首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 395 毫秒
1.
2.
The toxicity of proline (Pro) to plant growth has raised questions despite its protective functions in response to environmental stresses. To evaluate Pro toxicity, we isolated an Arabidopsis T-DNA-tagged mutant, pdh, that had a defect in Pro dehydrogenase (AtProDH), which catalyzes the first step of Pro catabolism. The pdh mutant showed hypersensitivity to exogenous application of < or =10 mM L-Pro, at which wild-type plants grew normally. A dose-dependent increase in internal free Pro accumulation was observed in pdh plants during external Pro supply. These results do not just prove the toxicity of Pro, but also suggest that AtProDH is the only enzyme acting as a functional ProDH in ARABIDOPSIS: To further analyze the targets of Pro toxicity, we compared the expression of thousands of genes by pdh plants with that by wild-type plants by cDNA microarray analysis. Most genes were unaffected. Here we demonstrate Pro toxicity by using the pdh mutant and discuss a cause-and-effect action between an excess of free Pro and growth inhibition in ARABIDOPSIS.  相似文献   

3.
4.
Two genes, rd29A and rd29B, which are closely located on the Arabidopsis genome, are differentially induced under conditions of dehydration, low temperature, high salt, or treatment with exogenous abscisic acid (ABA). It appears that rd29A has at least two cis-acting elements, one involved in the ABA-associated response to dehydration and the other induced by changes in osmotic potential, and that rd29B contains at least one cis-acting element that is involved in ABA-responsive, slow induction. We analyzed the rd29A promoter in both transgenic Arabidopsis and tobacco and identified a novel cis-acting, dehydration-responsive element (DRE) containing 9 bp, TACCGACAT, that is involved in the first rapid response of rd29A to conditions of dehydration or high salt. DRE is also involved in the induction by low temperature but does not function in the ABA-responsive, slow expression of rd29A. Nuclear proteins that specifically bind to DRE were detected in Arabidopsis plants under either high-salt or normal conditions. Different cis-acting elements seem to function in the two-step induction of rd29A and in the slow induction of rd29B under conditions of dehydration, high salt, or low temperature.  相似文献   

5.
In transgenic Arabidopsis a patatin class I promoter from potato is regulated by sugars and proline (Pro), thus integrating signals derived from carbon and nitrogen metabolism. In both cases a signaling cascade involving protein phosphatases is involved in induction. Other endogenous genes are also regulated by both Pro and carbohydrates. Chalcone synthase (CHS) gene expression is induced by both, whereas the Pro biosynthetic Delta(1)-pyrroline-5-carboxylate synthetase (P5CS) is induced by high Suc concentrations but repressed by Pro, and Pro dehydrogenase (ProDH) is inversely regulated. The mutant rsr1-1, impaired in sugar dependent induction of the patatin promoter, is hypersensitive to low levels of external Pro and develops autofluorescence and necroses. Toxicity of Pro can be ameliorated by salt stress and exogenously supplied metabolizable carbohydrates. The rsr1-1 mutant shows a reduced response regarding sugar induction of CHS and P5CS expression. ProDH expression is de-repressed in the mutant but still down-regulated by sugar. Pro toxicity seems to be mediated by the degradation intermediate Delta(1)-pyrroline-5-carboxylate. Induction of the patatin promoter by carbohydrates and Pro, together with the Pro hypersensitivity of the mutant rsr1-1, demonstrate a new link between carbon/nitrogen and stress responses.  相似文献   

6.
We have analyzed promoter regulatory elements from a photoregulated CAB gene (Cab-E) isolated from Nicotiana plumbaginifolia. These studies have been performed by introducing chimeric gene constructs into tobacco cells via Agrobacterium tumefaciens-mediated transformation. Expression studies on the regenerated transgenic plants have allowed us to characterize three positive and one negative cis-acting elements that influence photoregulated expression of the Cab-E gene. Within the upstream sequences we have identified two positive regulatory elements (PRE1 and PRE2) which confer maximum levels of photoregulated expression. These sequences contain multiple repeated elements related to the sequence-ACCGGCCCACTT-. We have also identified within the upstream region a negative regulatory element (NRE) extremely rich in AT sequences, which reduces the level of gene expression in the light. We have defined a light regulatory element (LRE) within the promoter region extending from -396 to -186 bp which confers photoregulated expression when fused to a constitutive nopaline synthase ('nos') promoter. Within this region there is a 132-bp element, extending from -368 to -234 bp, which on deletion from the Cab-E promoter reduces gene expression from high levels to undetectable levels. Finally, we have demonstrated for a full length Cab-E promoter conferring high levels of photoregulated expression, that sequences proximal to the Cab-E TATA box are not replaceable by corresponding sequences from a 'nos' promoter. This contrasts with the apparent equivalence of these Cab-E and 'nos' TATA box-proximal sequences in truncated promoters conferring low levels of photoregulated expression.  相似文献   

7.
8.
9.
The promoter of a gene encoding a ribosome-associated protein of 40 kDa from Arabidopsis thaliana (A-p40) was sequenced and the expression of the gene studied. A-p40 was expressed in the same organs and with the same variations as the eukaryotic elongation factor 1 (eEF1A), another gene coding for a protein involved in translation Arabidopsis plants transformed with a -glucuronidase (GUS) gene driven by the A-p40 promoter confirm that A-p40 is expressed in actively dividing and growing cells. eEF1A promoter-GUS fusions have the same pattern of expression. Comparison of cis-acting elements from A-p40 and eEF1A revealed some common elements. A-p40 promoter deletions and transient gene expression in transfected Arabidopsis protopasts allowed the identification of trap40, a cis-acting element regulating gene expression. Gel retardation experiments indicate that eEF1A and A-p40 are regulated by different cis-acting elements. The role of such elements is discussed.  相似文献   

10.
Many abiotic stress-inducible genes contain two cis-acting elements, namely a dehydration-responsive element (DRE; TACCGACAT) and an ABA-responsive element (ABRE; ACGTGG/TC), in their promoter regions. We precisely analyzed the 120 bp promoter region (-174 to -55) of the Arabidopsis rd29A gene whose expression is induced by dehydration, high-salinity, low-temperature, and abscisic acid (ABA) treatments and whose 120 bp promoter region contains the DRE, DRE/CRT-core motif (A/GCCGAC), and ABRE sequences. Deletion and base substitution analyses of this region showed that the DRE-core motif functions as DRE and that the DRE/DRE-core motif could be a coupling element of ABRE. Gel mobility shift assays revealed that DRE-binding proteins (DREB1s/CBFs and DREB2s) bind to both DRE and the DRE-core motif and that ABRE-binding proteins (AREBs/ABFs) bind to ABRE in the 120 bp promoter region. In addition, transactivation experiments using Arabidopsis leaf protoplasts showed that DREBs and AREBs cumulatively transactivate the expression of a GUS reporter gene fused to the 120 bp promoter region of rd29A. These results indicate that DRE and ABRE are interdependent in the ABA-responsive expression of the rd29A gene in response to ABA in Arabidopsis.  相似文献   

11.
从拟南芥基因组中克隆RD29A基因5'-侧翼520bp启动子区域序列,生物信息学分析表明,该启动子片段中存在脱水胁迫响应元件(DRE)、ABA响应元件(ABRE)、TATA-box、CAAT-box等顺式作用元件。构建了干旱诱导型启动子AtRD29Ap驱动花生AhNCED1基因的植物双元表达载体pAtRD29Ap::AhNCED1。  相似文献   

12.
Effects of free proline accumulation in petunias under drought stress   总被引:29,自引:0,他引:29  
Petunias (Petunia hybrida cv. 'Mitchell') accumulate free proline (Pro) under drought-stress conditions. It is therefore believed that Pro acts as an osmoprotectant in plants subjected to drought conditions. Petunia plants were transformed by Delta(1)-pyrroline-5-carboxylate synthetase genes (AtP5CS from Arabidopsis thaliana L. or OsP5CS from Oryza sativa L.). The transgenic plants accumulated Pro and their drought tolerance was tested. The Pro content amounted to 0.57-1.01% of the total amino acids in the transgenic plants, or 1.5-2.6 times that in wild-type plants grown under normal conditions. The transgenic plant lines tolerated 14 d of drought stress, which confirms that both P5CS transgenes had full functionality. Exogenous L-Pro treatment caused the plants to accumulate Pro; plants treated with 5 mM L-Pro accumulated up to 18 times more free Pro than untreated plants. Exogenous L-Pro restricted the growth of wild-type petunias more than that of Arabidopsis plants. The capacity for free Pro accumulation might depend on the plant species. The growth of petunia plants was influenced not only by the Pro concentration in the plants, but by the ratio of the Pro content to the total amino acids, because the growth of the transgenic petunia plants appeared normal.  相似文献   

13.
14.

Background  

Proline (Pro) accumulation is a widespread response of prokaryotic and eukaryotic cells subjected to osmotic stress or dehydration. When the cells are released from stress, Pro is degraded to glutamate by Pro-dehydrogenase (ProDH) and Pyrroline-5-carboxylate dehydrogenase (P5CDH), which are both mitochondrial enzymes in eukaryotes. While P5CDH is a single copy gene in Arabidopsis, two ProDH genes have been identified in the genome. Until now, only ProDH1 (At3g30775) had been functionally characterised.  相似文献   

15.
SULTR1;1 high-affinity sulfate transporter is highly regulated in the epidermis and cortex of Arabidopsis roots responding to sulfur deficiency (-S). We identified a novel cis-acting element involved in the -S-inducible expression of sulfur-responsive genes in Arabidopsis. The promoter region of SULTR1;1 was dissected for deletion and gain-of-function analysis using luciferase (LUC) reporter gene in transgenic Arabidopsis. The 16-bp sulfur-responsive element (SURE) from -2777 to -2762 of SULTR1;1 promoter was sufficient and necessary for the -S-responsive expression, which was reversed when supplied with cysteine and glutathione (GSH). The SURE sequence contained an auxin response factor (ARF) binding sequence (GAGACA). However, SURE was not responsive to naphthalene acetic acid, indicating its specific function in the sulfur response. The base substitution analysis indicated the significance of a 5-bp sequence (GAGAC) within the conserved ARF binding site as a core element for the -S response. Microarray analysis of early -S response in Arabidopsis roots indicated the presence of SURE core sequences in the promoter regions of -S-inducible genes on a full genome GeneChip array. It is suggested that SURE core sequences may commonly regulate the expression of a gene set required for adaptation to the -S environment.  相似文献   

16.
17.
Under conditions of iron deficiency, graminaceous plants induce the expression of genes involved in the biosynthesis of mugineic acid family phytosiderophores. We previously identified the novel cis-acting elements IDE1 and IDE2 (iron-deficiency-responsive element 1 and 2) through promoter analysis of the barley (Hordeum vulgare L.) iron-deficiency-inducible IDS2 gene in tobacco (Nicotiana tabacum L.). To gain further insight into plant gene regulation under iron deficiency, we analyzed the barley iron-deficiency-inducible IDS3 gene, which encodes mugineic acid synthase. IDS3 promoter fragments were fused to the beta-glucuronidase (GUS) gene, and this construct was introduced into Arabidopsis thaliana L. and tobacco plants. In both Arabidopsis and tobacco, GUS activity driven by the IDS3 promoter showed strongly iron-deficiency-inducible and root-specific expression. Expression occurred mainly in the epidermis of Arabidopsis roots, whereas expression was dominant in the pericycle, endodermis, and cortex of tobacco roots, resembling the expression pattern conferred by IDE1 and IDE2. Deletion analysis revealed that a sequence within -305 nucleotides from the translation start site was sufficient for specific expression in both Arabidopsis and tobacco roots. Gain-of-function analysis revealed functional regions at -305/-169 and -168/-93, whose coexistence was required for the induction activity in Arabidopsis roots. Multiple IDE-like sequences were distributed in the IDS3 promoter and were especially abundant within the functional region at -305/-169. A sequence moderately homologous to that of IDE1 was also present within the -168/-93 region. These IDE-like sequences would be the first candidates for the functional iron-deficiency-responsive elements in the IDS3 promoter.  相似文献   

18.
Abscisic acid induces the alcohol dehydrogenase gene in Arabidopsis.   总被引:19,自引:4,他引:15       下载免费PDF全文
Exogenous abscisic acid (ABA) induced the alcohol dehydrogenase gene (Adh) in Arabidopsis roots. Both the G-box-1 element and the GT/GC motifs (anaerobic response element) were required for Adh inducibility. Measurement of endogenous ABA levels during stress treatment showed that ABA levels increased during dehydration treatment but not following exposure to either hypoxia or low temperature. Arabidopsis ABA mutants (aba1 and abi2) displayed reduced Adh mRNA induction levels following either dehydration treatment or exogenous application of ABA. Low-oxygen response was slightly increased in the aba1 mutant but was unchanged in abi2. Low-temperature response was unaffected in both aba1 and abi2 mutants. Our results indicate that, although induction of the Adh gene by ABA, dehydration, and low temperature required the same cis-acting promoter elements, their regulatory pathways were at least partially separated in a combined dehydration/ABA pathway and an ABA-independent low-temperature pathway. These pathways were in turn independent of a third signal transduction pathway leading to low-oxygen response, which did not involve either ABA or the G-box-1 promoter element.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号