首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mixed microbial cultures (MMC) and waste/surplus substrates, as hardwood spent sulfite liquor, are being used to decrease polyhydroxyalkanoates’ (PHA) production costs. The process involves two or three steps, being the selection step a crucial one. For the industrial implementation of this strategy, reactor stability in terms of both performance and microbial community presence has to be considered. A long-term operation of a sequencing batch reactor under feast/famine conditions was performed along with microbial community identification/quantification using FISH and DGGE. The community was found to be extremely dynamic, dominated by Alphaproteobacteria, with Paracoccus and Rhodobacter present, both PHA-storing microorganisms. 16S rRNA gene clone library further revealed that side populations’ non-PHA accumulators were able to strive (Agrobacterium, Flavobacteria, and Brachymonas). Nevertheless, reactor performance in terms of PHA storage was stable during operation time. The monitoring of the MMC population evolution provided information on the relation between community structure and process operation.  相似文献   

2.
In this study we developed a segregated flux balance analysis (FBA) method to calculate metabolic flux distributions of the individual populations present in a mixed microbial culture (MMC). Population specific flux data constraints were derived from the raw data typically obtained by the fluorescence in situ hybridization (FISH) and microautoradiography (MAR)‐FISH techniques. This method was applied to study the metabolic heterogeneity of a MMC that produces polyhydroxyalkanoates (PHA) from fermented sugar cane molasses. Three populations were identified by FISH, namely Paracoccus sp., Thauera sp., and Azoarcus sp. The segregated FBA method predicts a flux distribution for each of the identified populations. The method is shown to predict with high accuracy the average PHA storage flux and the respective monomeric composition for 16 independent experiments. Moreover, flux predictions by segregated FBA were slightly better than those obtained by nonsegregated FBA, and also highly concordant with metabolic flux analysis (MFA) estimated fluxes. The segregated FBA method can be of high value to assess metabolic heterogeneity in MMC systems and to derive more efficient eco‐engineering strategies. For the case of PHA‐producing MMC considered in this work, it becomes apparent that the PHA average monomeric composition might be controlled not only by the volatile fatty acids (VFA) feeding profile but also by the population composition present in the MMC. Biotechnol. Bioeng. 2013; 110: 2267–2276. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
4.
Factors that facilitate the onset of black band disease (BBD) of corals remain elusive, though anoxic conditions under the complex microbial mat and production of sulfide are implicated in necrosis of underlying coral tissues. This study investigated the diversity and quantitative shifts of sulfate-reducing bacterial (SRB) populations during the onset of BBD using real-time PCR (RT-PCR) and cloning approaches targeting the dissimilatory (bi)sulfite reductase (dsrA) gene. A quantitativePCR (qPCR) assay targeting the 16S rRNA gene also provided an estimate of total bacteria, and allowed the relative percentage of SRB within the lesions to be determined. Three Montipora sp. coral colonies identified with lesions previously termed cyanobacterial patches (CPs) (comprising microbial communities unlike those of BBD lesions), were tagged and followed through time as CP developed into BBD. The dsrA-targeted qPCR detected few copies of the gene in the CP samples (<65 per ng DNA), though copy numbers increased in BBD lesions (>2500 per ng DNA). SRB in CP samples were less than 1% of the bacterial population, though represented up to 7.5% of the BBD population. Clone libraries also demonstrated a shift in the dominant dsrA sequences as lesions shifted from CP into BBD. Results from this study confirm that SRB increase during the onset of BBD, likely increasing sulfide concentrations at the base of the microbial mat and facilitating the pathogenesis of BBD.  相似文献   

5.
The coupling of growth of the o-demethylating bacterium, Clostridium methoxybenzovorans SR3, with a nitrate-reducing bacterium able to degrade aromatic compounds, Thauera sp. Cin3,4, allowed complete mineralization of poorly oxidizable methoxylated aromatic compounds such as vanillate, isovanillate, vanilline, anisate, ferulate and veratrate. C. methoxybenzovorans o-demethylated these aromatic compounds to their corresponding hydroxylated derivatives and fermented the side chains to acetate and butyrate. The hydroxylated compounds and the fermentation end-products in the C. methoxybenzovorans spent growth medium were then completely metabolized to CO2 on inoculation with the Thauera strain. Kinetic studies with veratrate indicated that C. methoxybenzovorans initially o-demethylated the substrate to vanillate and then further to protocatechuate together with the production of acetate and butyrate from the demethylated side chains. Protocatechuate, acetate and butyrate were then utilized as a carbon source by the Thauera strain aerobically or anaerobically in the presence of nitrate. The results therefore suggest that mono- or dimethoxylated aromatic compounds can be completely mineralized by coupling the growth of a fermentative bacterium with a nitrate-reducing bacterium, and a metabolic pathway for this is proposed.  相似文献   

6.
The present study aimed to the investigation of the feasibility of the combined biohydrogen and biopolymers production from OMW (Olive oil Mill Wastewater), using a two stage system. H2 and volatile fatty acids (VFAs) were produced via anaerobic fermentation and subsequently the acidified wastewater was used as substrate for aerobic biodegradable polymer production. Two different bioreactors, one of CSTR type and a SBR were used for the anaerobic and the aerobic process respectively. The anaerobic reactor was operated at different hydraulic retention times (HRTs) with OMW, diluted 1:4 (v/v) with tap water, as feed. The main VFAs produced were acetate, butyrate and propionate, in different ratios depending on the HRT. Valerate, isovalerate and isobutyrate were also detected in small quantities. Selective effluents of the acidogenic/hydrogen producing reactor were subsequently used as feed for the aerobic reactor. The aerobic reactor was inoculated with an enriched PHAs producing bacteria culture, and was operated in sequential cycles of nitrogen offer (growth phase) and nitrogen limitation (PHAs accumulation phase). The operational program of the SBR was determined according to the results from batch test, and its performance was evaluated for a period of 100 days. During the accumulation phase butyrate was consumed preferably, indicating that the dominant PHA produced is polyhydroxybutyrate. The higher yield of PHAs observed was 8.94% (w/w) of dry biomass weight.  相似文献   

7.
内蒙古自治区二连盆地、海拉尔盆地是我国重要的煤层气产区,其中生物成因煤层气是煤层气的重要来源,但复杂物质转化产甲烷相关微生物群落结构及功能尚不清楚。【目的】研究煤层水中的微生物代谢挥发性脂肪酸产甲烷的生理特征及群落特征。【方法】以内蒙古自治区二连盆地和海拉尔盆地的四口煤层气井水作为接种物,分别添加乙酸钠、丙酸钠和丁酸钠厌氧培养;定期监测挥发性脂肪酸降解过程中甲烷和底物的变化趋势,应用高通量测序技术,分析原始煤层气井水及稳定期产甲烷菌液的微生物群落结构。【结果】除海拉尔盆地H303煤层气井微生物不能代谢丙酸外,其他样品均具备代谢乙酸、丙酸和丁酸产生甲烷的能力,其生理生态参数存在显著差异,产甲烷延滞期依次是乙酸丁酸丙酸;最大比产甲烷速率和底物转化效率依次是丙酸乙酸丁酸。富集培养后,古菌群落结构与煤层气井水的来源显著相关,二连盆地优势古菌为氢营养型产甲烷古菌Methanocalculus (相对丰度13.5%–63.4%)和复合营养型产甲烷古菌Methanosarcina (7.9%–51.3%),海拉尔盆地的优势古菌为氢营养型产甲烷古菌Methanobacterium(24.3%–57.4%)和复合营养型产甲烷古菌Methanosarcina(29.6%–66.5%);细菌群落则与底物类型显著相关,硫酸盐还原菌Desulfovibrio(12.0%–41.0%)、互营丙酸氧化菌Syntrophobacter(39.6%–75.5%)和互营丁酸菌Syntrophomonas(8.5%–21.9%)分别在乙酸钠、丙酸钠和丁酸钠处理组显著富集。【结论】煤层气井水微生物可降解挥发性脂肪酸(乙酸、丙酸和丁酸)并具有产甲烷潜力;乙酸可能被古菌直接代谢产甲烷,而丙酸和丁酸通过互营细菌和产甲烷古菌代谢产甲烷。Desulfovibrio、Syntrophobacter和Syntrophomonas分别在乙酸、丙酸和丁酸代谢过程中发挥了重要作用。这些结果为煤层气生物强化开采提供了一定的微生物资源基础。  相似文献   

8.
9.
Acarbose inhibits starch digestion in the human small intestine. This increases the amount of starch available for microbial fermentation to acetate, propionate, and butyrate in the colon. Relatively large amounts of butyrate are produced from starch by colonic microbes. Colonic epithelial cells use butyrate as an energy source, and butyrate causes the differentiation of colon cancer cells. In this study we investigated whether colonic fermentation pathways changed during treatment with acarbose. We examined fermentations by fecal suspensions obtained from subjects who participated in an acarbose-placebo crossover trial. After incubation with [1-13C]glucose and 12CO2 or with unlabeled glucose and 13CO2, the distribution of 13C in product C atoms was determined by nuclear magnetic resonance spectrometry and gas chromatography-mass spectrometry. Regardless of the treatment, acetate, propionate, and butyrate were produced from pyruvate formed by the Embden-Meyerhof-Parnas pathway. Considerable amounts of acetate were also formed by the reduction of CO2. Butyrate formation from glucose increased and propionate formation decreased with acarbose treatment. Concomitantly, the amounts of CO2 reduced to acetate were 30% of the total acetate in untreated subjects and 17% of the total acetate in the treated subjects. The acetate, propionate, and butyrate concentrations were 57, 20, and 23% of the total final concentrations, respectively, for the untreated subjects and 57, 13, and 30% of the total final concentrations, respectively, for the treated subjects.  相似文献   

10.
The microbial capacity to degrade simple organic compounds with quaternary carbon atoms was demonstrated by enrichment and isolation of five denitrifying strains on dimethylmalonate as the sole electron donor and carbon source. Quantitative growth experiments showed a complete mineralization of dimethylmalonate. According to phylogenetic analysis of the complete 16S rRNA genes, two strains isolated from activated sewage sludge were related to the genus Paracoccus within the α-Proteobacteria (98.0 and 98.2% 16S rRNA gene similarity to Paracoccus denitrificansT), and three strains isolated from freshwater ditches were affiliated with the β-Proteobacteria (97.4 and 98.3% 16S rRNA gene similarity to Herbaspirillum seropedicaeT and Acidovorax facilisT, respectively). Most-probable-number determinations for denitrifying populations in sewage sludge yielded 4.6 × 104 dimethylmalonate-utilizing cells ml−1, representing up to 0.4% of the total culturable nitrate-reducing population.  相似文献   

11.
Chain elongation is a growth-dependent anaerobic metabolism that combines acetate and ethanol into butyrate, hexanoate, and octanoate. While the model microorganism for chain elongation, Clostridium kluyveri, was isolated from a saturated soil sample in the 1940s, chain elongation has remained unexplored in soil environments. During soil fermentative events, simple carboxylates and alcohols can transiently accumulate up to low mM concentrations, suggesting in situ possibility of microbial chain elongation. Here, we examined the occurrence and microbial ecology of chain elongation in four soil types in microcosms and enrichments amended with chain elongation substrates. All soils showed evidence of chain elongation activity with several days of incubation at high (100 mM) and environmentally relevant (2.5 mM) concentrations of acetate and ethanol. Three soils showed substantial activity in soil microcosms with high substrate concentrations, converting 58% or more of the added carbon as acetate and ethanol to butyrate, butanol, and hexanoate. Semi-batch enrichment yielded hexanoate and octanoate as the most elongated products and microbial communities predominated by C. kluyveri and other Firmicutes genera not known to undergo chain elongation. Collectively, these results strongly suggest a niche for chain elongation in anaerobic soils that should not be overlooked in soil microbial ecology studies.Subject terms: Soil microbiology, Microbial ecology  相似文献   

12.
Subtropical oceanic gyres are the most extensive biomes on Earth where SAR11 and Prochlorococcus bacterioplankton numerically dominate the surface waters depleted in inorganic macronutrients as well as in dissolved organic matter. In such nutrient poor conditions bacterioplankton could become photoheterotrophic, that is, potentially enhance uptake of scarce organic molecules using the available solar radiation to energise appropriate transport systems. Here, we assessed the photoheterotrophy of the key microbial taxa in the North Atlantic oligotrophic gyre and adjacent regions using 33P-ATP, 3H-ATP and 35S-methionine tracers. Light-stimulated uptake of these substrates was assessed in two dominant bacterioplankton groups discriminated by flow cytometric sorting of tracer-labelled cells and identified using catalysed reporter deposition fluorescence in situ hybridisation. One group of cells, encompassing 48% of all bacterioplankton, were identified as members of the SAR11 clade, whereas the other group (24% of all bacterioplankton) was Prochlorococcus. When exposed to light, SAR11 cells took 31% more ATP and 32% more methionine, whereas the Prochlorococcus cells took 33% more ATP and 34% more methionine. Other bacterioplankton did not demonstrate light stimulation. Thus, the SAR11 and Prochlorococcus groups, with distinctly different light-harvesting mechanisms, used light equally to enhance, by approximately one-third, the uptake of different types of organic molecules. Our findings indicate the significance of light-driven uptake of essential organic nutrients by the dominant bacterioplankton groups in the surface waters of one of the less productive, vast regions of the world''s oceans—the oligotrophic North Atlantic subtropical gyre.  相似文献   

13.
A sequential batch reactor (SBR) and a membrane bioreactor (MBR) were inoculated with the same sludge from a municipal wastewater treatment plant, supplemented with ammonium, and operated in parallel for 84 days. It was investigated whether the functional stability of the nitrification process corresponded with a static ammonia-oxidizing bacterial (AOB) community. The SBR provided complete nitrification during nearly the whole experimental run, whereas the MBR showed a buildup of 0 to 2 mg nitrite-N liter−1 from day 45 until day 84. Based on the denaturing gradient gel electrophoresis profiles, two novel approaches were introduced to characterize and quantify the community dynamics and interspecies abundance ratios: (i) the rate of change [Δt(week)] parameter and (ii) the Pareto-Lorenz curve distribution pattern. During the whole sampling period, it was observed that neither of the reactor types maintained a static microbial community and that the SBR evolved more gradually than the MBR, particularly with respect to AOB (i.e., average weekly community changes of 12.6% ± 5.2% for the SBR and 24.6% ± 14.3% for the MBR). Based on the Pareto-Lorenz curves, it was observed that only a small group of AOB species played a numerically dominant role in the nitritation of both reactors, and this was true especially for the MBR. The remaining less dominant species were speculated to constitute a reserve of AOB which can proliferate to replace the dominant species. The value of these parameters in terms of tools to assist the operation of activated-sludge systems is discussed.  相似文献   

14.
Functional consortium for denitrifying sulfide removal process   总被引:1,自引:0,他引:1  
Denitrifying sulfide removal (DSR) process simultaneously converts sulfide, nitrate, and chemical oxygen demand from industrial wastewaters to elemental sulfur, nitrogen gas, and carbon dioxide, respectively. This investigation utilizes a dilution-to-extinction approach at 10−2 to 10−6 dilutions to elucidate the correlation between the composition of the microbial community and the DSR performance. In the original suspension and in 10−2 dilution, the strains Stenotrophomonas sp., Thauera sp., and Azoarcus sp. are the heterotrophic denitrifiers and the strains Paracoccus sp. and Pseudomonas sp. are the sulfide-oxidizing denitrifers. The 10−4 dilution is identified as the functional consortium for the present DSR system, which comprises two functional strains, Stenotrophomonas sp. strain Paracoccus sp. At 10−6 dilution, all DSR performance was lost. The functions of the constituent cells in the DSR granules were discussed based on data obtained using the dilution-to-extinction approach.  相似文献   

15.
Sirex noctilio is an invasive wood-feeding wasp that threatens the world''s commercial and natural pine forests. Successful tree colonization by this insect is contingent on the decline of host defenses and the ability to utilize the woody substrate as a source of energy. We explored its potential association with bacterial symbionts that may assist in nutrient acquisition via plant biomass deconstruction using growth assays, culture-dependent and -independent analysis of bacterial frequency of association and whole-genome analysis. We identified Streptomyces and γ-Proteobacteria that were each associated with 94% and 88% of wasps, respectively. Streptomyces isolates grew on all three cellulose substrates tested and across a range of pH 5.6 to 9. On the basis of whole-genome sequencing, three Streptomyces isolates have some of the highest proportions of genes predicted to encode for carbohydrate-active enzymes (CAZyme) of sequenced Actinobacteria. γ-Proteobacteria isolates grew on a cellulose derivative and a structurally diverse substrate, ammonia fiber explosion-treated corn stover, but not on microcrystalline cellulose. Analysis of the genome of a Pantoea isolate detected genes putatively encoding for CAZymes, the majority predicted to be active on hemicellulose and more simple sugars. We propose that a consortium of microorganisms, including the described bacteria and the fungal symbiont Amylostereum areolatum, has complementary functions for degrading woody substrates and that such degradation may assist in nutrient acquisition by S. noctilio, thus contributing to its ability to be established in forested habitats worldwide.  相似文献   

16.
Highly acidic (pH 0–1) biofilms, known as ‘snottites'', form on the walls and ceilings of hydrogen sulfide-rich caves. We investigated the population structure, physiology and biogeochemistry of these biofilms using metagenomics, rRNA methods and lipid geochemistry. Snottites from the Frasassi cave system (Italy) are dominated (>70% of cells) by Acidithiobacillus thiooxidans, with smaller populations including an archaeon in the uncultivated ‘G-plasma'' clade of Thermoplasmatales (>15%) and a bacterium in the Acidimicrobiaceae family (>5%). Based on metagenomic evidence, the Acidithiobacillus population is autotrophic (ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), carboxysomes) and oxidizes sulfur by the sulfide–quinone reductase and sox pathways. No reads matching nitrogen fixation genes were detected in the metagenome, whereas multiple matches to nitrogen assimilation functions are present, consistent with geochemical evidence, that fixed nitrogen is available in the snottite environment to support autotrophic growth. Evidence for adaptations to extreme acidity include Acidithiobacillus sequences for cation transporters and hopanoid synthesis, and direct measurements of hopanoid membrane lipids. Based on combined metagenomic, molecular and geochemical evidence, we suggest that Acidithiobacillus is the snottite architect and main primary producer, and that snottite morphology and distributions in the cave environment are directly related to the supply of C, N and energy substrates from the cave atmosphere.  相似文献   

17.
Yang Q  Zhang W  Zhang H  Li Y  Li C 《Bioresource technology》2011,102(4):3790-3798
In this study, an alkali bacterial consortium was obtained by enrichment cultivation and was used to treat printing and dyeing wastewater (PDW, pH 11-12). The treatment effects and dynamic changes were evaluated in a biocontact oxidation reactor (BOR) and a sequencing batch reactor (SBR). During 3 months of continuous operation, the two bioreactors had similar treatment efficiencies (polyvinyl alcohol, PVA, 74.5-81.3%; COD, 73.5-77.4%; 2.15 pH decreases). Molecular biological analysis indicated that the microbial communities underwent dramatic changes during the operation, in which the SBR was superior to the BOR in retaining the alkali bacteria at the start-up stage, however, the BOR seemed to be more advantageous when the frequently changing influents were considered. The bacterial communities in BOR and SBR were diverse and included Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria and an unidentified cluster. Among these only Paracoccus sp. was successfully isolated and confirmed to have the ability to degrade PVA.  相似文献   

18.
Determination of quantitative thermodynamic and kinetic frameworks for ribozymes derived from the Azoarcus group I intron and comparisons to their well-studied analogs from the Tetrahymena group I intron reveal similarities and differences between these RNAs. The guanosine (G) substrate binds to the Azoarcus and Tetrahymena ribozymes with similar equilibrium binding constants and similar very slow association rate constants. These and additional literature observations support a model in which the free ribozyme is not conformationally competent to bind G and in which the probability of assuming the binding-competent state is determined by tertiary interactions of peripheral elements. As proposed previously, the slow binding of guanosine may play a role in the specificity of group I intron self-splicing, and slow binding may be used analogously in other biological processes. The internal equilibrium between ribozyme-bound substrates and products is similar for these ribozymes, but the Azoarcus ribozyme does not display the coupling in the binding of substrates that is observed with the Tetrahymena ribozyme, suggesting that local preorganization of the active site and rearrangements within the active site upon substrate binding are different for these ribozymes. Our results also confirm the much greater tertiary binding energy of the 5′-splice site analog with the Azoarcus ribozyme, binding energy that presumably compensates for the fewer base-pairing interactions to allow the 5′-exon intermediate in self splicing to remain bound subsequent to 5′-exon cleavage and prior to exon ligation. Most generally, these frameworks provide a foundation for design and interpretation of experiments investigating fundamental properties of these and other structured RNAs.  相似文献   

19.
To evaluate the microbial populations involved in the reduction of Fe(III) in an acidic, iron-rich sediment, the anaerobic flow of supplemental carbon and reductant was evaluated in sediment microcosms at the in situ temperature of 12°C. Supplemental glucose and cellobiose stimulated the formation of Fe(II); 42 and 21% of the reducing equivalents that were theoretically obtained from glucose and cellobiose, respectively, were recovered in Fe(II). Likewise, supplemental H2 was consumed by acidic sediments and yielded additional amounts of Fe(II) in a ratio of approximately 1:2. In contrast, supplemental lactate did not stimulate the formation of Fe(II). Supplemental acetate was not consumed and inhibited the formation of Fe(II). Most-probable-number estimates demonstrated that glucose-utilizing acidophilic Fe(III)-reducing bacteria approximated to 1% of the total direct counts of 4′,6-diamidino-2-phenylindole-stained bacteria. From the highest growth-positive dilution of the most-probable-number series at pH 2.3 supplemented with glucose, an isolate, JF-5, that could dissimilate Fe(III) was obtained. JF-5 was an acidophilic, gram-negative, facultative anaerobe that completely oxidized the following substrates via the dissimilation of Fe(III): glucose, fructose, xylose, ethanol, glycerol, malate, glutamate, fumarate, citrate, succinate, and H2. Growth and the reduction of Fe(III) did not occur in the presence of acetate. Cells of JF-5 grown under Fe(III)-reducing conditions formed blebs, i.e., protrusions that were still in contact with the cytoplasmic membrane. Analysis of the 16S rRNA gene sequence of JF-5 demonstrated that it was closely related to an Australian isolate of Acidiphilium cryptum (99.6% sequence similarity), an organism not previously shown to couple the complete oxidation of sugars to the reduction of Fe(III). These collective results indicate that the in situ reduction of Fe(III) in acidic sediments can be mediated by heterotrophic Acidiphilium species that are capable of coupling the reduction of Fe(III) to the complete oxidation of a large variety of substrates including glucose and H2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号