首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of multiple predators on their prey are frequently non‐additive because of interactions among predators. When prey shift habitats through ontogeny, many of their predators cannot interact directly. However, predators that occur in different habitats or feed on different prey stages may still interact through indirect effects mediated by prey traits and density. We conducted an experiment to evaluate the combined effects of arboreal egg‐stage and aquatic larval‐stage predators of the African treefrog, Hyperolius spinigularis. Egg and larval predator effects were non‐additive – more Hyperolius survived both predators than predicted from their independent effects. Egg‐stage predator effects on aquatic larval density and size and age at hatching reduced the effectiveness of larval‐stage predators by 70%. Our results indicate that density‐ and trait‐mediated indirect interactions can act across life‐stages and habitats, resulting in non‐additive multi‐predator effects.  相似文献   

2.
Predicting the consequences of predator biodiversity loss on prey requires an understanding of multiple predator interactions. Predators are often assumed to have independent and additive effects on shared prey survival; however, multiple predator effects can be non-additive if predators foraging together reduce prey survival (risk enhancement) or increase prey survival through interference (risk reduction). In marine communities, juvenile reef fish experience very high mortality from two predator guilds with very different hunting modes and foraging domains—benthic and pelagic predator guilds. The few previous predator manipulation studies have found or assumed that mortality is independent and additive. We tested whether interacting predator guilds result in non-additive prey mortality and whether the detection of such effects change over time as prey are depleted. To do so, we examined the roles of benthic and pelagic predators on the survival of a juvenile shoaling zooplanktivorous temperate reef fish, Trachinops caudimaculatus, on artificial patch reefs over 2 months in Port Phillip Bay, Australia. We observed risk enhancement in the first 7 days, as shoaling behaviour placed prey between predator foraging domains with no effective refuge. At day 14 we observed additive mortality, and risk enhancement was no longer detectable. By days 28 and 62, pelagic predators were no longer significant sources of mortality and additivity was trivial. We hypothesize that declines in prey density led to reduced shoaling behaviour that brought prey more often into the domain of benthic predators, resulting in limited mortality from pelagic predators. Furthermore, pelagic predators may have spent less time patrolling reefs in response to declines in prey numbers. Our observation of the changing interaction between predators and prey has important implications for assessing the role of predation in regulating populations in complex communities.  相似文献   

3.
Griffen BD  Byers JE 《Oecologia》2006,146(4):608-614
Prey are often consumed by multiple predator species. Predation rates on shared prey species measured in isolation often do not combine additively due to interference or facilitation among the predator species. Furthermore, the strength of predator interactions and resulting prey mortality may change with habitat type. We experimentally examined predation on amphipods in rock and algal habitats by two species of intertidal crabs, Hemigrapsus sanguineus (top predators) and Carcinus maenas (intermediate predators). Algae provided a safer habitat for amphipods when they were exposed to only a single predator species. When both predator species were present, mortality of amphipods was less than additive in both habitats. However, amphipod mortality was reduced more in rock than algal habitat because intermediate predators were less protected in rock habitat and were increasingly targeted by omnivorous top predators. We found that prey mortality in general was reduced by (1) altered foraging behavior of intermediate predators in the presence of top predators, (2) top predators switching to foraging on intermediate predators rather than shared prey, and (3) density reduction of intermediate predators. The relative importance of these three mechanisms was the same in both habitats; however, the magnitude of each was greater in rock habitat. Our study demonstrates that the strength of specific mechanisms of interference between top and intermediate predators can be quantified but cautions that these results may be habitat specific. An erratum to this article can be found at  相似文献   

4.
Top predators can have different foraging modes that may alter their interactions and effects on food webs. Interactions between predators may be non-additive resulting from facilitation or interference, whereas their combined effects on a shared prey may result in emergent effects that are risk enhanced or risk reduced. To test the importance of multiple predators with different foraging modes, we examined the interaction between a cruising predator (largemouth bass, Micropterus salmoides) and an ambush predator (muskellunge, Esox masquinongy) foraging on a shared prey (bluegill sunfish, Lepomis macrochirus) with strong anti-predator defense behaviors. Additive and substitution designs were used to compare individual to combined predator treatments in experimental ponds. The multiple predator interaction facilitated growth of the cruising predator in the combined predator treatments, whereas predator species had substitutable effects on the growth of the ambush predator. The combined predator treatments created an emergent effect on the prey; however, the direction was dependent on the experimental design. The additive design found a risk-reducing effect, whereas the substitution design found a risk-enhancing effect for prey fish. Indirect effects from the predators weakly extended to lower trophic levels (i.e., zooplankton community). Our results highlight the need to consider differences in foraging mode of top predators, interactions between predators, and emergent effects on prey to understand food webs.  相似文献   

5.
Hughes AR  Grabowski JH 《Oecologia》2006,149(2):256-264
Despite increasing evidence that habitat structure can shape predator–prey interactions, few studies have examined the impact of habitat context on interactions among multiple predators and the consequences for combined foraging rates. We investigated the individual and combined effects of stone crabs (Menippe mercenaria) and knobbed whelks (Busycon carica) when foraging on two common bivalves, the hard clam (Mercenaria mercenaria) and the ribbed mussel (Geukensia demissa) in oyster reef and sand flat habitats. Because these species co-occur across these and other estuarine habitats of varying physical complexity, this system is ideal for examining how habitat context influences foraging rates and the generality of predator interactions. Consistent with results from previous studies, consumption rates of each predator in isolation from the other were higher in the sand flat than in the more structurally complex oyster reef habitat. However, consumption by the two predators when combined surprisingly did not differ between the two habitats. This counterintuitive result probably stems from the influence of habitat structure on predator–predator interactions. In the sand-flat habitat, whelks significantly reduced their consumption of their less preferred prey when crabs were present. However, the structurally more complex oyster reef habitat appeared to reduce interference interactions among predators, such that consumption rates when the predators co-occurred did not differ from predation rates when alone. In addition, both habitat context and predator–predator interactions increased resource partitioning by strengthening predator dietary selectivity. Thus, an understanding of how habitat characteristics such as physical complexity influence interactions among predators may be critical to predicting the effects of modifying predator populations on their shared prey.  相似文献   

6.
1. Studies of the impact of predator diversity on biological pest control have shown idiosyncratic results. This is often assumed to be as a result of differences among systems in the importance of predator–predator interactions such as facilitation and intraguild predation. The frequency of such interactions may be altered by prey availability and structural complexity. A direct assessment of interactions among predators is needed for a better understanding of the mechanisms affecting prey abundance by complex predator communities. 2. In a field cage experiment, the effect of increased predator diversity (single species vs. three‐species assemblage) and the presence of weeds (providing structural complexity) on the biological control of cereal aphids were tested and the mechanisms involved were investigated using molecular gut content analysis. 3. The impact of the three‐predator species assemblages of aphid populations was found to be similar to those of the single‐predator species treatments, and the presence or absence of weeds did not alter the patterns observed. This suggests that both predator facilitation and intraguild predation were absent or weak in this system, or that these interactions had counteracting effects on prey suppression. Molecular gut content analysis of predators provided little evidence for the latter hypothesis: predator facilitation was not detected and intraguild predation occurred at a low frequency. 4. The present study suggests additive effects of predators and, therefore, that predator diversity per se neither strengthens nor weakens the biological control of aphids in this system.  相似文献   

7.
Abstract.  1. Interactions among predators may influence the total efficiency of a predator complex. The effect of intra- and interspecific interactions of the generalist predators Orthotylus marginalis (Heteroptera: Miridae) and Anthocoris nemorum (Heteroptera: Anthocoridae) was investigated in a laboratory experiment. Outcomes of the interactions were determined by comparing predation rates on eggs and larvae of the blue willow beetle Phratora vulgatissima of single individuals with those of two individuals of the same or different species.
2. A non-additive, antagonistic effect on predation rates due to intraspecific interactions was found between individuals of A. nemorum . No such effect was found in O. marginalis . These results are as expected as a consequence of differences in behaviour of the two predator species: A. nemorum is a much more active and mobile predator than O. marginalis .
3. Contrary to expectation, interspecific interactions between A. nemorum and O. marginalis did not affect the total predation rate.
4. An observation from the field corroborated the results obtained in the laboratory study; there was no negative relationship between the densities of the two predator species, indicating that the two species do not interact negatively in the field at their natural densities.
5. It is concluded that the additive effect of multiple predator species is of potential value in biological control.  相似文献   

8.
PER NYSTR M 《Freshwater Biology》2005,50(12):1938-1949
1. I tested the hypothesis that the potential for non‐lethal effects of predators are more important for overall performance of the fast‐growing exotic signal crayfish (Pacifastacus leniusculus Dana) than for the slower growing native noble crayfish (Astacus astacus L.). I further tested if omnivorous crayfish switched to feed on less risky food sources in the presence of predators, a behaviour that could reduce the feeding costs associated with predator avoidance. 2. In a 2 month long outdoor pool experiment, I measured behaviour, survival, cheliped loss, growth, and food consumption in juvenile noble or signal crayfish in pools with either a caged predatory dragonfly larvae (Aeshna sp.), a planktivorous fish that do not feed on crayfish (sunbleak, Leucaspius delineatus Heckel), or predator‐free controls. Crayfish had access to multiple food sources: live zooplankton, detritus and periphyton. Frozen chironomid larvae were also supplied ad libitum outside crayfish refuges, simulating food in a risky habitat. 3. Crayfish were mainly active during hours of darkness, with signal crayfish spending significantly more time outside refuges than noble crayfish. The proportion of crayfish outside refuges varied between crayfish species, time and predator treatment, with signal crayfish spending more time in refuges at night in the presence of fish. 4. Survival in noble crayfish was higher than in signal crayfish, and signal crayfish had a higher frequency of lost chelipeds, indicating a high level of intraspecific interactions. Crayfish survival was not affected by the presence of predators. 5. Gut‐contents analysis and stable isotope values of carbon (δ13C) and nitrogen (δ15N) indicated that the two crayfish species had similar food preferences, and that crayfish received most of their energy from feeding on invertebrates (e.g. chironomid larvae), although detritus was the most frequent food item in their guts. Signal crayfish guts were more full than those of noble crayfish, but signal crayfish in pools with fish contained significantly less food and fewer had consumed chironomids compared with predator‐free controls. Length increase of signal crayfish (35%) was significantly higher than of noble crayfish (20%), but signal crayfish in pools with fish grew less than in control pools. 6. This short‐term study indicates that fish species that do not pose a lethal threat to an organism may indirectly cause reductions in growth by affecting behaviour and feeding. This may occur even though prey are omnivorous and have access to and consume multiple food sources. These non‐lethal effects of predators are expected to be particularly important in exotic crayfish species that show a general response to fish, have high individual growth rates, and when their feeding on the most profitable food source is reduced.  相似文献   

9.
1 Competitive interactions among two specialist predators, Laricobius nigrinus and Sasajiscymnus (Pseudoscymnus) tsugae, and a generalist predator, Harmonia axyridis Pallas, of hemlock woolly adelgid, Adelges tsugae were evaluated in hemlock stands in south‐western Virginia. The two specialist predators are part of a biological control program for A. tsugae, and the potential for competition among these species and previously established generalist predators in the field is unknown. 2 Adult predators were evaluated in branch cages during spring and summer at two field sites infested with A. tsugae. Using females only in 2003 and sexual pairs in 2004, predator survival and net reproduction were examined, as well as their feeding and impact on A. tsugae when present alone and in conspecific and heterospecific groupings. 3 Predator survival was not affected by the presence of additional predators. Total feeding was greater for all species when placed in predator groupings, suggesting that interactions do not significantly interfere with feeding activity. Net reproduction per predator was negatively affected by conspecifics, but unaffected by heterospecifics, indicating that direct or indirect intraspecific interference may occur. In spring, L. nigrinus showed the greatest impact on A. tsugae, and H. axyridis had the greatest impact during summer. 4 These results suggest that it would be beneficial to utilize multiple predator species combinations over single species when implementing biological control for A. tsugae. Low‐density releases are also recommended to reduce intraspecific interference.  相似文献   

10.
11.
Yurewicz KL 《Oecologia》2004,138(1):102-111
Behavioral and morphological traits often influence a key trade-off between resource acquisition and vulnerability to predation, and understanding trait differences between species can provide critical insight into their interactions with other species and their distributions. Such an approach should enhance our understanding of the criteria for coexistence between species that can interact through both competition and predation (i.e. intraguild predators and prey). I conducted a common garden experiment that revealed strong differences between three guild members (larval salamanders Ambystoma laterale, A. maculatum, and A. tigrinum) in behavior, morphology, and growth in the presence and absence of a shared top predator (the larval dragonfly Anax longipes). All three species also reduced their activity and modified their tail fin depth, tail muscle length, and body length in response to non-lethal Anax. Species that act as intraguild predators were more active and could grow faster than their intraguild prey species, but they also suffered higher mortality in laboratory predation trials with Anax. I also used survey data from natural communities to compare the distribution of Ambystoma species between ponds differing in abiotic characteristics and predatory invertebrate assemblages. An intraguild prey species (A. maculatum) was found more reliably, occurred at higher densities, and was more likely to persist late into the larval period in ponds with more diverse invertebrate predator assemblages. Taken together, these results indicate that top predators such as Anax may play an important role in influencing intraguild interactions among Ambystoma and ultimately their local distribution patterns.  相似文献   

12.
In predator-prey interactions, the efficiency of the predator is dependent on characteristics of both the predator and the prey, as well as the structure of the environment. In a field enclosure experiment, we tested the effects of a prey refuge on predator search mode, predator efficiency and prey behaviour. Replicated enclosures containing young of the year (0+) and 1-year-old (1+) perch were stocked with 3 differentially sized individuals of either of 2 piscivorous species, perch (Perca fluviatilis), pike (Esox lucius) or no piscivorous predators. Each enclosure contained an open predator area with three small vegetation patches, and a vegetated absolute refuge for the prey. We quantified the behaviour of the predators and the prey simultaneously, and at the end of the experiment the growth of the predators and the mortality and habitat use of the prey were estimated. The activity mode of both predator species was stationary. Perch stayed in pairs in the vegetation patches whereas pike remained solitary and occupied the corners of the enclosure. The largest pike individuals stayed closest to the prey refuge whereas the smallest individuals stayed farthest away from the prey refuge, indicating size-dependent interference among pike. Both size classes of prey showed stronger behavioural responses to pike than to perch with respect to refuge use, distance from refuge and distance to the nearest predator. Prey mortality was higher in the presence of pike than in the presence of perch. Predators decreased in body mass in all treatments, and perch showed a relatively stronger decrease in body mass than pike during the experiment. Growth differences of perch and pike, and mortality differences of prey caused by predation, can be explained by predator morphology, predator attack efficiency and social versus interference behaviour of the predators. These considerations suggest that pike are more efficient piscivores around prey refuges such as the littoral zones of lakes, whereas perch have previously been observed to be more efficient in open areas, such as in the pelagic zones of lakes.  相似文献   

13.
Predators often affect prey production not only by lethal predation but also by unintentional inhibition of feeding and growth. The present study examined the lethal and non-lethal effects of the invasive naticid Laguncula pulchella on the survival and growth of the prey clam Ruditapes philippinarum in a sandy tidal flat. Cages accommodating 30 clams (10 individuals × 3 size classes of ≤ 20 mm, 20–30 mm, and > 30 mm shell length) and one L. pulchella (approximately 37 mm shell height) per cage were buried in the tidal flat for 10 weeks. Medium sized clams were consumed by predators much more (80.5%) than small (12.2%) and large clams (7.3%). Clams were consumed by L. pulchella at a frequency of 0–2.5 individuals per predator per week. The growth of clams caged with L. pulchella was lower (23, 27, 33, 41, and 57% for clam of 10, 20, 30, 40, and 50 mm, respectively) than that in control cages (clams without L. pulchella). The clam burial depths did not increase by the presence of predators in a laboratory experiment, indicating that growth suppression was caused by the reduced feeding activity following physical disturbance and/or chemical signals. The results of this study demonstrate that the introduction of L. pulchella reduced the productivity of the commercially important clams not only by lethal predation but also by mere presence.  相似文献   

14.
We evaluated the influence of intraguild predation among generalist insect predators on the suppression of an herbivore, the aphid Aphis gossypii, to test the appropriateness of the simple three trophic level model proposed by Hairston, Smith, and Slobodkin (1960). We manipulated components of the predator community, including three hemipteran predators and larvae of the predatory green lacewing Chrysoperla carnea, in field enclosure/exclosure experiments to address four questions: (1) Do generalist hemipteran predators feed on C. carnea? (2) Does intraguild predation (IGP) represent a substantial source of mortality for C. carnea? (3) Do predator species act in an independent, additive manner, or do significant interactions occur? (4) Can the experimental addition of some predators result in increased densities of aphids through a trophic cascade effect? Direct observations of predation in the field demonstrated that several generalist predators consume C. carnea and other carnivorous arthropods. Severely reduced survivorship of lacewing larvae in the presence of other predators showed that IGP was a major source of mortality. Decreased survival of lacewing larvae was primarily a result of predation rather than competition. IGP created significant interactions between the influences of lacewings and either Zelus renardii or Nabis predators on aphid population suppression. Despite the fact that the trophic web was too complex to delineate distinct trophic levels within the predatory arthropod community, some trophic links were sufficiently strong to produce cascades from higher-order carnivores to the level of herbivore population dynamics: experimental addition of either Z. renardii or Nabis predators generated sufficient lacewing larval mortality in one experiment to release aphid populations from regulation by lacewing predators. We conclude that intraguild predation in this system is wide-spread and has potentially important influences on the population dynamics of a key herbivore.  相似文献   

15.
David E. Wooster 《Oecologia》1998,115(1-2):253-259
Recent theoretical work suggests that predator impact on local prey density will be the result of interactions between prey emigration responses to predators and predator consumption of prey. Whether prey increase or decrease their movement rates in response to predators will greatly influence the impact that predators have on prey density. In stream systems the type of predator, benthic versus water-column, is expected to influence whether prey increase or decrease their movement rates. Experiments were conducted to examine the response of amphipods (Gammarus minus) to benthic and water-column predators and to examine the interplay between amphipod response to predators and predator consumption of prey in determining prey density. Amphipods did not respond to nor were they consumed by the benthic predator. Thus, this predator had no impact on amphipod density. In contrast, amphipods did respond to two species of water-column predators (the predatory fish bluegills, Lepomis macrochirus, and striped shiners, Luxilus chrysocephalus) by decreasing their activity rates. This response led to similar positive effects on amphipod density at night by both species of predatory fish. However, striped shiners did not consume many amphipods, suggesting their impact on the whole amphipod “population” was zero. In contrast, bluegills consumed a significant number of amphipods, and thus had a negative impact on the amphipod “population”. These results lend support to theoretical work which suggests that prey behavioral responses to predators can mask the true impact that predators have on prey populations when experiments are conducted at small scales. Received: 21 March 1997 / Accepted: 15 December 1997  相似文献   

16.
P. Eklöv 《Oecologia》2000,123(2):192-199
Chemical signals are used as information by prey to assess predation risk in their environment. To evaluate the effects of multiple predators on prey growth, mediated by a change in prey activity, I exposed small and large bullfrog (Rana catesbeiana) larvae (tadpoles) to chemical cues from different combinations of bluegill sunfish (Lepomis macrochirus) and larval dragonfly (Anax junius) predators. Water was regularly transferred from predation trials (outdoor experiment) to aquaria (indoor experiment) in which activity and growth of tadpoles was measured. The highest predation mortality of small bullfrog larvae in the outdoor experiment was due to Anax, and it was slightly lower in the presence of both predators, probably resulting from interactions between predators. There was almost no mortality of prey with bluegill. The activity and growth of small bullfrog larvae was highest in the absence of predators and lowest in the presence of Anax. In the presence of bluegill only, or with both predators, the activity and growth of small bullfrog tadpoles was intermediate. Predators did not affect large tadpole activity and growth. Regressing mortality of small bullfrog tadpoles against activity and growth of bullfrog tadpoles revealed a significant effect for small bullfrog larvae but a non-significant effect for large bullfrog larvae. This shows that the response of bullfrog tadpoles to predators is related to their own body size. The experiment demonstrates that chemical cues are released both as predator odor and as alarm substances and both have the potential to strongly alter the activity and growth of prey. Different mechanisms by which chemical cues may be transmitted to species interactions in the food web are discussed. Received: 28 June 1999 / Accepted: 15 November 1999  相似文献   

17.
This study examined the effects of feeding interval, access to host plants (thus, a source of sap), and plant defenses on the predatory insect, Podisus maculiventris Say (Hemiptera: Pentatomidae). The experiment consisted of a 2 × 2 design with two feeding intervals (1 day or 5 days) and predators living on either tomato plants or plastic plants. Females fed every day had greater body weights and egg hatch rates than females fed every five days. Females on tomato plants lived longer than females on plastic plants. However, access to plants did not alleviate the effects of low prey level on predator weight or reproductive output. In a second experiment, third instar nymphs were placed on either tomato plants or plastic plants for four days to examine the effects of tomato trichome defenses on these predators. Nymphs on tomato plants experienced 50% mortality compared to 15% mortality for nymphs on plastic plants. Some nymphs living on tomato plants were trapped by the hairy trichomes of the plant; others had gummed up legs from the exudates of the plants’ glandular trichomes, which inhibited their movement and ability to feed on prey. Although predators appeared to benefit from feeding on tomato plants, their ability to live on the plants was negatively affected by the defensive features of the plants. The potential effects of trichome defenses on predator survival and population dynamics must be considered when evaluating the benefits of plants on insect predator life histories and efficacy as biological control agents.  相似文献   

18.
A 6-week laboratory experiment exposed juvenile Ambon damselfish Pomacentrus amboinensis to visual and chemical cues of either a predator, a herbivore or a null control (sea water) and found no effect of predator cues on prey morphology (proportion of ocellus to eye diameter, body depth, standard length and fin area). Nonetheless, behaviour was significantly affected by predator presence, with prey less active and taking half as many feeding strikes when exposed to predators compared to fish from the null control. The presence of a herbivore also affected prey behaviour similar to that of the predator, suggesting that the presence of a non-predator may have important effects on development.  相似文献   

19.
Peter Eklöv  Earl E. Werner 《Oikos》2000,88(2):250-258
This study examined the effects of multiple predators on size‐specific behavior and mortality of two species of anuran larvae. Particularly, we focused on how trait changes in predators and prey may be transmitted to other species in the food web. In laboratory experiments, we examined the effects of bluegill sunfish, Lepomis macrochirus, and the odonate larva Anax junius on behavior and mortality of tadpoles of the bullfrog, Rana catesbeiana, and the green frog R. clamitans. Experiments were conducted with predators alone and together to assess effects on behavior and mortality of the tadpoles. The experiments were replicated on five size classes of the tadpoles to evaluate how responses varied with body size.
Predation rates by Anax were higher on bullfrogs than on green frogs, and both bullfrogs and green frogs suffered greater mortality from Anax than from bluegill. Bluegill only consumed green frogs. Predation rates by both predators decreased with increasing tadpole size and decreased in the non‐lethal (caged) presence of the other predator. Both anuran larvae decreased activity when exposed to predators. Bullfrogs, however, decreased activity more in the presence of Anax than in the presence of bluegill, whereas green frogs decreased activity similarly in the presence of both predators. The largest size class of green frogs, but not of bullfrogs, exhibited spatial avoidance of bluegill. These responses were directly related to the risk posed by the different predators to each anuran species. Anax activity (speed and move frequency) also was higher when alone than in the non‐lethal presence of bluegill. We observed decreased predation rate of each predator in the non‐lethal presence of the other, apparently caused by two different mechanisms. Bluegill decreased Anax mortality on tadpoles by restricting the Anax activity. In contrast, Anax decreased bluegill mortality on tadpoles by reducing tadpole activity. We discuss how the activity and spatial responses of the tadpoles interact with palatability and body size to create different mortality patterns in the prey species and the implications of these results to direct and indirect interactions in this system.  相似文献   

20.
The recent invasion of a naticid predator (Laguncula pulchella) and associated changes in the death assemblages of bivalve prey (Ruditapes philippinarum) provide a baseline for interpreting predator–prey interactions in the fossil record. This article presents quantitative data on size‐frequency distributions (SFDs) of living and death assemblages, prey size selectivity and drillhole site selectivity from the Tona Coast, northern Japan. Before the appearance of the predator, the SFD of the death assemblage exhibited a right‐skewed platykurtic distribution, and there were very few predatory drillholes. Once the predator appeared, frequencies of predatory drillholes increased, particularly in the smallest size class (2–10 mm shell length). Furthermore, juvenile peaks in the SFDs of death assemblages sharpened, and thus, SFDs exhibited strongly right‐skewed leptokurtic distributions. These changes suggest that intense naticid predation precluded juvenile clams from growing to adulthood, and thus, many dead shells of juvenile clams were introduced into the sediment. The changes in SFDs may also indicate intensification of predation pressure in the fossil record. No temporal shifts in prey size selectivity and drillhole site selectivity were noted, despite substantial changes in the demographics of Ruditapes philippinarum. This suggests that lack of specific size classes of preferred prey species is unlikely to be a primary factor accounting for size mismatches between predator and prey, because, in such situations, naticid predators probably attack other prey species. Therefore, such a factor is unlikely to primarily explain the less stereotypical predatory behaviour (i.e. low prey size selectivity and low drillhole site selectivity), which has been frequently recognized in fossil assemblages. Such less stereotypical predatory behaviour in fossil assemblages is likely to be explained by other factors, such as the existence of multiple predator taxa and lack of specific size classes of all available prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号