首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Lactobacillus helveticus 481 produces a 37-kDa bacteriocin called helveticin J. Libraries of chromosomal DNA from L. helveticus were prepared in lambda gt11 and probed for phage-producing fusion proteins that could react with polyclonal helveticin J antibody. Two recombinant phage, HJ1 and HJ4, containing homologous inserts of 350 and 600 bp, respectively, produced proteins that reacted with antibody. These two phage clones specifically hybridized to L. helveticus 481 total genomic DNA but not to DNA from strains that did not produce helveticin J or strains producing unrelated bacteriocins. HJ1 and HJ4 lysogens produced beta-galactosidase fusion proteins that shared similar epitopes with each other and helveticin J. The intact helveticin J gene (hlv) was isolated by screening a library of L. helveticus chromosomal DNA in lambda EMBL3 with the insert DNA from phage HJ4 as a probe. The DNA sequence of a contiguous 3,364-bp region was determined. Two complete open reading frames (ORF), designated ORF2 and ORF3, were identified within the sequenced fragment. The 3' end of another open reading frame, ORF1, was located upstream of ORF2. A noncoding region and a putative promoter were located between ORF1 and ORF2. ORF2 could encode an 11,808-Da protein. The L. helveticus DNA inserts of the HJ1 and HJ4 clones reside within ORF3, which begins 30 bp downstream from the termination codon of ORF2. ORF3 could encode a 37,511-Da protein. Downstream from ORF3, the 5' end of another ORF (ORF4) was found. A Bg/II fragment containing ORF2 and ORF3 was cloned into pGK12, and the recombinant plasmid, pTRK135, was transformed into Lactobacillus acidophilus via electroporation. Transformants carrying pTRK135 produced a bacteriocin that was heat labile and exhibited an acitivity spectrum that was the same as that of helveticin J.  相似文献   

6.
A part of the tRNALeu (UAA) gene containing a 240-nucleotidegroup I intron was amplified by PCR from cyanobacterium SynechococcusPCC 6301 genomic DNA. The pre-tRNA synthesized from the clonedPCR product was efficiently self-spliced in vitro under physiologicalconditions. The gene encoding the tRNALeu (UAA), trnL-UAA, wasisolated from a Synechococcus PCC 6301 genomic library and thenucleotide sequence of a 2,167-bp portion was determined. ThetrnL-UAA consists of a 34-bp 5' exon, a 240-bp group I intronand a 50-bp 3' exon. In addition, three open reading frames(ORF1, ORF2 and ORF3) were found in the 5' and 3' flanking regionsof trnL-UAA. The predicted protein sequence of ORF3, which islocated 74-bp upstream from trnL-UAA on the opposite strand,shows 66.2% amino acid identity to that of the SynechocystisPCC 6803 gene encoding subunit L of NADH dehydrogenase (ndhL).  相似文献   

7.
8.
9.
10.
11.
A transposon, designated Tn5469, was isolated from mutant strain FdR1 of the filamentous cyanobacterium Fremyella diplosiphon following its insertion into the rcaC gene. Tn5469 is a 4,904-bp noncomposite transposon with 25-bp near-perfect terminal inverted repeats and has three tandemly arranged, slightly overlapping potential open reading frames (ORFs) encoding proteins of 104.6 kDa (909 residues), 42.5 kDa (375 residues), and 31.9 kDa (272 residues). Insertion of Tn5469 into the rcaC gene in strain FdR1 generated a duplicate 5-bp target sequence. On the basis of amino acid sequence identifies, the largest ORF, designated tnpA, is predicted to encode a composite transposase protein. A 230-residue domain near the amino terminus of the TnpA protein has 15.4% amino acid sequence identity with a corresponding domain for the putative transposase encoded by Lactococcus lactis insertion sequence S1 (ISS1). In addition, the sequence for the carboxyl-terminal 600 residues of the TnpA protein is 20.0% identical to that for the TniA transposase encoded by Tn5090 on Klebsiella aerogenes plasmid R751. The TnpA and TniA proteins contain the D,D(35)E motif characteristic of a recently defined superfamily consisting of bacterial transposases and integrase proteins of eukaryotic retroelements and retrotransposons. The two remaining ORFs on Tn5469 encode proteins of unknown function. Southern blot analysis showed that wild-type F. diplosiphon harbors five genomic copies of Tn5469. In comparison, mutant strain FdR1 harbors an extra genomic copy of Tn5469 which was localized to the inactivated rcaC gene. Among five morphologically distinct cyanobacterial strains examined, none was found to contain genomic sequences homologous to Tn5469.  相似文献   

12.
13.
14.
Complete sequence and genomic analysis of murine gammaherpesvirus 68.   总被引:32,自引:13,他引:19       下载免费PDF全文
Murine gammaherpesvirus 68 (gammaHV68) infects mice, thus providing a tractable small-animal model for analysis of the acute and chronic pathogenesis of gammaherpesviruses. To facilitate molecular analysis of gammaHV68 pathogenesis, we have sequenced the gammaHV68 genome. The genome contains 118,237 bp of unique sequence flanked by multiple copies of a 1,213-bp terminal repeat. The GC content of the unique portion of the genome is 46%, while the GC content of the terminal repeat is 78%. The unique portion of the genome is estimated to encode at least 80 genes and is largely colinear with the genomes of Kaposi's sarcoma herpesvirus (KSHV; also known as human herpesvirus 8), herpesvirus saimiri (HVS), and Epstein-Barr virus (EBV). We detected 63 open reading frames (ORFs) homologous to HVS and KSHV ORFs and used the HVS/KSHV numbering system to designate these ORFs. gammaHV68 shares with HVS and KSHV ORFs homologous to a complement regulatory protein (ORF 4), a D-type cyclin (ORF 72), and a G-protein-coupled receptor with close homology to the interleukin-8 receptor (ORF 74). One ORF (K3) was identified in gammaHV68 as homologous to both ORFs K3 and K5 of KSHV and contains a domain found in a bovine herpesvirus 4 major immediate-early protein. We also detected 16 methionine-initiated ORFs predicted to encode proteins at least 100 amino acids in length that are unique to gammaHV68 (ORFs M1 to 14). ORF M1 has striking homology to poxvirus serpins, while ORF M11 encodes a potential homolog of Bcl-2-like molecules encoded by other gammaherpesviruses (gene 16 of HVS and KSHV and the BHRF1 gene of EBV). In addition, clustered at the left end of the unique region are eight sequences with significant homology to bacterial tRNAs. The unique region of the genome contains two internal repeats: a 40-bp repeat located between bp 26778 and 28191 in the genome and a 100-bp repeat located between bp 98981 and 101170. Analysis of the gammaHV68, HVS, EBV, and KSHV genomes demonstrated that each of these viruses have large colinear gene blocks interspersed by regions containing virus-specific ORFs. Interestingly, genes associated with EBV cell tropism, latency, and transformation are all contained within these regions encoding virus-specific genes. This finding suggests that pathogenesis-associated genes of gammaherpesviruses, including gammaHV68, may be contained in similarly positioned genome regions. The availability of the gammaHV68 genomic sequence will facilitate analysis of critical issues in gammaherpesvirus biology via integration of molecular and pathogenetic studies in a small-animal model.  相似文献   

15.
16.
17.
The Pseudomonas aeruginosa protein PtxS negatively regulates its own synthesis by binding to the upstream region of its gene. We have recently identified a 14 bp palindromic sequence within the ptxS upstream region as the PtxS operator site (OP1). In this study, we searched the P. aeruginosa genomic sequence to determine whether this 14 bp sequence exists in other regions of the P. aeruginosa chromosome. Another PtxS operator site (OP2) was located 47 bp downstream of ptxS. DNA gel shift experiments confirmed that PtxS specifically binds to a 520 bp fragment that carries OP2. The DNA segment 3' of OP2 contains four open reading frames (ORF1-ORF4), which code for 29, 32, 48 and 35 kDa proteins respectively. The molecular weight of the products of ORFs 2 and 3 were confirmed by T7 expression experiments. Computer analyses suggest that ORF2 encodes an ATP-dependent kinase; ORF3, a transporter; and ORF4, a dehydrogenase. The predicted product of ORF1 showed no homology to previously identified proteins and contains all the conserved amino acids within the aldose 1-epimerase protein motif. Examination of the ptxs-ORF1 intergenic region (using promoter fusion experiments) showed that no potential promoter exists. An isogenic mutant defective in ORF1 was constructed in the P. aeruginosa strain PAO1. In contrast to its parent strain, the mutant failed to grow on a minimal medium in which 2-ketogluconate was the sole carbon source. Similarly, a previously constructed ptxS isogenic mutant of PAO1 did not grow in a minimal medium containing 2-ketogluconate as the sole carbon source. Furthermore, a plasmid carrying a fragment that contains ptxS and ORFs 1-4 complemented the defect of the previously described P. aeruginosa 2-ketogluconate-negative mutant. In the presence of 10 mM 2-ketogluconate, the in vitro binding of PtxS to a DNA fragment that carries either OP1 or OP2 was inhibited. These results suggest that: (i) ptxS together with the other four ORFs constitute the 2-ketogluconate utilization operon (kgu) in P. aeruginosa. Therefore, ORFs 1-4 were designated kguE, kguK, kguT and kguD respectively. (ii) PtxS regulates the expression of the kgu operon by binding to two operators (OP1 and OP2) within the operon; and (iii) 2-ketogluconate is the molecular inducer of the kgu operon or the molecular effector of PtxS.  相似文献   

18.
Screening of a genomic library with an antiserum raised against whole Lactobacillus fermentum BR11 cells identified a clone expressing an immunoreactive 37-kDa protein. Analysis of the 3010-bp DNA insert contained within the clone revealed four open reading frames (ORFs). One ORF encodes LysA, a 303 amino acid protein which has up to 35% identity with putative endolysins from prophages Lj928 and Lj965 from Lactobacillus johnsonii and Lp1 and Lp2 from Lactobacillus plantarum as well as with the endolysin of Lactobacillus gasseri bacteriophage Phiadh. The immunoreactive protein was shown to be encoded by a truncated ORF downstream of lysA which has similarity to glutamyl-tRNA synthetases. The N-terminus of LysA has sequence similarity with N-acetylmuramidase catalytic domains while the C-terminus has sequence similarity with putative cell envelope binding bacterial SH3b domains. C-terminal bacterial SH3b domains were identified in the majority of Lactobacillus bacteriophage endolysins. LysA was expressed in Escherichia coli and unusually was found to have a broad bacteriolytic activity range with activity against a number of different Lactobacillus species and against Lactococcus lactis, streptococci and Staphylococcus aureus. It was found that LysA is 2 and 8000 times more active against L. fermentum than L. lactis and Streptococcus pyogenes, respectively.  相似文献   

19.
Song JY  Choi SH  Byun EY  Lee SG  Park YH  Park SG  Lee SK  Kim KM  Park JU  Kang HL  Baik SC  Lee WK  Cho MJ  Youn HS  Ko GH  Bae DW  Rhee KH 《Plasmid》2003,50(2):145-151
The nucleotide sequence of a 3955-bp Helicobacter pylori plasmid, pHP51 was determined, and two open reading frames, ORF1 and ORF2, were identified. The deduced amino acid sequence of ORF1 was highly conserved (87-89%) among plasmid replication initiation proteins, RepBs. The function of ORF2 was not assigned because it lacked known functional domains or sequence similarity with other known proteins, although it had a HPFXXGNG motif that was also found in the cAMP-induced filamentation (fic) gene. Three kinds of repeats were present on the plasmid outside of the ORFs, including the R1 and R2 repeats that are common in H. pylori plasmids. One 100-bp sequence detected in the noncoding region of pHP51 was highly similar to the genomic sequence of H. pylori 26695.  相似文献   

20.
Integrated human papillomavirus type 16 (HPV16) sequences were cloned from a cervical carcinoma and analyzed by restriction mapping and nucleotide sequencing. The viral integration sites were mapped within the E1 and E2 open reading frames (ORFs). The E4 and E5 ORFs were entirely deleted. An internal deletion of 376 base pairs (bp) was found disrupting the L1 and L2 ORFs. Sequencing analysis showed that an AGATGT/ACATCT inverted repeat marked the deletion junction with two flanking direct repeats 14 and 8 bp in length. A 1,330-bp sequence duplication containing the long control region (LCR) and the E6 and E7 ORFs was also found. The duplication junction was formed by two 24-bp direct repeats with 79% (19 of 24) homology located within the LCR and the E2 ORF of the prototype viral genome, respectively. This observation leads us to propose that the initial viral integration involved an HPV16 dimer in which the direct repeats in tandem units recombined, resulting in reiteration of only a portion of the original duplication. A guanosine insertion between nucleotides 1137 and 1138 created a continuous E1 ORF which was previously shown to be disrupted. Results from this study indicate that sequence reiteration and internal deletion in the integrated, and possibly in the episomal, HPV16 genome are influenced by specific nucleotide sequences in the viral genome. Moreover, reiteration of the LCR/E6/E7 sequences further supports the hypothesis that the E6/E7 ORFs may code for oncogenic proteins and that regulatory signals in the LCR may play a role in cellular transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号