU) and large subunit (LSU) rDNA gene sequences, was used to resolve relationships and clarify generic boundaries among 84 strains of plastid‐containing euglenophytes representing 11 genera. The analysis produced a tree with three major clades: a Phacus and Lepocinlis clade, a Discoplastis clade, and a Euglena, Colacium, Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena clade. The majority of the species in the genus Euglena formed a well‐supported clade, but two species formed a separate clade near the base of the tree. A new genus, Discoplastis, was erected to accommodate these taxa, thus making the genus Euglena monophyletic. The analysis also supported the monophyly of Colacium, Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena, which formed two subclades sister to the Euglena clade. Colacium, Trachelomonas, and Strombomonas, all of which produce copious amounts of mucilage to form loricas or mucilaginous stalks, formed a well‐supported lineage. Our analysis supported retaining Strombomonas and Trachelomonas as separate genera. Monomorphina and Cryptoglena formed two well‐supported clades that were sister to the Colacium, Trachelomonas, and Strombomonas clade. Phacus and Lepocinclis, both of which have numerous small discoid chloroplasts without pyrenoids and lack peristaltic euglenoid movement (metaboly), formed a well‐supported monophyletic lineage that was sister to the larger Euglena through Cryptoglena containing clade. This study demonstrated that increased taxon sampling, multiple genes, and combined data sets provided increased support for internal nodes on the euglenoid phylogenetic tree and resolved relationships among the major genera in the photosynthetic euglenoid lineage.  相似文献   

7.
Bayesian and maximum‐likelihood (ML) analyses of the combined multigene data (nuclear SSU rDNA, and plastid SSU and LSU rDNA) were conducted to evaluate the phylogeny of photosynthetic euglenoids. The combined data set consisted of 108 strains of photosynthetic euglenoids including a colorless sister taxon. Bayesian and ML analyses recovered trees of almost identical topology. The results indicated that photosynthetic euglenoids were divided into two major clades, the Euglenaceae clade (Euglena, Euglenaria, Trachelomonas, Strombomonas, Monomorphina, Cryptoglena, Colacium) and the Phacaceae clade (Phacus, Lepocinclis, Discoplastis). The Euglenaceae clade was monophyletic with high support and subdivided into four main clades: the Colacium, the Strombomonas and Trachelomonas, the Cryptoglena and Monomorphina, and the Euglena and Euglenaria clades. The genus Colacium was positioned at the base of the Euglenaceae and was well supported as a monophyletic lineage. The loricate genera (Strombomonas and Trachelomonas) were located at the middle of the Euglenaceae clade and formed a robust monophyletic lineage. The genera Cryptoglena and Monomorphina also formed a well‐supported monophyletic clade. Euglena and the recently erected genus Euglenaria emerged as sister groups. However, Euglena proxima branched off at the base of the Euglenaceae. The Phacaceae clade was also a monophyletic group with high support values and subdivided into three clades, the Discoplastis, Phacus, and Lepocinclis clades. The genus Discoplastis branched first, and then Phacus and Lepocinclis emerged as sister groups. These genera shared a common characteristic, numerous small discoid chloroplasts without pyrenoids. These results clearly separated the Phacaceae clade from the Euglenaceae clade. Therefore, we propose to limit the family Euglenaceae to the members of the Euglena clade and erect a new family, the Phacaceae, to house the genera Phacus, Lepocinclis, and Discoplastis.  相似文献   

8.
The aim of this paper was to further explore the phylogeny of Siphini by analysing molecular data (two mitochondrial genes and two nuclear markers), together with morphological (29) and ecological (two) characters, for comprehensive analyses concerning the evolution of Siphini, relationships within the tribe, and between Siphini and other Chaitophorinae. Nine Siphini species, which represent all the genera of this tribe, as well as 12 out‐group species (mainly Chaitophorini representatives of the genera Chaitophorus and Periphyllus), were used in the analyses. Molecular phylogenetic trees were reconstructed by the Bayesian inference (BI) phylogenetic analysis and maximum parsimony (MP) criterion. The cladistic analysis was performed using nona . The monophyly of Siphini was confirmed. Species belonging to subgenera Sipha and Rungsia were clustered together, and this clade was a sister with reference to a clade including the genera Atheroides and Chaetosiphella. Monophyly of Atheroides was confirmed by the molecular data; however, in cladistic analysis Atheroides seemed to be paraphyletic because Atheroides hirtellus was placed as sister to Atheroides serrulatus and Chaetosiphella. The monotypic genera Caricosipha and Laingia formed separate lineages, and Laingia was sister to all other Siphini. Chaitophorini was not retrieved by the molecular and combined data: Periphyllus was sister to a clade containing Chaitophorus and Siphini.  相似文献   

9.
Characeae (Charophyceae, Charophyta) contains two tribes with six genera: tribe Chareae with four genera and tribe Nitelleae, which includes Tolypella and Nitella. This paper uses molecular and morphological data to elucidate the phylogeny of Tolypella species in North America. In the most comprehensive taxonomic treatment of Characeae, 16 Tolypella species worldwide were subsumed into two species, T. intricata and T. nidifica, in two sections, Rothia and Tolypella respectively. It was further suggested that Tolypella might be a derived group within Nitella. In this investigation into species diversity and relationships in North American Tolypella, sequence data from the plastid genes atpB, psbC, and rbcL were assembled for a broad range of charophycean and land plant taxa. Molecular data were used in conjunction with morphology to test monophyly of the genus and species within it. Phylogenetic analyses of the sequence data showed that Characeae is monophyletic but that Nitelleae is paraphyletic with Tolypella sister to a monophyletic Nitella + Chareae. The results also supported the monophyly of Tolypella and the sections Rothia and Tolypella. Morphologically defined species were supported as clades with little or no DNA sequence differences. In addition, molecular data revealed several lineages and a new species (T. ramosissima sp. nov.), which suggests greater species diversity in Tolypella than previously recognized.  相似文献   

10.
Eighteen new 16S rDNA and 16 new 18S rDNA sequences from 24 strains, representing 23 species of photoautotrophic euglenoids, were obtained in nearly their entire length. Maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses were performed on separate data (39 sequences of 16S rDNA and 58 sequences of 18S rDNA), as well as on combined data sets (37 sequences). All methods of sequence analysis gave similar results in those cases in which the clades received substantial support. However, the combined data set produced several additional well‐supported clades, not encountered before in the analyses of green euglenoids. There are three main well‐defined clades (A, B/C/D, and G) on trees from the combined data set. Clade G diverges first, while clades A and B/C/D form sister groups. Clade A consists of Euglena species sensu stricto and is divided into three sub‐clades (A1, A2, and A3). Clade A3 (composed of E. deses and E. mutabilis) branches off first; then, two sister clades emerge: A1 (composed of E. viridis‐like species) and A2 (consisting of E. agilis and E. gracilis species). Clade B/C/D consists of the Strombomonas, Trachelomonas, Cryptoglena, Monomorphina, and Colacium genera. Clade G comprises Phacus and Lepocinclis, as well as the Discoglena species of Euglena, with Discoglena branching off first, and then Phacus and Lepocinclis emerging as sister groups.  相似文献   

11.
The Cracidae is one of the most endangered and distinctive bird families in the Neotropics, yet the higher relationships among taxa remain uncertain. The molecular phylogeny of its 11 genera was inferred using 10,678 analyzable sites (5,412 from seven different mitochondrial segments and 5,266 sites from four nuclear genes). We performed combinability tests to check conflicts in phylogenetic signals of separate genes and genomes. Phylogenetic analysis showed that the unrooted tree of ((curassows, horned guan) (guans, chachalacas)) was favored by most data partitions and that different data partitions provided support for different parts of the tree. In particular, the concatenated mitochondrial DNA (mtDNA) genes resolved shallower nodes, whereas the combined nuclear sequences resolved the basal connections among the major clades of curassows, horned guan, chachalacas, and guans. Therefore, we decided that for the Cracidae all data should be combined for phylogenetic analysis. Maximum parsimony (MP), maximum likelihood (ML), and Bayesian analyses of this large data set produced similar trees. The MP tree indicated that guans are the sister group to (horned guan, (curassows, chachalacas)), whereas the ML and Bayesian analysis recovered a tree where the horned guan is a sister clade to curassows, and these two clades had the chachalacas as a sister group. Parametric bootstrapping showed that alternative trees previously proposed for the cracid genera are significantly less likely than our estimate of their relationships. A likelihood ratio test of the hypothesis of a molecular clock for cracid mtDNA sequences using the optimal ML topology did not reject rate constancy of substitutions through time. We estimated cracids to have originated between 64 and 90 million years ago (MYA), with a mean estimate of 76 MYA. Diversification of the genera occurred approximately 41-3 MYA, corresponding with periods of global climate change and other Earth history events that likely promoted divergences of higher level taxa.  相似文献   

12.
Leucophyllum is one of the most remarkable endemic genera of North American deserts, with its simultaneous bloom of showy purple flowers. With Eremogeton and probably Capraria it forms part of tribe Leucophylleae. Leucophyllum has 16 species distributed mostly throughout the Chihuahuan and Tehuacán deserts. The three genera were sampled to investigate the phylogenetic relationships among them and to test the monophyly of Leucophyllum, based on plastid DNA (trnL‐F, rps16) and nuclear ribosomal (nr)DNA (internal transcribed spacer) sequences. Bayesian inference and maximum‐likelihood analyses confirmed that tribe Leucophylleae is monophyletic and formed by the three Neotropical genera. Separate (plastid DNA and nrDNA) and combined analyses retrieved Leucophyllum as paraphyletic, with L. mojinense as the sister species to the rest of the species in the tribe and Capraria spp. nested in one of two clades of Leucophyllum. Further monographic work is needed to identify the defining characters and limits of the genera, but we suggest that L. mojinense, with its different vegetative architecture, distinctive flowers and dissimilar distribution could be placed in its own genus. Each of the two clades in Leucophyllum could be considered a genus in its own right, and Capraria and Eremogeton can be recognized as independent genera, as they are at present. Leucophyllum ambiguum, the type species of the genus, belongs to one of the clades so the species of the other could be considered members of a new genus. The only diagnostic character detected at present is a ventricose corolla tube in one of the clades in Leucophyllum and a pressed corolla tube in the other. © 2013 The Linnean Society of London  相似文献   

13.
With c. 85 species, the genus Micranthes is among the larger genera of the Saxifragaceae. It is only distantly related to the morphologically similar genus Saxifraga, in which it has frequently been included as Saxifraga section Micranthes. To study the molecular evolution of Micranthes, we analysed nuclear ribosomal (internal transcribed spacer, ITS) and plastid (trnLtrnF) DNA sequences in a comprehensive set of taxa comprising c. 75% of the species. The molecular phylogenetic tree from the combined dataset revealed eight well‐supported clades of Micranthes. These clades agree in part with previously acknowledged subsections or series of Saxifraga section Micranthes. As these eight groups can also be delineated morphologically, we suggest that they should be recognized as sections of Micranthes. New relationships were also detected for some species and species groups, e.g. section Davuricae sister to sections Intermediae and Merkianae, and M. micranthidifolia as a member of section Micranthes. Species proposed to be excluded from the genus Micranthes for morphological reasons were resolved in the molecular tree in Saxifraga. Many morphological characters surveyed were homoplasious to varying extents. Micromorphological characters support comparatively well the clades in the phylogenetic tree. An updated nomenclature and a taxonomic conspectus of sections and species of Micranthes are provided. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 47–66.  相似文献   

14.
The subfamily Chrysomyinae includes blowflies of considerable ecological and applied importance. Previous extensive morphological investigations have affirmed chrysomyine monophyly, but did not support the monophyly of traditional chrysomyine tribes. Conversely, molecular systematic analyses suggested a para‐ or polyphyletic Chrysomyinae. Conflicting hypotheses have been proposed about the tribe‐level classification, and about the relationships of the obligate bird parasites Protocalliphora Hough and Trypocalliphora Peus. To understand chrysomyine evolution better, we reconstructed phylogenies of the Chrysomyinae based on 2285 bp of combined data from mitochondrial cytochrome oxidase c subunit 1 (COI) and nuclear carbamoylphosphate synthetase (CPS) genes. Maximum parsimony (MP), maximum likelihood (ML) and Bayesian analysis (BA) strongly supported the monophyly of Chrysomyinae and the paraphyly of the tribe Chrysomyini. BA and ML yielded a monophyletic tribe Phormiini, but this was unresolved by MP. A sister‐group relationship between Trypocalliphora and Protocalliphora indicates that obligate bird parasitism evolved once within the Calliphoridae. For the first time all Neotropical genera (Cochliomyia Townsend, Compsomyiops Townsend, Paralucilia Brauer and Bergenstamm, Hemilucilia Brauer and Chloroprocta Wulp) were found to comprise a single lineage, and Chrysomya Robineau‐Desvoidy, traditionally a member of Chrysomyini, was found to be closer to the Phormiini. Similarly, Hemilucilia + Chloroprocta was a monophyletic group. Every genus for which we examined more than one species was monophyletic.  相似文献   

15.
A cladistic analysis of the tribe Myllaenini Ganglbauer and related genera is presented. Monophyly of the Myllaenini is tested, and the tribe is hypothesized to be a monophyletic group consisting of nine genera (Myllaena Erichson, Amazonopora Pace, Dimonomera Cameron, Bryothinusa Casey, Philomina Blackwelder, Polypea Fauvel, Brachypronomaea Sawada, Rothium Moore and Legner, and Lautaea Sawada), based on the synapomorphy of antero‐lateral angles of mentum prolonged into spinose processes. A history of the classification of the Myllaenini is discussed. The data set for phylogenetic analysis comprised 99 characters representing 297 character states derived from adult morphology. The analysis agrees on the monophyly of the Myllaenini and the monophyly of the Pronomaeini Ganglbauer (Pronomaea Erichson, Pseudomniophila Pace, Nopromaea Cameron and Tomoxelia Bernhauer). The tribe Dimonomerini (Dimonomera Cameron) is confirmed to be a member of the Myllaenini. Masuriini is a possible sister group of the Myllaenini. Stylopalpus Cameron shows a sister group relationship to the Pronomaeini. Several other clades are also consistently recovered. However, the phylogenetic relationships of the genus Dysacrita are ambiguous. The rogue genus Diglotta Champion is not recovered as a member of the Myllaenini or Pronomaeini. On the contrary, it forms a monophyletic clade with the liparocephaline genera Halorhadinus Sawada and Amblopusa Casey. Evolution of the defensive gland on abdominal tergite VII among aleocharine lineages is reconsidered, and the origin of an intertidal habitat in the Myllaenini is discussed.  相似文献   

16.
Carl E. Lewis 《Brittonia》2002,54(2):78-91
Subtribe Oncospermatinae (Arecaceae: Arecoideae: Areceae) is a diverse group of spiny Old World palms. The subtribe includesOncosperma, a widespread Asian genus of five species, along with seven monotypic genera, all endemic to the Seychelles and Mascarene Islands of the western Indian Ocean. A phylogenetic analysis was conducted in order to test the monophyly of subtribe Oncospermatinae with respect to other Old World genera of tribe Areceae. A matrix of 38 morphological characters was scored for 29 taxa, including 11 species of the Oncospermatinae. A single most parsimonious tree was found, resolving the subtribe as a polyphyletic group of two distinct clades. One clade containingAcanthophoenix, Deckenia, Oncosperma, andTectiphiala was placed as sister to a large group that includes members of subtribes Archontophoenicinae, Arecinae, Iguanurinae, and Ptychospermatinae. The other clade of Oncospermatinae, including the Seychelles endemic generaNephrosperma, Phoenicophorium, Roscheria, andVerschaffeltia, was resolved as sister to the Madagascar endemic subtribe Masoalinae, and may have arisen in the western Indian Ocean region.  相似文献   

17.
Cyperaceae tribe Cariceae is characterized by both species richness and habitat diversity, making it an ideal system to study ecological specialization and niche differentiation. We present a phylogenetic hypothesis for the tribe based on nuclear and chloroplast DNA sequence comparisons (ETS-1f, ITS, trnL intron, trnL-trnF intergenic spacer) for 140 representative species from five continents, and use this hypothesis to suggest patterns of both niche conservatism and niche differentiation, particularly within the large subgenus Carex. We identify a new major clade, comprising forest species of East Asian Carex section Siderostictae (subgenus Carex) as sister to the rest of tribe Cariceae. Within Carex subgenus Carex, species tolerant of water-saturated habitats occur in only a few, apparently derived groups, with varying species richness. Clades of predominantly wetland species tend to have broad geographic distribution, often with sister species on different continents, suggesting recent dispersal. In contrast, species within several clades are predominantly forest specialists with distinct Asian and North American lineages. Niche segregation along environmental gradients, such as soil moisture or acidity, is quite common among closely related wetland species, but more difficult to demonstrate within upland forest groups. More complete sampling of species within both wetland and forest groups, combined with comparable sampling of environmental preferences and testing against null models, will be needed for more rigorous exploration of the observed patterns.  相似文献   

18.
Phylogenetic relationships of 48 species of Caragana (Fabaceae: tribe Hedysareae) and one representative each of Astragalus, Calophaca, Halimodendron, and Hedysarum are estimated from DNA sequences of the rbcL gene, trnStrnG intron and spacer, and ITS region. At least one representative of all five sections and 12 series within Caragana are included. Analyses yielded strongly supported clades corresponding to sections Caragana, Bracteolatae, and Frutescentes. The species of section Jubatae are distributed among three strongly supported clades, i.e., one with the species of section Bracteolatae, another with two species of section Spinosae, and a third as sister to section Frutescentes. All but the last of these six clades are corroborated by at least one unambiguously traced morphological character. The placement of the other four species of section Spinosae are not well supported and lack unambiguous morphological synapomorphies, and the samples of Calophaca and Halimodendron nest within Caragana with weak support.  相似文献   

19.
The subfamily Eneopterinae is known greatly for its diversified acoustic modalities and disjunct distribution. Within Eneopterinae, tribe Lebinthini is the most studied group, due to its highest species diversity (ca. 150 species in 12 genera), endemic distribution on the islands of Southeast Asia and of the South West Pacific, males’ ability to produce high‐frequency calling songs, and evolution of females’ vibrational response. To investigate the distribution pattern and diversification of acoustic and behavioral attributes in a larger frame, clear understanding of phylogenetic relationships within other tribes of Eneopterinae is vital. In this study, we focus on the tribe Xenogryllini, sister group of Lebinthini. Xenogryllini, as opposed to Lebinthini, is known by fewer species (11 species in two genera), distributed widely in continental Asia and Africa, and for producing low‐frequency calling songs. We describe a new genus Indigryllus with a new species of the tribe Xenogryllini, discovered from the southwest of India. We used eight molecular genetic markers to reconstruct the phylogenetic relationships. The resultant phylogenetic tree is used to compare and discuss distribution patterns and acoustic modalities between Lebinthini and Xenogryllini.  相似文献   

20.
Chironius is one of the most speciose genera of the South American colubrid snakes. Although the genus represents a well‐known radiation of diurnal racers, its monophyly, affinities with other Neotropical colubrid genera, and intrageneric relationships are open questions. Here, we present a phylogenetic analysis of Chironius based on a data matrix that combines one nuclear (c‐mos) and two mitochondrial (12S and 16S rRNA) genes with 37 morphological characters derived from scutellation, skull, and hemipenial features. Phylogenetic relationships were inferred using maximum parsimony (MP) and maximum likelihood (ML). Our combined morphological and molecular analyses strongly support the monophyly of the genus Chironius and its sister‐group relationship with a clade formed by the genera Dendrophidion and Drymobius. Phylogenetic relationships within the genus Chironius is still controversial, although five clades are retrieved with medium to strong support. © 2014 The Linnean Society of London  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号