首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
该文旨在比较小分子化合物诱导小鼠不同脑区星形胶质细胞向神经元转分化的特性,并利用转录组测序技术分析小鼠不同脑区星形胶质细胞的基因表达差异。以新生小鼠皮层和海马的星形胶质细胞作为起始细胞,通过小分子化合物VCR诱导其向神经元转分化,利用免疫荧光染色检测转分化过程中细胞形态的变化以及神经元的比例,通过转录组测序比较两种星形胶质细胞的基因表达差异,并对差异基因进行荧光定量PCR验证及GO富集分析。结果表明,皮层星形胶质细胞经VCR诱导转分化为神经元的能力要显著优于海马星形胶质细胞;转录组测序发现,两种星形胶质细胞有12 658个基因存在差异表达,GO分析结果表明,在皮层星形胶质细胞中高表达的基因更多地参与细胞分裂的过程,推测差异显著基因GAD2、EYA2、GSX2、INSM1以及GNG3是与转分化相关的基因。该研究对星形胶质细胞向神经元转分化的机制研究具有借鉴意义。  相似文献   

2.
目的比较研究大鼠局灶性脑缺血再灌注后神经元和星形胶质细胞的凋亡规律。方法建立大鼠大脑中动脉阻塞(middle cerebral artery occlusion,MCAO)再灌注模型,在缺血再灌注后1、3、7、14d断头取脑,应用流式细胞分选技术和原位末端标记法分别检测各组MCAO后不同时期神经元和星形胶质细胞凋亡情况。结果局灶性脑缺血再灌注后,海马区星形胶质细胞凋亡数量超过神经元,其凋亡以再灌注3d最为显著,而神经元则以7d最为显著;而皮层区神经元凋亡数量超过星形胶质细胞,两种细胞凋亡均在再灌注后7d达高峰。结论脑缺血再灌注后,皮层和海马区的神经元及星形胶质细胞均可发生凋亡,海马区星形胶质细胞比皮层区更易凋亡,而皮层区神经元比海马区更易凋亡。  相似文献   

3.
目的研究adam10基因在成年小鼠中枢神经系统表达的脑区分布特点以及细胞类型。方法构建小鼠源性adam10 cRNA探针,通过原位杂交技术,观察adam10 mRNA在成年小鼠中枢神经系统分布特点,并在原位杂交后进行免疫组织化学染色,把adam10原位杂交信号和神经元、星形胶质细胞特异性细胞标记物进行双标,观察adam10基因表达的细胞类型。结果 Adam10基因在成年小鼠大脑皮层、海马、丘脑和小脑中表达,原位杂交后进行免疫组织化学染色结果显示adam10原位杂交阳性信号主要和神经元标记物NeuN共标,而和星形胶质细胞标记物GFAP不共标。结论本研究证实了在成年小鼠中枢神经系统中adam10基因在大脑皮层、海马、丘脑和小脑中都有表达;并且首次明确了大脑中ad-am10基因主要在神经元中表达,在星形胶质细胞中不表达,小脑中主要在小脑颗粒细胞和蒲肯野细胞中表达。  相似文献   

4.
miR-34a是一种进化保守并在脑中高表达的miRNA,已有研究显示其可能参与调控神经干细胞增殖和分化、神经元成熟和凋亡、恐惧记忆巩固等脑发育和功能的多个重要方面,但内源性miR-34a缺失是否显著影响脑正常发育和功能尚属未知。在本研究中,我们对miR-34a全敲除小鼠模型进行检测,发现miR-34a的缺失不影响成年鼠脑的重量、基本结构、大脑皮层的分层及其中几类主要类型的兴奋性和抑制性神经元的数量和分布,也不影响恐惧记忆的巩固及焦虑和抑郁样行为,但对小鼠的运动协调能力有一定影响。由于miR-34a在大脑皮层小清蛋白(parvalbumin,PV)亚型抑制性神经元中特异高表达,我们利用PV-Cre对miR-34a进行了条件敲除,但并未观察到这类神经元数量与分布的改变。我们的研究证明,miR-34a虽然参与调控小鼠大脑发育和行为的特定方面,但并非是调控大脑结构分区与皮层分层形成、皮层主要神经元类型产生与维持、恐惧记忆形成与巩固所必需的关键因子。  相似文献   

5.
异源三聚体G蛋白激活alpha亚基(Gsα),是一种普遍存在的鸟苷酸结合蛋白,调节受体介导的胞内cAMP信号通路进而参与调控细胞的生命活动。目前Gsα信号通路的研究主要在生物化学和药物方面,但在小鼠大脑皮层发育中的作用还没有详尽的描述。本研究首先利用cre-loxP系统在小鼠大脑皮层神经前体细胞中成功敲除Gsα基因;其次,通过收集出生后不同天数的正常小鼠和敲除小鼠,统计分析后发现敲除鼠的脑重和体重减轻;最后,对小鼠大脑做切片后染色,发现在小鼠大脑皮层条件性敲除Gsα基因的成年鼠中表达thy1-EGFP(增强绿色荧光蛋白)的神经元的数量减少,皮层形成异常。由此推测,Gsα在小鼠大脑皮层发育中发挥重要作用。  相似文献   

6.
目的研究超声刺激(ultrasound stimulation, US)在红藻氨酸(kainate, KA)诱导的小鼠癫痫模型中的抗癫痫作用。方法将小鼠随机分为对照组(n=11)、KA组(n=12)和KA+US组(n=12)。通过侧脑室注射KA建立小鼠癫痫模型,并给予US处理2周。通过视频监控记录US对KA诱发的小鼠癫痫相关行为的影响;通过脑电图检测US对小鼠癫痫发作时的脑电活动的影响;通过尼氏染色观察US对海马CA3区神经元大体形态和密度的影响;通过FJB与NeuN共定位观察US对海马CA3区神经元退化变性的影响;通过GFAP免疫组织化学染色观察US对海马CA3区星形胶质细胞活化增生的影响。结果 US可显著减少KA处理后小鼠癫痫发作次数并延长癫痫发作潜伏期。脑电图记录结果显示,US可显著降低棘波频率。尼氏染色显示,KA组海马CA3区神经元呈现核固缩且神经元密度降低;相对于KA组,KA+US组海马CA3区神经元核固缩明显减少,神经元密度明显增加。FBJ和NeuN共定位染色显示,US可显著降低KA引起的海马CA3区神经元退化变性。GFAP免疫组织化学染色显示,KA组海马CA3区星形胶质细胞明显增多,而US可减少其数量。结论 US具有抗癫痫作用,且这一作用可能与其抑制海马CA3区的神经元退化并降低星形胶质细胞活化增生相关。  相似文献   

7.
比较了青、老年猫运动皮层神经元与S100、GFAP免疫阳性胶质细胞的形态学变化,并探讨其与衰老过程中运动功能衰退的关系。采用Nissl染色显示青、老年猫运动皮层分层结构和神经元。免疫组织化学方法(SABC法)显示青、老年猫运动皮层S100免疫反应阳性(S100-immunoreactive, S100-IR)细胞及胶质纤维酸性蛋白免疫反应阳性(GFAP-immunoreactive, GFAP-IR)细胞。在Olympus 显微镜下,用Moitcam 5000数码成像与分析系统计数运动皮层各层神经元、S100-IR细胞及GFAP-IR细胞的数量,并随机抽样测量S100-IR、GFAP-IR细胞的胞体直径。与青年猫相比,老年猫运动皮层Ⅴ、Ⅵ层神经元密度显著下降(P < 0.01),老年猫运动皮层中S100-IR和GFAP-IR细胞密度与胞体直径均显著增加(P < 0.01),且细胞的免疫阳性反应较强。研究结果表明,猫运动皮层的神经元密度在衰老过程中Ⅴ、Ⅵ层神经元密度显著下降,有可能会降低老年个体运动皮层对运动的调控能力;随着衰老、运动皮层的星形胶质细胞出现明显的反应性活化与增生,这对维持大脑运动皮层神经元的活性和神经元之间的通讯联系,从而延缓老年性运动功能衰退具有重要意义。  相似文献   

8.
猫运动皮层神经元和S100、GFAP阳性细胞的年龄相关性变化   总被引:2,自引:0,他引:2  
比较了青、老年猫运动皮层神经元与S100、GFAP免疫阳性胶质细胞的形态学变化,并探讨其与衰老过程中运动功能衰退的关系。采用Nissl染色显示青、老年猫运动皮层分层结构和神经元。免疫组织化学方法(SABC法)显示青、老年猫运动皮层S100免疫反应阳性(S100-immunoreactive,S100-IR)细胞及胶质纤维酸性蛋白免疫反应阳性(GFAP-immunoreactive,GFAP-IR)细胞。在Olympus显微镜下,用Moitcam5000数码成像与分析系统计数运动皮层各层神经元、S100-IR细胞及GFAP-IR细胞的数量,并随机抽样测量S100-IR、GFAP-IR细胞的胞体直径。与青年猫相比,老年猫运动皮层Ⅴ、Ⅵ层神经元密度显著下降(P<0.01),老年猫运动皮层中S100-IR和GFAP-IR细胞密度与胞体直径均显著增加(P<0.01),且细胞的免疫阳性反应较强。研究结果表明,猫运动皮层的神经元密度在衰老过程中Ⅴ、Ⅵ层神经元密度显著下降,有可能会降低老年个体运动皮层对运动的调控能力;随着衰老、运动皮层的星形胶质细胞出现明显的反应性活化与增生,这对维持大脑运动皮层神经元的活性和神经元之间的通讯联系,从而延缓老年性运动功能衰退具有重要意义。  相似文献   

9.
脑星形胶质细胞生物学功能研究进展   总被引:32,自引:0,他引:32  
脑星形胶质细胞是中枢神经系统(CNS)内在数目占绝对优势的一类大胶质细胞,被认为在神经元的整个发育过程中起重要作用。本文主要就参与星形胶质细胞调节神经元活动的主要功能分子,星形胶质细胞在中枢神经系统的生物学功能,及其与疾病的关系作一简要回顾。  相似文献   

10.
星型胶质细胞在突触形成、神经元代谢、神经递质传递等方面起重要作用,其退行性病变可引起突触蛋白水平降低、神经元体积减小及神经递质传递异常,进而引起神经精神性疾病的发生。抑郁症患者前额叶皮层、海马、杏仁核以及前扣带回等多个脑区均有星型胶质细胞密度减低,提示星形胶质细胞与抑郁症发病密切相关。研究表明,能量和营养支持、谷氨酸(glutamate,Glu)转运和代谢、N-甲基-D-天(门)冬氨酸(N-methyl-D-aspartate,NMDA)受体活性调节以及炎症反应异常等星形胶质细胞功能障碍参与抑郁症的发生。本文就星形胶质细胞功能障碍在抑郁症发病机理中的作用进行综述。  相似文献   

11.
Mice lacking epidermal growth factor receptor (EGFR) develop a neurodegeneration of unknown etiology affecting exclusively the frontal cortex and olfactory bulbs. Here, we show that EGFR signaling controls cortical degeneration by regulating cortical astrocyte apoptosis. Whereas EGFR(-/-) midbrain astrocytes are unaffected, mutant cortical astrocytes display increased apoptosis mediated by an Akt-caspase-dependent mechanism and are unable to support neuronal survival. The expression of many neurotrophic factors is unaltered in EGFR(-/-) cortical astrocytes suggesting that neuronal loss occurs as a consequence of increased astrocyte apoptosis rather than impaired secretion of trophic factors. Neuron-specific expression of activated Ras can compensate for the deficiency of EGFR(-/-) cortical astrocytes and prevent neuronal death. These results identify two functionally distinct astrocyte populations, which differentially depend on EGFR signaling for their survival and also for their ability to support neuronal survival. These spatial differences in astrocyte composition provide a mechanism for the region-specific neurodegeneration in EGFR(-/-) mice.  相似文献   

12.
13.
In the human brain, the transformation of radial glial cells (RGC) into astrocytes has been studied only rarely. In this work, we were interested in studying the morphologic aspects underlying this transformation during the fetal/perinatal period, particularly emphasizing the region-specific glial fiber anatomy in the medial cortex. We have used carbocyanine dyes (DiI/DiA) to identify the RGC transitional forms and glial fiber morphology. Immunocytochemical markers such as vimentin and glial fibrillary acidic protein (GFAP) were also employed to label the radial cells of glial lineage and to reveal the early pattern of astrocyte distribution. Neuronal markers such as neuronal-specific nuclear protein (NeuN) and microtubule-associated protein (MAP-2) were employed to discern whether or not these radial cells could, in fact, be neurons or neuronal precursors. The main findings concern the beginning of RGC transformation showing loss of the ventricular fixation in most cases, followed by transitional figures and the appearance of mature astrocytes. In addition, diverse fiber morphology related to depth within the cortical mantle was clearly demonstrated. We concluded that during the fetal/perinatal period the cerebral cortex is undergoing the final stages of radial neuronal migration, followed by involution of RGC ventricular processes and transformation into astrocytes. None of the transitional or other radial glia were positive for neuronal markers. Furthermore, the differential morphology of RGC fibers according to depth suggests that factors may act locally in the subplate and could have a role in the process of cortical RGC transformation and astrocyte localization. The early pattern of astrocyte distribution is bilaminar, sparing the cortical plate. Few astrocytes (GFAP+) in the upper band could be found with radial processes at anytime. This suggests that astrocytes in the marginal zone could be derived from different precursors than those that differentiate from RGCs during this period.  相似文献   

14.
Primary astrocyte cultures from hippocampus, cortex and cerebellum presented different extracellular pattern of adenine nucleotide hydrolysis. The ATP/ADP hydrolysis ratio was 8:1 for hippocampal and cortical astrocytes and 5:1 for cerebellar astrocytes. The AMP hydrolysis in cerebellar astrocytes was seven-fold higher than in cortical or hippocampal cells. No accumulation of extracellular adenosine in all structures studied was observed. Dipyridamol increased significantly inosine levels in the extracellular medium of hippocampal and cortical, but not in cerebellar astrocytes medium. A higher expression of ecto-5′-nucleotidase was identified by RT-PCR in cerebellum. The differences observed may indicate functional heterogeneity of nucleotides in the brain.  相似文献   

15.
Secreted proteoglycan molecule Tsukushi (TSK) regulates various developmental processes, such as early body patterning and neural plate formation by interacting with major signaling pathways like Wnt, BMP, Notch etc. In central nervous system, TSK inhibits Wnt signaling to control chick retinal development. It also plays important roles for axon guidance and anterior commissure formation in mouse brain. In the present study, we investigated the role of TSK for the development and proper functioning of mouse hippocampus. We found that TSK expression is prominent at hippocampal regions of early postnatal mouse until postnatal day 15 and gradually declines at later stages. Hippocampal dimensions are affected in TSK knockout mice (TSK-KO) as shown by reduced size of hippocampus and dentate gyrus (DG). Interestingly, neural stem cell (NSC) density at the neural niche of DG was higher in TSK-KO compared with wild-type. The ratio of proliferating NSCs as well as the rate of overall cell proliferation was also higher in TSK-KO hippocampus. Our in vitro study also suggests an increased number of neural stem/progenitor cells residing in TSK-KO hippocampus. Finally, we found that the terminal differentiation of NSCs in TSK-KO was disturbed as the differentiation to neuronal cell lineage was increased while the percentages of astrocytes and oligodendrocytes were decreased. Overall, our study establishes the involvement of TSK in hippocampal development, NSC maintenance and terminal differentiation at perinatal stages.  相似文献   

16.
Presenilins are the major causative genes of familial Alzheimer''s disease (AD). Our previous study has demonstrated essential roles of presenilins in memory and neuronal survival. Here, we explore further how loss of presenilins results in age-related, progressive neurodegeneration in the adult cerebral cortex, where the pathogenesis of AD occurs. To circumvent the requirement of presenilins for embryonic development, we used presenilin conditional double knockout (Psen cDKO) mice, in which presenilin inactivation is restricted temporally and spatially to excitatory neurons of the postnatal forebrain beginning at 4 weeks of age. Increases in the number of degenerating (Fluoro-Jade B+, 7.6-fold) and apoptotic (TUNEL+, 7.4-fold) neurons, which represent ∼0.1% of all cortical neurons, were first detected at 2 months of age when there is still no significant loss of cortical neurons and volume in Psen cDKO mice. By 4 months of age, significant loss of cortical neurons (∼9%) and gliosis was found in Psen cDKO mice. The apoptotic cell death is associated with caspase activation, as shown by increased numbers of cells immunoreactive for active caspases 9 and 3 in the Psen cDKO cortex. The vulnerability of cortical neurons to loss of presenilins is region-specific with cortical neurons in the lateral cortex most susceptible. Compared to the neocortex, the increase in apoptotic cell death and the extent of neurodegeneration are less dramatic in the Psen cDKO hippocampus, possibly in part due to increased neurogenesis in the aging dentate gyrus. Neurodegeneration is also accompanied with mitochondrial defects, as indicated by reduced mitochondrial density and altered mitochondrial size distribution in aging Psen cortical neurons. Together, our findings show that loss of presenilins in cortical neurons causes apoptotic cell death occurring in a very small percentage of neurons, which accumulates over time and leads to substantial loss of cortical neurons in the aging brain. The low occurrence and significant delay of apoptosis among cortical neurons lacking presenilins suggest that loss of presenilins may induce apoptotic neuronal death through disruption of cellular homeostasis rather than direct activation of apoptosis pathways.  相似文献   

17.
During development of the mammalian cerebral cortex neural stem cells (NSC) first generate neurons and subsequently produce glial cells. The mechanism(s) responsible for this developmental shift from neurogenesis to gliogenesis is unknown. Brain-derived neurotrophic factor (BDNF) is believed to play important roles in the development of the mammalian cerebral cortex; it enhances neurogenesis and promotes the differentiation and survival of newly generated neurons. Here, we provide evidence that a truncated form of the BDNF receptor tyrosine kinase B (trkB-t) plays a pivotal role in directing embryonic mouse cortical NSC to a glial cell fate. Expression of trkB-t promotes differentiation of NSC toward astrocytes while inhibiting neurogenesis both in cell culture and in vivo. The mechanism by which trkB-t induces astrocyte genesis is not simply the result of inhibition of full-length receptor with intrinsic tyrosine kinase activity signaling. Instead, binding of BDNF to trkB-t activates a signaling pathway (involving a G-protein and protein kinase C) that induced NSC to become glial progenitors and astrocytes. Thus, the increased expression of trkB-t in the embryonic cerebral cortex that occurs coincident with astrocyte production plays a pivotal role in the developmental transition from neurogenesis to gliogenesis. Our findings suggest a mechanism by which a single factor (BDNF) regulates the production of the two major cell types in the mammalian cerebral cortex.  相似文献   

18.
The GDI1 gene encodes αGDI, which retrieves inactive GDP-bound RAB from membranes to form a cytosolic pool awaiting vesicular release. Mutations in GDI1 are responsible for X-linked Intellectual Disability. Characterization of the Gdi1-null mice has revealed alterations in the total number and distribution of hippocampal and cortical synaptic vesicles, hippocampal short-term synaptic plasticity and specific short-term memory deficits in adult mice, which are possibly caused by alterations of different synaptic vesicle recycling pathways controlled by several RAB GTPases. However, interpretation of these studies is complicated by the complete ablation of Gdi1 in all cells in the brain throughout development. In this study, we generated conditionally gene-targeted mice in which the knockout of Gdi1 is restricted to the forebrain, hippocampus, cortex and amygdala and occurs only during postnatal development. Adult mutant mice reproduce the short-term memory deficit previously reported in Gdi1-null mice. Surprisingly, the delayed ablation of Gdi1 worsens the pre-synaptic phenotype at cortico-amygdala synaptic connections compared to Gdi1-null mice. These results suggest a pivotal role of αGDI via specific RAB GTPases acting specifically in forebrain regions at the pre-synaptic sites involved in memory formation.  相似文献   

19.
A crucial role for Olig2 in white matter astrocyte development   总被引:5,自引:0,他引:5  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号