首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
干细胞因子和受体在神经系统中的表达及其生物学效应   总被引:2,自引:0,他引:2  
Liu B  Li LY  Pang ZL 《生理科学进展》2001,32(2):143-145
干细胞因子(stem cell factor,SCF)是一种多功能细胞因子,其受体由原癌基因c-kit编码,称为c-kit受体(c-kitR)。SCF-c-kitR不论在胚胎发育期还是成年期的神经系统,均有广泛的表达。体内外大量研究提示:SCF/c0kitR信号系统在神经系统生长、分化过程中具有多种生物学效应,表现对神经嵴4细胞体外分化的影响,对神经胶质细胞(小胶质细胞、星形胶质细胞和少突胶质细胞)的调控作用,并与神经内分泌功能相关。  相似文献   

2.
星形胶质细胞   总被引:23,自引:0,他引:23  
目录一、星形胶质细胞的生物学特性(一 )星形胶质细胞的异质性(二 )胶质网络二、星形胶质细胞的功能(一 )分泌功能(二 )星形胶质细胞与神经的发育及再生(三 )星形胶质细胞具有对神经元微环境调控的能力(四 )免疫功能与血脑屏障调控三、星形胶质细胞功能的新近进展(一 )星形胶质细胞也具有可兴奋性(二 )星形胶质细胞与神经元的通讯或对话(三 )在突触形成和突触可塑性中的作用(四 )星形胶质细胞与神经发生胶质细胞是神经系统内数量众多的一大类细胞群体 ,约占中枢神经系统 (CNS)细胞总数的 90 % ,星形胶质细胞 (astrocyte)是其中主要的组成…  相似文献   

3.
既往的研究中,乳酸一直被认为是细胞糖酵解产生的代谢废物。然而,近年的研究表明,乳酸可作为重要的能量代谢底物和信号分子影响多组织器官的生理进程,其运输载体单羧酸转运体及受体G蛋白偶联受体81可能在神经保护过程中发挥关键作用。在中枢神经系统内,乳酸可作用于多种细胞如神经元、星形胶质细胞、小胶质细胞、少突胶质细胞和血管内皮细胞等,参与改善脑能量代谢,增强神经发生,提高突触可塑性,降低神经炎症,缓解神经毒性,促使髓鞘再生,进而影响个体认知功能。适宜的运动有利于脑健康,但运动能否通过调节乳酸及相关生物学机制改善认知功能未见详尽报道。该文通过分析运动如何调控乳酸及其运输载体和受体的生理水平,以及乳酸如何调节认知功能,探讨乳酸作为运动改善认知功能中介分子的可能性,为借助运动疗法缓解认知衰退的相关疾病提供理论支持。  相似文献   

4.
姜敏艳  汪旭  郭锡汉 《生命科学》2023,(11):1484-1497
阿尔茨海默病(AD)是最常见的一种神经退行性疾病,具有多因异质性的特点,具体致病原因尚不清晰。小胶质细胞是常驻于中枢神经系统中的巨噬细胞,负责细胞吞噬、突触修剪、能量代谢等。髓系细胞触发受体2 (TREM2)是一种主要存在于小胶质细胞表面的受体,对小胶质细胞的功能稳态至关重要。TREM2 R47H和R62H两个变异体会增加个体晚发性AD风险,该发现使TREM2成为AD领域一个新的研究热点。本文主要围绕小胶质细胞TREM2的结构、表达调控、信号转导、功能及其在AD中的病理学作用等多个方面进行系统性综述,以期在加深理解TREM2的同时,为深入研究小胶质细胞TREM2表达和功能异常在AD发生发展中的作用和分子机制提供参考。  相似文献   

5.
星形胶质细胞是大脑中一类高度异质的重要大胶质细胞,不仅在脑的发育和功能中起到重要作用,也参与多种神经病理生理学过程。多项研究表明B淋巴细胞瘤-2相关X蛋白(B-cell lymphoma-2 associated X protein,BAX)依赖性凋亡通路参与调控正常发育过程中脑内神经元的数量与分布,但是对其调控星形胶质细胞的研究则较为匮乏。本文旨在研究BAX是否参与不同脑区星形胶质细胞分布的调控。以纯合子和杂合子BAX敲除小鼠为研究对象,用SOX9免疫荧光染色法检测6周龄小鼠的大脑皮层和海马中星形胶质细胞的密度。结果显示,星形胶质细胞的密度在不同皮层分区之间以及皮层和海马之间存在显著差异,并且BAX敲除导致海马中星形胶质细胞的密度显著降低,皮层中GABA能抑制神经元密度显著升高,而皮层中星形胶质细胞的密度则未受显著影响。以上结果提示,BAX差异调控皮层星形胶质细胞与神经元,也差异调控皮层与海马中的星形胶质细胞。这项研究为了解星形胶质细胞的区域异质性和BAX在大脑发育中的功能提供了重要信息。  相似文献   

6.
神经干细胞是一类具有自我更新能力和多向分化潜能的干细胞。在特定条件下,神经干细胞可分化为神经元、少突胶质细胞和星形胶质细胞从而参与神经功能的修复过程,该过程称为神经发生。一直以来,人们认为神经发生主要发生在哺乳动物胚胎时期,而成体是不存在神经发生的。然而近年的研究表明,成体神经发生在哺乳动物中枢神经系统中是终生存在的,且通过多种信号通路来调控。现就成年哺乳动物神经发生的研究进展展开论述。  相似文献   

7.
在视网膜中,Muller细胞被视为具有干细胞特性及再生修复能力,刺激内源性干细胞活化增殖并向视网膜前体细胞去分化,或许是治疗视网膜疾病的重要策略之一。然而,在高等哺乳动物视网膜中,Muller细胞自发去分化的能力极为有限。近年来研究发现,某些生长因子、转录因子及细胞外基质能通过一系列信号通路促进视网膜Muller细胞的去分化及再生修复。阐明这些信号通路的调控机制将对利用内源性干细胞治疗视网膜疾病有极大的帮助。  相似文献   

8.
小胶质细胞是中枢神经系统的宿主免疫细胞。在外界刺激下,由静息态被激活为形态与功能差异的M1和M2极化态。本文是对小胶质细胞的不同极化态参与中枢神经系统(central nervous system,CNS)发育、神经退行性疾病、疼痛的可塑性变化的综述。阐明小胶质细胞不同极化态的发生与分子调控机制,对理解神经发育、稳态调控、疾病诊疗、新药靶点发现与设计具有重要的科学与实践意义。  相似文献   

9.
小胶质细胞控制着中枢神经系统主要的免疫功能,在各种精神疾病中发挥重要作用. 某些信号通路的激活引发的神经炎症与抑郁症的发生有着密切的关系. 小胶质细胞是神经炎症的主要介导者,不同的刺激促进小胶质细胞极化,不同极化类型的小胶质细胞能分泌多种炎性细胞因子,在神经炎症调节中具有重要的作用. 临床研究和体内外实验研究表明,抑郁症与小胶质细胞极化介导的神经炎症有关. 小胶质细胞极化参与抑郁症发生发展的可能机制包括NF-κB信号通路激活、呼吸爆发、补体受体3信号通路、NLRP3炎症激活、cannibalism受体1、Notch-1信号通路和过氧化物酶体增殖物激活受体γ的激活. 本文就小胶质细胞极化与抑郁关系的研究进展作一综述.  相似文献   

10.
内源性大麻素系统在脊椎动物视网膜中广泛分布。大麻素受体(cannbinoid receptor)主要有CB1和CB2两个亚型,与内源性配体N-花生四烯酸氨基乙醇(N-arachidonoylethanolamide,anandamine,AEA)和2-花生四烯酸甘油(2-arachidonyl glycerol,2-AG)结合调控视网膜神经元和胶质细胞的功能,从而参与调控视网膜视觉信息的处理。本文结合我们研究组近年在视网膜大麻素受体系统的研究结果,综述了有关大麻素CB1和CB2受体对视网膜细胞离子通道和突触传递调控及其机制的研究进展。  相似文献   

11.
Spatial correlation was observed between the localization of laminin-1 at the inner limiting membrane (ILM) and extensive Muller glial process arborization in the same area, as demonstrated by immunolabeling of Muller glial processes and laminin-1 in rat retinae in situ. To test if this spatial correlation is due to a functional relationship, we investigated the impact of laminin-1 on the motility of cultured primary rat and mouse retinal Muller glial cells by statistical analysis of computer-controlled videomicroscopic time-lapse images. We demonstrate that laminin-1 increases motility and path-searching activity of Muller cells in vitro and it also enhances the cells' process formation/withdrawal dynamism. The increase in path-searching activity and cell process dynamism indicates that there is a functional relationship between laminin-1 and Muller glial cells presumably involving signaling towards the cytoskeleton. We hypothesize that laminin-1 is involved in process arborization of Muller cells at the vitread border of the retina resulting in the formation of the functional barrier made up of Muller glial endfeet.  相似文献   

12.
Age is the major risk factor in the age-related macular degeneration (AMD) which is a complex multifactor neurodegenerative disease of the retina and the main cause of irreversible vision loss in people over 60 years old. The major role in AMD pathogenesis belongs to structure-functional changes in the retinal pigment epithelium cells, while the onset and progression of AMD are commonly believed to be caused by the immune system dysfunctions. The role of retinal glial cells (Muller cells, astrocytes, and microglia) in AMD pathogenesis is studied much less. These cells maintain neurons and retinal vessels through the synthesis of neurotrophic and angiogenic factors, as well as perform supporting, separating, trophic, secretory, and immune functions. It is known that retinal glia experiences morphological and functional changes with age. Age-related impairments in the functional activity of glial cells are closely related to the changes in the expression of trophic factors that affect the status of all cell types in the retina. In this review, we summarized available literature data on the role of retinal macro- and microglia and on the contribution of these cells to AMD pathogenesis.  相似文献   

13.
The number of proliferating cells in the rodent retina declines dramatically after birth. To determine if extrinsic factors in the retinal micro-environment are responsible for this decline in proliferation, we established cultures of retinal progenitors or Muller glia, and added dissociated retinal neurons from older retinas. The older cells inhibited proliferation of progenitor cells and Muller glia. When these experiments were performed in the presence of TGF(beta)RII-Fc fusion protein, an inhibitor of TGF(beta) signaling, proliferation was restored. This suggests a retina-derived TGF(beta) signal is responsible for the developmental decline in retinal proliferation. TGFbeta receptors I and II are expressed in the retina and are located in nestin-positive progenitors early in development and glast-positive Muller glia later in development. RT-PCR and immunofluorescence data show TGF(beta)2 is the most highly expressed TGF(beta)ligand in the postnatal retina, and it is expressed by inner retinal neurons. Addition of either TGF(beta)1 or TGF(beta)2 to postnatal day 4 retinas significantly inhibited progenitor proliferation, while treatment of explanted postnatal day 6 retinas with TGF(beta) signaling inhibitors resulted in increased proliferation. Last, we tested the effects of TGF(beta) in vivo by injections of TGF(beta) signaling inhibitors: when TGF(beta) signaling is inhibited at postnatal day 5.5, proliferation is increased in the central retina; and when co-injected with EGF at postnatal day 10, TGF(beta)inhibitors stimulate Muller glial proliferation. In sum, these results show that retinal neurons produce a cytostatic TGF(beta) signal that maintains mitotic quiescence in the postnatal rat retina.  相似文献   

14.
Germer  A  Biedermann  B  Wolburg  H  Schuck  J  Grosche  J  Kuhrt  H  Reichelt  W  Schousboe  A  Paasche  G  Mack  A. F  Reichenbach  A 《Brain Cell Biology》1998,27(5):329-345
The distribution of mitochondria within retinal glial (Muller) cells and neurons was studied by electron microscopy, by confocal microscopy of a mitochondrial dye and by immunocytochemical demonstration of the mitochondrial enzyme GABA transaminase (GABA-T). We studied sections and enzymatically dissociated cells from adult vascularized (human, pig and rat) and avascular or pseudangiotic (guinea-pig and rabbit) mammalian retinae. The following main observations were made. (1) Muller cells in adult euangiotic (totally vascularized) retinae contain mitochondria throughout their length. (2) Muller cells from the periphery of avascular retinae display mitochondria only within the sclerad-most end of Muller cell processes. (3) Muller cells from the vascularized retinal rim around the optic nerve head in guinea-pigs contain mitochondria throughout their length. (4) Muller cells from the peripapillar myelinated region (‘medullary rays’) of the pseudangiotic rabbit retina contain mitochondria up to their soma. In living dissociated Muller cells from guinea-pig retina, there was no indication of low intracellular pH where the mitochondria were clustered. These data support the hypothesis that Muller cells display mitochondria only at locations of their cytoplasm where the local O2 pressure (pO2) exceeds a certain threshold. In contrast, retinal ganglion cells of guinea-pig and rabbit retinae display many mitochondria although the local pO2 in the inner (vitread) retinal layers has been reported to be extremely low. It is probable that the alignment of mitochondria and the expression of mitochondrial enzymes are regulated by different mechanisms in various types of retinal neurons and glial cells.  相似文献   

15.
BACKGROUND: Chronic diabetes causes structural changes in the retinal capillaries of nearly all patients with a disease duration of more than 15 years. Acellular occluded vessels cause hypoxia, which stimulates sight-threatening abnormal angiogenesis in 50% of all type I diabetic patients. The mechanism by which diabetes produces acellular retinal capillaries is unknown. MATERIALS AND METHODS: In this study, evidence of programmed cell death (PCD) was sought in the retinas of early diabetic rats, and the effect of nerve growth factor (NGF) on PCD and capillary morphology was evaluated. RESULTS: Diabetes induced PCD primarily in retinal ganglion cells (RGC) and Muller cells. This was associated with a transdifferentiation of Muller cells into an injury-associated glial fibrillary acidic protein (GFAP)-expressing phenotype, and an up-regulation of the low-affinity NGF receptor p75NGFR on both RGC and Muller cells. NGF treatment of diabetic rats prevented both early PCD in RGC and Muller cells, and the development of pericyte loss and acellular occluded capillaries. CONCLUSIONS: These data provide new insight into the mechanism of diabetic retinal vascular damage, and suggest that NGF or other neurotrophic factors may have potential as therapeutic agents for the prevention of human diabetic retinopathy.  相似文献   

16.
Diabetic retinopathy is one of the main microvascular complications of diabetes and remains one of the leading causes of blindness worldwide. Recent studies have revealed an important role of inflammatory and proangiogenic high mobility group 1 (HMGB-1) cytokine in diabetic retinopathy. To elucidate cellular mechanisms of HMGB-1 activity in the retina, we performed this study. The histological features of diabetic retinopathy include loss of blood-vessel pericytes and endothelial cells, as well as abnormal new blood vessel growth. To establish the role of HMGB-1 in vulnerability of endothelial cells and pericytes, cultures of these cells, or co-cultures with glial cells, were treated with HMGB-1 and assessed for survival after 24 hours. The expression levels of the cytokines, chemokines, and cell adhesion molecules in glial and endothelial cells were tested by quantitative RT-PCR to evaluate changes in these cells after HMGB-1 treatment. Animal models of neovascularization were also used to study the role of HMGB-1 in the retina. We report that pericyte death is mediated by HMGB-1-induced cytotoxic activity of glial cells, while HMGB-1 can directly mediate death of endothelial cells. We also found that HMGB-1 affects endothelial cell activity. However, we did not observe a difference in the levels of neovascularization between HMGB-1-treated eyes compared to the control eyes, nor in the levels of proangiogenic cytokine VEGF-A expression between glial cells treated with HMGB-1 and control cells. Our data also indicate that HMGB-1 is not involved in retinal neovascularization in the oxygen-induced retinopathy model. Thus, our data suggest that retinal pericyte and endothelial injury and death in diabetic retinopathy may be due to HMGB-1-induced cytotoxic activity of glial cells as well as the direct effect of HMGB-1 on endothelial cells. At the same time, our findings indicate that HMGB-1 plays an insignificant role in retinal and choroidal neovascularization.  相似文献   

17.
The recent discovery and characterization of several proteins that purify with endogenous, bound retinoid have given rise to the suggestion that these proteins, which are abundant in retina, perform a role in transport and function of vitamin A. Immunocytochemical techniques were used to localize two retinoid-binding proteins in the retina of four species. Antisera to cellular retinal-binding protein (CRALBP) and an interphotoreceptor retinoid-binding protein (IRBP) were obtained from rabbits immunized with antigens purified from bovine retina. Antibodies from each antiserum reacted with a single component in retinal homogenates and supernatants which corresponded to the molecular weight and charge of the respective antigen (non-SDS and SDS PAGE, electrophoretic transfer to nitrocellulose, immunochemical staining). Immunocytochemistry controls were antibodies from nonimmune serum and antibodies absorbed with purified antigen. Antigens were localized on frozen-sectioned bovine, rat, monkey, and human retina using immunofluorescence and the peroxidase-antiperoxidase technique. Specific staining with anti-IRBP was found in the space that surrounds photoreceptor outer segments, with heaviest labeling in a line corresponding to the retinal pigment epithelium (RPE) apical surface. Cone outer segments were positive. Staining with anti-CRALBP was found in two cell types in all species: the RPE and the Muller glial cell. Within the RPE, labeling filled the cytoplasm and was heaviest apically, with negative nuclei. Labeling of Muller cells produced Golgi- like silhouettes with intense staining of all cytoplasmic compartments. Staining of the external limiting membrane was heavy, with labeled microvilli projecting into the interphotoreceptor space. Localization of IRBP to this space bordered by three cell types (RPE, photoreceptor, and Muller) is consistent with its proposed role in transport of retinoids among cells. Localization of CRALBP in RPE corroborates previous biochemical studies; its presence in the Muller cell suggests that this glial cell may play a hitherto unsuspected role in vitamin A metabolism in retina.  相似文献   

18.
Sohee Jeon  Il-Hoan Oh 《BMB reports》2015,48(4):193-199
Degenerative retinal diseases affect millions of people worldwide, which can lead to the loss of vision. However, therapeutic approaches that can reverse this process are limited. Recent efforts have allowed the possibility of the stem cell-based regeneration of retinal cells and repair of injured retinal tissues. Although the direct differentiation of pluripotent stem cells into terminally differentiated photoreceptor cells comprises one approach, a series of studies revealed the intrinsic regenerative potential of the retina using endogenous retinal stem cells. Muller glial cells, ciliary pigment epithelial cells, and retinal pigment epithelial cells are candidates for such retinal stem cells that can differentiate into multiple types of retinal cells and be integrated into injured or developing retina. In this review, we explore our current understanding of the cellular identity of these candidate retinal stem cells and their therapeutic potential for cell therapy against degenerative retinal diseases. [BMB Reports 2015; 48(4): 193-199]  相似文献   

19.
Zheng M  Zhang Z  Zhao X  Ding Y  Han H 《遗传学报》2010,37(9):573-582
The retina is one of the most essential elements of vision pathway in vertebrate. The dysplasia of retina cause congenital blindness or vision disability in individuals, and the misbalance in adult retinal vascular homeostasis leads to neovaseularization-associated diseases in adults, such as diabetic retinopathy or age-related macular degeneration. Many developmental signaling pathways are involved in the process of retinal development and vascular homeostasis. Among them, Notch signaling pathway has long been studied, and Notch signaling-interfered mouse models show both neural retina dysplasia and vascular abnormality. In this review, we discuss the roles of Notch signaling in the maintenance of retinal progenitor cells, specification of retinal neurons and glial cells, and the sustaining of retina vascular homeostasis, especially from the aspects of conditional knockout mouse models. The potential of Notch signal mampulation may provide a powerful cell fate- and neovascularization-controlling tool that could have important applications in la'eatment of retinal diseases.  相似文献   

20.
Muller glia are the predominant glial cell type in the retina, and they structurally and metabolically support retinal neurons. Wnt/β‐catenin signaling pathways play essential roles in the central nervous system, including glial and neuronal differentiation, axonal growth, and neuronal regeneration. We previously demonstrated that Wnt signaling activation in retinal ganglion cells (RGC) induces axonal regeneration after injury. However, whether Wnt signaling within the adjacent Muller glia plays an axongenic role is not known. In this study, we characterized the effect of Wnt signaling in Muller glia on RGC neurite growth. Primary Muller glia and RGC cells were grown in transwell co‐cultures and adenoviral constructs driving Wnt regulatory genes were used to activate and inhibit Wnt signaling specifically in primary Muller glia. Our results demonstrated that activation of Wnt signaling in Muller glia significantly increased RGC average neurite length and branch site number. In addition, the secretome of Muller glia after induction or inhibition of Wnt signaling was characterized using protein profiling of conditioned media by Q Exactive mass spectrometry. The Muller glia secretome after activation of Wnt signaling had distinct and more numerous proteins involved in regulation of axon extension, axon projection and cell adhesion. Furthermore, we showed highly redundant expression of Wnt signaling ligands in Muller glia and Frizzled receptors in RGCs and Muller glia. Therefore, this study provides new information about potential neurite growth promoting molecules in the Muller glia secretome, and identified Wnt‐dependent target proteins that may mediate the axonal growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号