首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Streptococcus suis serotype 2 (SS2) is an emerging zoonotic agent responsible for a number of infections in pigs and humans. Pili have been proposed as virulence factors in Gram-positive bacteria. However, due to the abolition of pili production, the function of the srtBCD pilus cluster, especially the truncated major pilin subunit Sbp2 (Sbp2′, Sbp2″), has not been explored. In this study, isogenic mutants (Δsbp2′, Δsbp2″) were constructed by homologous replacement in SS2 strain P1/7. Deletion of sbp2′ attenuated the virulence in a zebrafish model as shown by more than an eightfold increase in the LD50 of Δsbp2′, compared with that of the parent strain. In addition, the adhesion of Δsbp2′ to HEp-2 cell monolayers decreased significantly. Compared with the parent strain, no obvious differences in virulence and adherence efficiency were observed for Δsbp2″. Our data suggest that Sbp2′ could be involved in SS2 pathogenesis despite absence of its pilus shaft.  相似文献   

2.
Gram-positive pili are composed of covalently bound pilin subunits whose assembly is mediated via a pilus-specific sortase(s). Major subunits constitute the pilus backbone and are therefore essential for pilus formation. Minor subunits are also incorporated into the pilus, but they are considered to be dispensable for backbone formation. The srtG cluster is one of the putative pilus gene clusters identified in the major swine pathogen Streptococcus suis. It consists of one sortase gene (srtG) and two putative pilin subunit genes (sgp1 and sgp2). In this study, by constructing mutants for each of the genes in the cluster and by both immunoblotting and immunogold electron microscopic analysis with antibodies against Sgp1 and Sgp2, we found that the srtG cluster mediates the expression of pilus-like structures in S. suis strain 89/1591. In this pilus, Sgp1 forms the backbone, whereas Sgp2 is incorporated as the minor subunit. In accordance with the current model of pilus assembly by Gram-positive organisms, the major subunit Sgp1 was indispensable for backbone formation and the cognate sortase SrtG mediated the polymerization of both subunits. However, unlike other well-characterized Gram-positive bacterial pili, the minor subunit Sgp2 was required for polymerization of the major subunit Sgp1. Because Sgp2 homologues are encoded in several other Gram-positive bacterial pilus gene clusters, in some types of pili, minor pilin subunits may contribute to backbone formation by a novel mechanism.  相似文献   

3.
The genome of Lactococcus lactis strain IL1403 harbors a putative pilus biogenesis cluster consisting of a sortase C gene flanked by 3 LPxTG protein encoding genes (yhgD, yhgE, and yhhB), called here pil. However, pili were not detected under standard growth conditions. Over-expression of the pil operon resulted in production and display of pili on the surface of lactococci. Functional analysis of the pilus biogenesis machinery indicated that the pilus shaft is formed by oligomers of the YhgE pilin, that the pilus cap is formed by the YhgD pilin and that YhhB is the basal pilin allowing the tethering of the pilus fibers to the cell wall. Oligomerization of pilin subunits was catalyzed by sortase C while anchoring of pili to the cell wall was mediated by sortase A. Piliated L. lactis cells exhibited an auto-aggregation phenotype in liquid cultures, which was attributed to the polymerization of major pilin, YhgE. The piliated lactococci formed thicker, more aerial biofilms compared to those produced by non-piliated bacteria. This phenotype was attributed to oligomers of YhgE. This study provides the first dissection of the pilus biogenesis machinery in a non-pathogenic Gram-positive bacterium. Analysis of natural lactococci isolates from clinical and vegetal environments showed pili production under standard growth conditions. The identification of functional pili in lactococci suggests that the changes they promote in aggregation and biofilm formation may be important for the natural lifestyle as well as for applications in which these bacteria are used.  相似文献   

4.
5.
Streptococcus suis (SS) is an important swine pathogen worldwide that occasionally causes serious infections in humans. SS infection may result in meningitis in pigs and humans. The pathogenic mechanisms of SS are poorly understood. Here, we provide the complete genome sequence of S. suis serotype 2 (SS2) strain SC070731 isolated from a pig with meningitis. The chromosome is 2,138,568 bp in length. There are 1933 predicted protein coding sequences and 96.7% (57/59) of the known virulence-associated genes are present in the genome. Strain SC070731 showed similar virulence with SS2 virulent strains HA9801 and ZY05719, but was more virulent than SS2 virulent strain P1/7 in the zebrafish infection model. Comparative genomic analysis revealed a unique 105 K genomic island in strain SC070731 that is absent in seven other sequenced SS2 strains. Further analysis of the 105 K genomic island indicated that it contained a complete nisin locus similar to the nisin U locus in S. uberis strain 42, a prophage similar to S. oralis phage PH10 and several antibiotic resistance genes. Several proteins in the 105 K genomic island, including nisin and RelBE toxin–antitoxin system, contribute to the bacterial fitness and virulence in other pathogenic bacteria. Further investigation of newly identified gene products, including four putative new virulence-associated surface proteins, will improve our understanding of SS pathogenesis.  相似文献   

6.
Streptococcus suis is an encapsulated Gram-positive bacterium, and the leading cause of sepsis and meningitis in young pigs resulting in considerable economic losses in the porcine industry. It is also considered an emerging zoonotic agent. In the environment, both avirulent and virulent strains occur in pigs, and virulent strains appear to cause disease in both humans and pigs. There is a need for a convenient, reliable and standardized animal model to assess S. suis virulence. A zebrafish (Danio rerio) larvae infection model has several advantages, including transparency of larvae, low cost, ease of use and exemption from ethical legislation up to 6 days post fertilization, but has not been previously established as a model for S. suis. Microinjection of different porcine strains of S. suis in zebrafish larvae resulted in highly reproducible dose- and strain-dependent larval death, strongly correlating with presence of the S. suis capsule and to the original virulence of the strain in pigs. Additionally we compared the virulence of the two-component system mutant of ciaRH, which is attenuated for virulence in both mice and pigs in vivo. Infection of larvae with the ΔciaRH strain resulted in significantly higher survival rate compared to infection with the S10 wild-type strain. Our data demonstrate that zebrafish larvae are a rapid and reliable model to assess the virulence of clinical porcine S. suis isolates.  相似文献   

7.
Lactobacillus rhamnosus GG is a human intestinal isolate that has been studied intensively because of its probiotic properties. We have previously shown that L. rhamnosus GG produces proteinaceous pili that earlier had been observed only in Gram-positive pathogens (M. Kankainen et al., Proc. Natl. Acad. Sci. U. S. A. 106:17193-17198, 2009). These pili were found to be encoded by the spaCBA gene cluster, and the pilus-associated SpaC pilin was shown to confer on the cells a mucus-binding ability. In addition to the spaCBA cluster, another putative pilus cluster, spaFED, was predicted from the L. rhamnosus GG genome sequence. Herein, we show that only SpaCBA pili are produced by L. rhamnosus, and we describe a detailed analysis of cell wall-associated and affinity-purified SpaCBA pili by Western blotting and immunogold electron microscopy. Our results indicate that SpaCBA pili are heterotrimeric protrusions with a SpaA subunit as the shaft-forming major pilin. Only a few SpaB subunits could be observed in pilus fibers. Instead, SpaB pilins were found at pilus bases, as assessed by immunogold double labeling of thin sections of cells, suggesting that SpaB is involved in the termination of pilus assembly. The SpaC adhesin was present along the whole pilus length at numbers nearly equaling those of SpaA. The relative amount and uniform distribution of SpaC within pili not only makes it possible to exert both long-distance and intimate contact with host tissue but also provides mucus-binding strength, which explains the prolonged intestinal residency times observed for L. rhamnosus GG compared to that of nonpiliated lactobacilli.  相似文献   

8.
Francisella tularensis, the causative agent of tularaemia, is a highly infectious and virulent intracellular pathogen. There are two main human pathogenic subspecies, Francisella tularensis ssp. tularensis (type A), and Francisella tularensis ssp. holarctica (type B). So far, knowledge regarding key virulence determinants is limited but it is clear that intracellular survival and multiplication is one major virulence strategy of Francisella. In addition, genome sequencing has revealed the presence of genes encoding type IV pili (Tfp). One genomic region encoding three proteins with signatures typical for type IV pilins contained two 120 bp direct repeats. Here we establish that repeat-mediated loss of one of the putative pilin genes in a type B strain results in severe virulence attenuation in mice infected by subcutaneous route. Complementation of the mutant by introduction of the pilin gene in cis resulted in complete restoration of virulence. The level of attenuation was similar to that of the live vaccine strain and this strain was also found to lack the pilin gene as result of a similar deletion event mediated by the direct repeats. Presence of the pilin had no major effect on the ability to interact, survive and multiply inside macrophage-like cell lines. Importantly, the pilin-negative strain was impaired in its ability to spread from the initial site of infection to the spleen. Our findings indicate that this putative pilin is critical for Francisella infections that occur via peripheral routes.  相似文献   

9.
Pili have been shown to play an essential role in the adhesion of Neisseria meningitidis to epithelial cells. However, among piliated strains, both inter- and intrastrain variability exist with respect to their degree of adhesion to epithelial cells in vitro (Virji et al., 1992). This suggests that factors other than the presence of pili per se are involved in this process. The N. meningitidis pilin subunit undergoes extensive antigenic variation. Piliated low- and high-adhesive derivatives of the same N. meningitidis strain were selected and the nucleotide sequence of the pilin gene expressed in each was determined. The highly adhesive derivatives had the same pilin sequence. The alleles encoding the pilin subunit of the low-adhesive derivatives were completely different from the one found in the high-adhesive isolates. Using polyclonal antibodies raised against one hyperadhesive variant, it was confirmed that the low-adhesive piliated derivatives expressed pilin variants antigenically different from the highly adhesive strains. The role of antigenic variation in the adhesive process of N. meningitidis was confirmed by performing allelic exchanges of the pilE locus between low-and high-adhesive isolates. Antigenic variation has been considered a means by which virulent bacteria evade the host immune system. This work provides genetic proof that a bacterial pathogen, N. meningitidis, can use antigenic variation to modulate their degree of virulence.  相似文献   

10.
Streptococcus suis (S. suis) infection is considered to be a major problem in the swine industry worldwide. Based on the capsular type, 33 serotypes of S. suis have been described, with serotype 2 (SS2) being the most frequently isolated from diseased piglets. Little is known, however, about the pathogenesis and virulence factors of S. suis. Research on bacteriophages highlights a new area in S. suis research. A S. suis serotype 2 bacteriophage, designated SMP, has been previously isolated in our laboratory. Here, we selected a lysogenic isolate in which the SMP phage was integrated into the chromosome of strain SS2-4. Compared to the wild-type isolate, the lysogenic strain showed increased mortality in zebra fish. Moreover the sensitivity of the lysogenic strain to lysozyme was seven times higher than that of the wild-type.  相似文献   

11.
12.
13.
【目的】猪链球菌是一种能感染人和猪的人畜共患病病原,并且还可零星感染多种哺乳动物。本试验旨在调查流浪猫携带猪链球菌的情况。【方法】在流浪猫身上分离猪链球菌,经血清凝集实验和PCR检测,鉴定其血清型;经多序列位点分型分析,鉴定其ST型;将所分离的细菌与Gen Bank上已公布的猪链球菌构建16S rRNA的系统发育树,分析该菌株与其他猪链球菌的亲缘关系;药敏纸片法分析其耐药性;小鼠攻毒试验分析其毒力。【结果】本试验在流浪猫身上分离到一株猪链球菌,命名为m70,其血清型为9型。多序列位点分型显示,m70株属于一个新的ST型。与Gen Bank上已公布的猪链球菌16S rRNA进行系统发育树分析,结果显示m70属于一个单独的分支。m70与临床菌株的耐药情况相似,对四环素耐药,对红霉素中介耐药,对氨苄西林敏感。小鼠攻毒试验显示,感染10~8 CFU剂量m70的小鼠,死亡率达到60%–80%(3/5–4/5),3次攻毒试验的平均LD(50)为5.1×107 CFU;而本实验室保存的猪链球菌强毒株HA9801感染小鼠的平均LD(50)为3.9×107 CFU,两者之间没有显著差异(P〈0.05)。【结论】从流浪猫身上分离得到的猪链球菌m70属于优势血清型,且毒力较强,提示一些流行血清型的猪链球菌强毒株具有从流浪猫传染人的潜在风险。  相似文献   

14.
Streptococcus suis is a major swine pathogen and a zoonotic agent. Serotype 2 strains are the most frequently associated with disease. However, not all serotype 2 lineages are considered virulent. Indeed, sequence type (ST) 28 serotype 2 S. suis strains have been described as a homogeneous group of low virulence. However, ST28 strains are often isolated from diseased swine in some countries, and at least four human ST28 cases have been reported. Here, we used whole-genome sequencing and animal infection models to test the hypothesis that the ST28 lineage comprises strains of different genetic backgrounds and different virulence. We used 50 S. suis ST28 strains isolated in Canada, the United States and Japan from diseased pigs, and one ST28 strain from a human case isolated in Thailand. We report a complex population structure among the 51 ST28 strains. Diversity resulted from variable gene content, recombination events and numerous genome-wide polymorphisms not attributable to recombination. Phylogenetic analysis using core genome single-nucleotide polymorphisms revealed four discrete clades with strong geographic structure, and a fifth clade formed by US, Thai and Japanese strains. When tested in experimental animal models, strains from this latter clade were significantly more virulent than a Canadian ST28 reference strain, and a closely related Canadian strain. Our results highlight the limitations of MLST for both phylogenetic analysis and virulence prediction and raise concerns about the possible emergence of ST28 strains in human clinical cases.  相似文献   

15.
《Gene》1997,192(1):99-108
Pseudomonas aeruginosa (Pa) produces several surface-associated adherence factors or adhesins which promote attachment to epithelial cells and contribute to the virulence of this pathogen. Among them, the type-4 pilus accounts for about 90% of the adherence capability of Pa to human lung pneumocyte A549 cells. Furthermore, it is responsible for more than 90% of the virulence in AB.Y/SnJ mice. Pa type-4 pili display a tip-base differentiation with the adherence function located at the tip of the pilus. All Pa pili prototypes characterized so far contain an intrachain disulfide loop (DSL) of 12 to 17 semi-conserved amino acid residues at the C-terminus of pilin. In Pa, this DSL comprises the epithelial cell-binding domain. Despite little sequence homology, DSL-containing peptides of different pilin prototypes seemingly reveal striking structural similarities. Two β-turns within the loop and the disulfide bridge impose significant structural rigidity on the DSL pilin peptide, suggesting a conformationally conserved binding domain. Insertions of C-terminal pilin peptides with disrupted DSL displayed on the surface of bacterial S-layer mediate the same receptor binding characteristics as pili, indicating that a DSL is not essential in maintaining the functionality of the binding domain. Pa pili bind specifically to the carbohydrate moiety of the glycosphingolipids (GSL) asialo-GM1 and asialo-GM2 and, to a much weaker extent, to lactosyl ceramide and ceramide trihexoside. The disaccharide sequence GalNAcβ(1-4)Gal, common in both asialo-GM1 and asialo-GM2, likely represents the minimal structural receptor motif recognized by the pili. Pa pili also bind to surface-localized proteins of human epithelial cells and other cell types, suggesting that non-sialylated GSL and (glyco)proteins function as receptors of pili. In addition to the major pilus adhesin, exoenzyme S and, as recent studies indicate, flagella, are further protein adhesins of Pa with GSL receptor binding specificities similar to those of pili.  相似文献   

16.
While Streptococcus suis serotype 2 is known to cause severe infections in pigs, it can also be isolated from the tonsils of healthy animals that do not develop infections. We hypothesized that S. suis strains in healthy carrier pigs may have the ability to produce bacteriocins, which may contribute to preventing infections by pathogenic S. suis strains. Two of ten S. suis serotype 2 strains isolated from healthy carrier pigs exhibited antibacterial activity against pathogenic S. suis isolates. The bacteriocin produced by S. suis 3908 was purified to homogeneity using a three-step procedure: ammonium sulfate precipitation, cationic exchange HPLC, and reversed-phase HPLC. The bacteriocin, called suicin 3908, had a low molecular mass; was resistant to heat, pH, and protease treatments; and possessed membrane permeabilization activity. Additive effects were obtained when suicin 3908 was used in combination with penicillin G or amoxicillin. The amino acid sequence of suicin 3908 suggested that it is lantibiotic-related and made it possible to identify a bacteriocin locus in the genome of S. suis D12. The putative gene cluster involved in suicin production by S. suis 3908 was amplified by PCR, and the sequence analysis revealed the presence of nine open reading frames (ORFs), including the structural gene and those required for the modification of amino acids, export, regulation, and immunity. Suicin 3908, which is encoded by the suiA gene, exhibited approximately 50% identity with bovicin HJ50 (Streptococcus bovis), thermophilin 1277 (Streptococcus thermophilus), and macedovicin (Streptococcus macedonicus). Given that S. suis 3908 cannot cause infections in animal models, that it is susceptible to conventional antibiotics, and that it produces a bacteriocin with antibacterial activity against all pathogenic S. suis strains tested, it could potentially be used to prevent infections and to reduce antibiotic use by the swine industry.  相似文献   

17.
Imam S  Chen Z  Roos DS  Pohlschröder M 《PloS one》2011,6(12):e28919

Background

In Gram-negative bacteria, type IV pili (TFP) have long been known to play important roles in such diverse biological phenomena as surface adhesion, motility, and DNA transfer, with significant consequences for pathogenicity. More recently it became apparent that Gram-positive bacteria also express type IV pili; however, little is known about the diversity and abundance of these structures in Gram-positives. Computational tools for automated identification of type IV pilins are not currently available.

Results

To assess TFP diversity in Gram-positive bacteria and facilitate pilin identification, we compiled a comprehensive list of putative Gram-positive pilins encoded by operons containing highly conserved pilus biosynthetic genes (pilB, pilC). A surprisingly large number of species were found to contain multiple TFP operons (pil, com and/or tad). The N-terminal sequences of predicted pilins were exploited to develop PilFind, a rule-based algorithm for genome-wide identification of otherwise poorly conserved type IV pilins in any species, regardless of their association with TFP biosynthetic operons (http://signalfind.org). Using PilFind to scan 53 Gram-positive genomes (encoding >187,000 proteins), we identified 286 candidate pilins, including 214 in operons containing TFP biosynthetic genes (TBG+ operons). Although trained on Gram-positive pilins, PilFind identified 55 of 58 manually curated Gram-negative pilins in TBG+ operons, as well as 53 additional pilin candidates in operons lacking biosynthetic genes in ten species (>38,000 proteins), including 27 of 29 experimentally verified pilins. False positive rates appear to be low, as PilFind predicted only four pilin candidates in eleven bacterial species (>13,000 proteins) lacking TFP biosynthetic genes.

Conclusions

We have shown that Gram-positive bacteria contain a highly diverse set of type IV pili. PilFind can be an invaluable tool to study bacterial cellular processes known to involve type IV pilus-like structures. Its use in combination with other currently available computational tools should improve the accuracy of predicting the subcellular localization of bacterial proteins.  相似文献   

18.

Background  

All four Francisella tularensis subspecies possess gene clusters with potential to express type IV pili (Tfp). These clusters include putative pilin genes, as well as pilB, pilC and pilQ, required for secretion and assembly of Tfp. A hallmark of Tfp is the ability to retract the pilus upon surface contact, a property mediated by the ATPase PilT. Interestingly, out of the two major human pathogenic subspecies only the highly virulent type A strains have a functional pilT gene.  相似文献   

19.
Previous studies have implicated the obligatory requirement for the vir regulon (or “virulon”) of the Ti plasmid for the transfer of oncogenes from Agrobacterium tumefaciens to plant cells. The machinery used in this horizontal gene transfer has been long thought to be a transformation or conjugative delivery system. Based on recent protein sequence comparisons, the proteins encoded by the virB operon are strikingly similar to proteins involved in the synthesis and assembly of conjugative pili such as the conjugative pilus of F plasmid in Escherichia coli. The F pilus is composed of TraA pilin subunits derived from TraA propilin. In the present study, evidence is provided showing that the counterpart of TraA is VirB2, which like TraA propilin is processed into a 7.2-kDa product that comprises the pilus subunit as demonstrated by biochemical and electron microscopic analyses. The processed VirB2 protein is present exocellularly on medium on which induced A. tumefaciens had grown and appears as thin filaments of 10 nm that react specifically to VirB2 antibody. Exocellular VirB2 is produced abundantly at 19°C as compared with 28°C, an observation that parallels the effect of low temperature on the production of vir gene-specific pili observed previously (K. J. Fullner, L. C. Lara, and E. W. Nester, Science 273:1107–1109, 1996). Export of the processed VirB2 requires other virB genes since mutations in these genes cause the loss of VirB2 pilus formation and result in processed VirB2 accumulation in the cell. The presence of exocellular processed VirB2 is directly correlated with the formation of pili, and it appears as the major protein in the purified pilus preparation. The evidence provides a compelling argument for VirB2 as the propilin whose 7.2-kDa processed product is the pilin subunit of the promiscuous conjugative pilus, hereafter called the “T pilus” of A. tumefaciens.  相似文献   

20.
Uropathogenic Escherichia coli frequently express globoside-specific adhesins, shown to mediate binding to uroepithelial cells. For one gene cluster pap, it recently has been demonstrated that globoside binding is not dependent on expression of the pilus subunit gene papA. Instead, two other pap genes papF and papG are specifically required for globoside binding (F. P. Lindberg et al., EMBO J. 3:1167-1173, 1984). By restriction enzyme mapping, DNA hybridization, DNA sequencing, and protein expression in minicells, we show that three gene clusters encoding globoside binding have a very similar structure and gene organization, although they were cloned from different E. coli isolates. Major differences between the adhesin clones were restricted to the central part of the pilin gene (papA) and to one of the two adhesin gene (papG). The three functional units required for biogenesis of globoside-binding pili, i.e., pilin synthesis, pilin export, and pilin assembly, as well as expression of adhesion function, were all trans complementable among the gene clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号