首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Non-host disease resistance involves the production of hypersensitive response (HR), a programmed cell death (PCD) that occurs at the site of pathogen infection. Plant mitochondrial reactive oxygen species (ROS) production and red-ox changes play a major role in regulating such cell death. Proline catabolism reactions, especially pyrroline-5-carboxylate (P5C) accumulation, are known to produce ROS and contribute to cell death. Here we studied important genes related to proline synthesis and catabolism in the defence against host and non-host strains of Pseudomonas syringae in Nicotiana benthamiana and Arabidopsis. Our results show that ornithine delta-aminotransferase (δOAT) and proline dehydrogenases (ProDH1 and ProDH2) are involved in the defence against non-host pathogens. Silencing of these genes in N. benthamiana delayed occurrence of HR and favoured non-host pathogen growth. Arabidopsis mutants for these genes compromised non-host resistance and showed a decrease in non-host pathogen-induced ROS. Some of the genes involved in proline metabolism were also induced by a pathogen-carrying avirulence gene, indicating that proline metabolism is influenced during effector-triggered immunity (ETI). Our results demonstrate that δOAT and ProDH enzyme-mediated steps produce ROS in mitochondria and regulate non-host HR, thus contributing to non-host resistance in plants.  相似文献   

3.
Delta1-pyrroline-5-carboxylate (P5C), an intermediate in biosynthesis and degradation of proline (Pro), is assumed to play a role in cell death in plants and animals. Toxicity of external Pro and P5C supply to Arabidopsis suggested that P5C dehydrogenase (P5CDH; EC 1.2.1.12) plays a crucial role in this process by degrading the toxic Pro catabolism intermediate P5C. Also in a Deltaput2 yeast mutant, lacking P5CDH, Pro led to growth inhibition and formation of reactive oxygen species (ROS). Complementation of the Deltaput2 mutant allowed identification of the Arabidopsis P5CDH gene. AtP5CDH is a single-copy gene and the encoded protein was localized to the mitochondria. High homology of AtP5CDH to LuFIS1, an mRNA up-regulated during susceptible pathogen attack in flax, suggested a role for P5CDH in inhibition of hypersensitive reactions. An Arabidopsis mutant (cpr5) displaying a constitutive pathogen response was found to be hypersensitive to external Pro. In agreement with a role in prevention of cell death, AtP5CDH was expressed at a basal level in all tissues analysed. The highest expression was found in flowers that are known to contain the highest Pro levels under normal conditions. External supply of Pro induced AtP5CDH expression, but much more slowly than Pro dehydrogenase (AtProDH) expression. Uncoupled induction of the AtProDH and AtP5CDH genes further supports the hypothesis that P5C levels have to be tightly controlled. These results indicate that, in addition to the well-studied functions of Pro, for example in osmoregulation, the Pro metabolism intermediate P5C also serves as a regulator of cellular stress responses.  相似文献   

4.
In response to stress, plants accumulate Pro, requiring degradation after release from adverse conditions. Delta1-Pyrroline-5-carboxylate dehydrogenase (P5CDH), the second enzyme for Pro degradation, is encoded by a single gene expressed ubiquitously. To study the physiological function of P5CDH, T-DNA insertion mutants in AtP5CDH were isolated and characterized. Although Pro degradation was undetectable in p5cdh mutants, neither increased Pro levels nor an altered growth phenotype were observed under normal conditions. Thus AtP5CDH is essential for Pro degradation but not required for vegetative plant growth. External Pro application caused programmed cell death, with callose deposition, reactive oxygen species production, and DNA laddering, involving a salicylic acid signal transduction pathway. p5cdh mutants were hypersensitive toward Pro and other molecules producing P5C, such as Arg and Orn. Pro levels were the same in the wild type and mutants, but P5C was detectable only in p5cdh mutants, indicating that P5C accumulation may be the cause for Pro hypersensitivity. Accordingly, overexpression of AtP5CDH resulted in decreased sensitivity to externally supplied Pro. Thus, Pro and P5C/Glu semialdehyde may serve as a link between stress responses and cell death.  相似文献   

5.
Proline metabolism is implicated in plant responses to abiotic stresses, including the chilling stress. During proline catabolism, the two-step oxidation of proline is performed by the continuous actions of proline dehydrogenase (ProDH), which produces Δ1-pyrroline-5-carboxylate (P5C), and P5C dehydrogenase (P5CDH), which oxidizes P5C to glutamate. The Arabidopsis thaliana chilling mutants chs1 and chs2 are sensitive to chilling temperatures of 13–18°C. For a better understanding of Arabidopsis responses to chilling stress, 4-week-old wild-type (WT) and chs1 and chs2 lines, with three plants in each group, were subjected to chilling stress (13°C), cold stress (4°C), or remained under normal conditions (23°C); and several factors including the expression of ProDH2 and P5CDH genes, POX (peroxidase) and SOD (superoxide dismutase) activities, as well as MDA and proline contents were examined. Our results showed an increase in the proline content in all lines under chilling conditions. In addition, a greater expression of ProDH2 and a lower expression of P5CDH were observed, leading us to speculate a greater breakdown of proline into P5C and a consequent overproduction of ROS in the ETC cycle. The higher POX and SOD activities and a higher MDA content in chs mutants at 13°C are in line with this speculation. Finally, cold-treated plants (4°C) only showed an increase in proline levels.  相似文献   

6.
To obtain insight into the link between proline (Pro) accumulation and the increase in osmotolerance in higher plants, we investigated the biochemical basis for the NaCl tolerance of a Nicotiana plumbaginifolia mutant (RNa) that accumulates Pro. Pro biosynthesis and catabolism were investigated in both wild-type and mutant lines. (13)C-Nuclear magnetic resonance with [5-(13)C]glutamate (Glu) as the Pro precursor was used to provide insight into the mechanism of Pro accumulation via the Glu pathway. After 24 h under 200 mM NaCl stress in the presence of [5-(13)C]Glu, a significant enrichment in [5-(13)C]Pro was observed compared with non-stress conditions in both the wild type (P2) and the mutant (RNa). Moreover, under the same conditions, [5-(13)C]Pro was clearly synthesized in higher amounts in RNa than in P2. On the other hand, measurements of enzyme activities indicate that neither the biosynthesis via the ornithine pathway, nor the catabolism via the Pro oxidation pathway were affected in the RNa mutant. Finally, the regulatory effect exerted by Pro on its biosynthesis was evaluated. In P2 plantlets, exogenous Pro markedly reduced the conversion of [5-(13)C]Glu into [5-(13)C]Pro, whereas Pro feedback inhibition was not detected in the RNa plantlets. It is proposed that the origin of tolerance in the RNa mutant is due to a mutation leading to a substantial reduction of the feedback inhibition normally exerted in a wild-type (P2) plant by Pro at the level of the Delta-pyrroline-5-carboxylate synthetase enzyme.  相似文献   

7.
The potential of proline to suppress reactive oxygen species (ROS) and apoptosis in mammalian cells was tested by manipulating intracellular proline levels exogenously and endogenously by overexpression of proline metabolic enzymes. Proline was observed to protect cells against H(2)O(2), tert-butyl hydroperoxide, and a carcinogenic oxidative stress inducer but was not effective against superoxide generators such as menadione. Oxidative stress protection by proline requires the secondary amine of the pyrrolidine ring and involves preservation of the glutathione redox environment. Overexpression of proline dehydrogenase (PRODH), a mitochondrial flavoenzyme that oxidizes proline, resulted in 6-fold lower intracellular proline content and decreased cell survival relative to control cells. Cells overexpressing PRODH were rescued by pipecolate, an analog that mimics the antioxidant properties of proline, and by tetrahydro-2-furoic acid, a specific inhibitor of PRODH. In contrast, overexpression of the proline biosynthetic enzymes Delta(1)-pyrroline-5-carboxylate (P5C) synthetase (P5CS) and P5C reductase (P5CR) resulted in 2-fold higher proline content, significantly lower ROS levels, and increased cell survival relative to control cells. In different mammalian cell lines exposed to physiological H(2)O(2) levels, increased endogenous P5CS and P5CR expression was observed, indicating that upregulation of proline biosynthesis is an oxidative stress response.  相似文献   

8.
9.
Regulation of Proline Degradation in Salmonella typhimurium   总被引:30,自引:22,他引:8       下载免费PDF全文
The pathway for proline degradation in Salmonella typhimurium appears to be identical to that found in Escherichia coli and Bacillus subtilis. Delta(1)-Pyrroline-5-carboxylic acid (P5C) is an intermediate in the pathway; its formation consumes molecular oxygen. Assays were devised for proline oxidase and the nicotinamide adenine dinucleotide phosphate-specific P5C dehydrogenase activities. Both proline-degrading enzymes, proline oxidase and P5C dehydrogenase, are induced by proline and are subject to catabolite repression. Three types of mutants were isolated in which both enzymes are affected: constitutive mutants, mutants with reduced levels of enzyme activity, and mutants unable to produce either enzyme. Most of the mutants isolated for their lack of P5C dehydrogenase activity have a reduced level of proline oxidase activity. All the mutations are cotransducible. A genetic map of some of the mutations is presented. The actual effector of the pathway appears to be proline.  相似文献   

10.
11.
In transgenic Arabidopsis a patatin class I promoter from potato is regulated by sugars and proline (Pro), thus integrating signals derived from carbon and nitrogen metabolism. In both cases a signaling cascade involving protein phosphatases is involved in induction. Other endogenous genes are also regulated by both Pro and carbohydrates. Chalcone synthase (CHS) gene expression is induced by both, whereas the Pro biosynthetic Delta(1)-pyrroline-5-carboxylate synthetase (P5CS) is induced by high Suc concentrations but repressed by Pro, and Pro dehydrogenase (ProDH) is inversely regulated. The mutant rsr1-1, impaired in sugar dependent induction of the patatin promoter, is hypersensitive to low levels of external Pro and develops autofluorescence and necroses. Toxicity of Pro can be ameliorated by salt stress and exogenously supplied metabolizable carbohydrates. The rsr1-1 mutant shows a reduced response regarding sugar induction of CHS and P5CS expression. ProDH expression is de-repressed in the mutant but still down-regulated by sugar. Pro toxicity seems to be mediated by the degradation intermediate Delta(1)-pyrroline-5-carboxylate. Induction of the patatin promoter by carbohydrates and Pro, together with the Pro hypersensitivity of the mutant rsr1-1, demonstrate a new link between carbon/nitrogen and stress responses.  相似文献   

12.
Proline dehydrogenase/1-pyrroline-5-carboxylate dehydrogenase (Pro/P5C dehydrogenase), a bifunctional enzyme catalyzing the two consecutive reactions of the oxidation of proline to glutamic acid, was purified from Pseudomonas aeruginosa strain PAO1. Pro/P5C dehydrogenase oxidized L-proline in an FAD-dependent reaction to L-delta 1-pyrroline-5-carboxylic acid and converted this intermediate with NAD or NADP as cosubstrates to L-glutamic acid. The purification procedure involved DEAE-cellulose chromatography, affinity chromatography on Matrex gel red A and gel filtration on Sephadex G-200. It resulted, after 40-fold purification with 11% yield, in a homogeneous preparation (greater than 98% pure). The molecular weight of the single subunit was determined as 119,000. Gel filtration of purified Pro/P5C dehydrogenase yielded a molecular weight of 242,000 while polyacrylamide gel electrophoresis under native conditions led to the appearance of two catalytically active forms of the enzyme with molecular weights of 241,000 and 470,000. Manual Edman degradation revealed proline, alanine and aspartic acid as the N-terminal amino acid sequence. Pro/P5C dehydrogenase was highly specific for the L-forms of proline and delta 1-pyrroline-5-carboxylic acid. Its apparent Km values were 45 mM for L-proline, 0.03 mM for NAD and 0.17 mM for NADP. The saturation function for delta 1-pyrroline-5-carboxylic acid was non-hyperbolic.  相似文献   

13.
Proline-dependent oxygen uptake in corn mitochondria (Zea mays L. B73 × Mo17 or Mo17 × B73) occurs through a proline dehydrogenase (pH optimum around 7.2) bound to the matrix side of the inner mitochondrial membrane. Sidedness was established by determining the sensitivity of substrate-dependent ferricyanide reduction to antimycin and FCCP (P-trifluoromethoxycarbonylcyanide phenylhydrazone). Proline dehydrogenase activity did not involve nicotinamide adenine dinucleotide reduction, and thus electrons and protons from proline enter the respiratory chain directly. Δ1-Pyrroline-5-carboxylate (P5C) derived from proline was oxidized by a P5C dehydrogenase (pH optimum approximately 6.4). This enzyme was found to be similar to proline dehydrogenase in that it was bound to the matrix side of the inner membrane and fed electrons and protons directly into the respiratory chain.

Ornithine-dependent oxygen uptake was measurable in corn mitochondria and resulted from an ornithine transaminase coupled with a P5C dehydrogenase. These enzymes existed as a complex bound to the matrix side of the inner membrane. P5C formed by ornithine transaminase was utilized directly by the associated P5C dehydrogenase and was not released into solution. Activity of this dehydrogenase involved the reduction of nicotinamide adenine dinucleotide.

  相似文献   

14.
The gene encoding proline dehydrogenase (ProDH) from Pseudomonas fluorescence was isolated using PCR amplification and cloned into pET23a expression vector. The expression of the recombinant target enzyme was induced by addition of IPTG. The produced His-fusion enzyme was purified and its kinetic properties were studied. The 3D structure modeling was also performed to identify key amino acids involved in FAD-binding and catalysis. The PCR product contained a 1033 bp open reading frame encoding 345 amino acid residue polypeptide chain. SDS-PAGE analysis revealed a MW of 40 kDa, whereas the native enzyme exhibited a MW of 40 kDa suggesting a monomeric protein. The K(m) and V(max) values of the P. fluorescence ProDH were estimated to be 35 mM and 116 micromol/min, respectively. ProDH activity was stable at alkaline pH and the highest activity was observed at 30 degrees C and pH 8.5. The modeling analysis of the three dimensional structure elucidated that Lys-173 and Asp-202, which were oriented near the hydroxyl group of the substrate, were essential residues for the ProDH activity. This study, to our knowledge, is the first data on the cloning and biochemical and structural properties of P. fluorescence ProDH.  相似文献   

15.
The objective of the present work was to express a truncated form of Pseudomonas putida PutA that shows proline dehydrogenase (ProDH) activity. The putA gene encoding ProDH enzyme was cloned into pET23a vector and expressed in Escherichia coli strain BL-21 (DE3) plysS. The recombinant P. putida enzyme was biochemically characterized and its three dimensional structure was also predicted. ProDH encoding sequence showed an open reading frame of 1,035-bp encoding a 345 amino acid residues polypeptide chain. Purified His-tagged enzyme gave a single band with a molecular mass of 40 kDa on SDS-PAGE. The molecular mass of the isolated enzyme was found to be about 40 kDa by gel filtration. This suggested that the enzyme of interest consists of one subunit. The K m and V max values of recombinant P. putida ProDH were estimated to be 31 mM and 132 μmol/min, respectively. The optimum pH and temperature for the catalytic activity of the enzyme was about pH 8.5 and 30 °C. The modeling analysis of the three dimensional structure elucidated that Ser-165, Lys-195 and Ala-252 were key residues for the ProDH activity. This study provides data on the cloning, sequencing and recombinant expression of PutA ProDH domain from P. putida POS-F84.  相似文献   

16.
Pyrroline-5-carboxylate reductase (P5CR) lies at the converging point of the glutamate and ornithine pathways and is the last and critical enzyme in proline biosynthesis. In the present study, a P5CR gene, named IbP5CR, was isolated from salt-tolerant sweetpotato line ND98. Expression of IbP5CR was up-regulated in sweetpotato under salt stress. The IbP5CR-overexpressing sweetpotato (cv. Kokei No. 14) plants exhibited significantly higher salt tolerance compared with the wild-type. Proline content and superoxide dismutase and photosynthetic activities were significantly increased, whereas malonaldehyde content was significantly decreased in the transgenic plants. H2O2 was also found to be significantly less accumulated in the transgenic plants than in the wild-type. Overexpression of IbP5CR up-regulated pyrroline-5-carboxylate synthase gene and down-regulated proline dehydrogenase and P5C dehydrogenase genes under salt stress. The systemic up-regulation of reactive oxygen species (ROS) scavenging genes was found in the transgenic plants under salt stress. These findings suggest that overexpression of IbP5CR increases proline accumulation, which enhances salt tolerance of the transgenic sweetpotato plants by regulating osmotic balance, protecting membrane integrity and photosynthesis and activating ROS scavenging system. This study indicates that IbP5CR gene has the potential to be used for improving salt tolerance of plants.  相似文献   

17.
18.
The gene encoding proline dehydrogenase (ProDH) from Pseudomonas fluorescens was isolated using PCR amplification and cloned into pET23a expression vector. The expression of the recombinant target enzyme was induced by addition of IPTG. The produced His-fusion enzyme was purified and its kinetic properties were studied. The 3D structure modeling was also performed to identify key amino acids involved in FAD-binding and catalysis. The PCR product contained a 1033 bp open reading frame encoding 345 amino acid residue polypeptide chain. SDS-PAGE analysis revealed a MW of 40 kDa, whereas the native enzyme exhibited a MW of 40 kDa suggesting a monomeric protein. The K m and V max values of the P. fluorescens ProDH were estimated to be 35 mM and 116 μmol/min, respectively. ProDH activity was stable at alkaline pH and the highest activity was observed at 30°C and pH 8.5. The modeling analysis of the three dimensional structure elucidated that Lys-173 and Asp-202, which were oriented near the hydroxyl group of the substrate, were essential residues for the ProDH activity. This study, to our knowledge, is the first data on the cloning and biochemical and structural properties of P. fluorescens ProDH.  相似文献   

19.
Proline accumulation was often correlated with drought tolerance of plants infected by arbuscular mycorrhizal fungi (AMF), whereas lower proline in some AM plants including citrus was also found under drought stress and the relevant mechanisms have not been fully elaborated. In this study proline accumulation and activity of key enzymes relative to proline biosynthesis (▵1-pyrroline-5-carboxylate synthetase, P5CS; ornithine-δ-aminotransferase, OAT) and degradation (proline dehydrogenase, ProDH) were determined in trifoliate orange (Poncirus trifoliata, a widely used citrus rootstock) inoculated with or without Funneliformis mosseae and under well-watered (WW) or water deficit (WD). AMF colonization significantly increased plant height, stem diameter, leaf number, root volume, biomass production of both leaves and roots and leaf relative water content, irrespectively of water status. Water deficit induced more tissue proline accumulation, in company with an increase of P5CS activity, but a decrease of OAT and ProDH activity, no matter whether under AM or no-AM. Compared with no-AM treatment, AM treatment resulted in lower proline concentration and content in leaf, root, and total plant under both WW and WD. The AMF colonization significantly decreased the activity of both P5CS and OAT in leaf, root, and total plant under WW and WD, except for an insignificant difference of root OAT under WD. The AMF inoculation also generally increased tissue ProDH activity under WW and WD. Plant proline content significantly positively correlated with plant P5CS activity, negatively with plant ProDH activity, but not with plant OAT activity. These results suggest that AM plants may suffer less from WD, thereby inducing lower proline accumulation, which derives from the integration of an inhibition of proline synthesis with an enhancement of proline degradation.  相似文献   

20.
The fluctuation of proline content, and protein and mRNA levels of delta1-pyrroline-5-carboxylate synthetase (P5CS) and proline dehydrogenase (ProDH), both of which are involved in proline biosynthesis and degradation, in the shoots of Arabidopsis grown in light/dark cycles were demonstrated under salt-stressed and unstressed conditions. Proline content, as well as proteins and mRNAs of these enzymes, clearly oscillated in the light/dark cycles under the stressed and unstressed conditions. A reciprocal relationship between P5CS and ProDH was observed. Protein levels of P5CS and ProDH were well synchronized with their mRNA levels, although the fluctuation of protein levels was not as significant as that of their mRNA levels. Both mRNA and protein levels of the two enzymes as well as the proline content did not oscillate under the continuous light or the dark conditions. Thus, P5CS and ProDH gene expressions seemed to be involved in light irradiation. Moreover, relative water content (RWC) in the plants oscillated in the light/dark cycles. The fluctuations of proline content in shoot reversely responded to that of RWC. It is suggested that the expression of two genes responds sensitively to a subtle change of cellular water status, and accumulated proline keeps the osmotic balance between cells and the outer environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号