首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
白羽扇豆在缺磷或缺铁条件下均有排根形式,并且根系还原力显著增加。缺磷、缺铁根系还原力在高峰期分别高于对照。缺磷与缺铁根系还原力高峰不仅出现的时期不同,而且还原力增加部位也不一样。缺磷处理的排根区具有很高的还原力,缺铁处理还原力较高的部位是在主根和侧根的根尖以及排根区。由于Mn^4+比Fe^3+更易被还原,致使根系还原力提高促使根际大量锰被还原,这是缺磷和缺铁造成白羽扇豆锰中毒的主要原因之一。  相似文献   

2.
缺磷白羽扇豆排根与非排根区根尖分泌有机酸的比较   总被引:18,自引:0,他引:18  
采用根系分泌有机酸原位收集方法及市郊液相色谱技术分析了供磷及缺磷后不同时间白羽扇豆(Lupinus aibus L.)非排根区根尖和排根分泌有机酸的种类和数量,以及相应的根尖、排根组织,茎木质部、韧皮部汁液中有机酸含量的变化。结果表明:⑴缺磷能够诱导白羽扇豆要系产生大量排根,根系的有机酸分泌量也明显增加。⑵无论在供磷或缺磷条件下,排根与非排根区根区根尖组织中的有机酸种类相同,但排根主要分泌柠檬酸和  相似文献   

3.
采用根系分泌有机酸原位收集方法及高效液相色谱技术分析了供磷及缺磷后不同时间白羽扇豆(LupinusalbusL .)非排根区根尖和排根分泌有机酸的种类和数量 ,以及相应的根尖、排根组织 ,茎木质部、韧皮部汁液中有机酸含量的变化。结果表明 :(1)缺磷能够诱导白羽扇豆根系产生大量排根 ,根系的有机酸分泌量也明显增加。 (2 )无论在供磷或缺磷条件下 ,排根与非排根区根尖组织中的有机酸种类相同 ,但排根主要分泌柠檬酸和苹果酸 ,而非排根区根尖主要分泌苹果酸和乙酸。 (3)缺磷后非排根区根尖分泌苹果酸的量增加 ,至第 17天达到高峰 ;排根开始分泌柠檬酸的时间相对较晚。缺磷后排根分泌柠檬酸的量随缺磷时间的延长不断增加。 (4 )在缺磷的排根与非排根区根尖组织和茎木质部伤流液中含有大量柠檬酸和苹果酸 ,但在茎韧皮部汁液中则几乎检测不到这两种有机酸。上述结果表明 ,尽管排根和非排根区根尖组织中的有机酸种类相同 ,但它们向外分泌的有机酸种类不同。缺磷后排根及非排根区根尖增加向外分泌的有机酸主要在根中合成  相似文献   

4.
6-BA对缺磷白羽扇豆排根形成和有机酸分泌的影响   总被引:11,自引:0,他引:11  
缺磷条件下白羽扇豆能够形成排根,并增加有机酸分泌.但上述过程的调节机制尚不清楚.该文的结果表明,使用外源6-BA不影响缺磷白羽扇豆的生长和磷在体内的分配,但明显抑制了根簇的形成和有机酸分泌.经低浓度6-BA(10-8 mol/L)处理后转移至不含6-BA的缺磷营养液中继续培养的植株,其根簇形成和有机酸分泌得到恢复,甚至超过未经6-BA处理的缺磷植株;但高浓度6-BA(10-7 mol/L)对根簇形成和有机酸分泌的抑制作用不可恢复.对6-BA影响缺磷的白羽扇豆排根形成和有机酸分泌的可能机制进行了讨论.  相似文献   

5.
子叶磷在白羽扇豆缺磷适应性反应中的作用   总被引:5,自引:0,他引:5  
实验用液体培养的方法,对比分析了在不同供磷条件下,白羽扇豆子叶中的磷对植物生长发育的影响,以及排根和根尖中有机酸积累和分泌的作用,结果表明,子叶中的磷能使白羽扇豆在完全缺磷23d的环境中,不仅没有使干物质的积累减少,反而使干物质的积累略有增加,相反,如果没有子叶磷的供给,则使白羽扇豆在缺磷环境中产生强烈的抗胁迫反应,表现在干物质的积累明显下降,根系能产生大量的排根,排根能积累和分泌大量的柠檬酸,而根尖能积累和分泌萍果酸,在整个缺磷反应过程中,根尖中苹果酸的分泌要早于排根可柠檬酸的积累和分泌。  相似文献   

6.
白羽扇豆(Lupinus albus L.)对磷和生长素表现出高度的根系形态和生理可塑性反应, 然而磷和生长素如何调节根形态和生理特性以及它们对根形态和生理的交互效应尚不清楚. 本研究通过水培实验旨在评价磷(0或250 μmol/L)和生长素(10-8 mol/L NAA)对白羽扇豆根特性的影响及其交互效应. 结果表明, 缺少磷和生长素施用均明显改变了白羽扇豆的根形态(主根长度减少、一级侧根数目增加和排根大量形成)和生理特性(质子释放、柠檬酸分泌和酸性磷酸酶活性增加). 外源生长素的施用增加了缺磷白羽扇豆根系的响应度和敏感性. 磷和生长素对白羽扇豆根系形态和生理具有明显的交互作用. 主成分分析表明, 磷解释了根特性64.8%的信息, 而生长素解释了21.3%的信息, 表明磷供应对白羽扇豆根特性的影响比外源生长素施用更为重要. 白羽扇豆能够通过协调根系形态和生理对外部刺激(如缺磷和施用生长素)作出应答, 以及优化根形态和生理之间的关系从而最大化获取磷素资源.  相似文献   

7.
缺磷条件下白羽扇豆排根发育与生长素及miR164的关系   总被引:1,自引:1,他引:0  
以缺磷条件下白羽扇豆为材料,观察了外源生长素NAA和生长素运输的抑制剂NPA 对白羽扇豆排根形成及其活性的影响,同时运用基因芯片与RT-PCR的方法分析了生长素信号转导途径中转录因子NAC1以及调控NAC1表达的上游microRNA164(miR164)在不同发育阶段排根中的表达变化,以探讨白羽扇豆在缺磷时排根形成与发育的调控机制.结果表明,缺磷胁迫下排根大量形成与生长素及其运输有关,排根NAC1的表达在初生阶段上调,成熟后下调,并受其上游的miR164的负调控,而排根衰老后则上述基因的表达都减弱.研究发现,在缺磷诱导的排根发生至发育成熟过程中,miR164、NAC1、生长素与排根发育之间很可能组成了一个级联系统,从而控制排根的发生与发育.  相似文献   

8.
排根的形成及其所分泌的有机酸的调节   总被引:5,自引:0,他引:5  
排根是在磷、铁、氮等养分缺乏条件下形成的一种特殊根系结构,能够形成排根的植物种类有限.不同植物排根分泌的有机酸种类和数量可能不同,如在缺磷条件下白羽扇豆的排根所释放的柠檬酸可达植物总干重的23%,使根簇周围的柠檬酸浓度达50~90 μmol*g-1土壤.这是一种防止胞质过度酸化以及柠檬酸过度积累而超过液泡储存能力的解毒机制.其分泌可能受阴离子通道的调控.  相似文献   

9.
与供铁处理相比,对缺铁敏感的大豆品种“哈83”幼苗在缺铁胁迫条件下根际没有酸化现象,根系对Fe(Ⅲ)的还原能力也没有明显增强。但抗缺铁的大豆品种“8701”幼苗根际则严重酸化,根系对Fe(Ⅲ)的还原能力显著增强;加入能抑制根系H+-ATP酶活性、减弱根际酸化作用的H+-ATP酶抑制剂正钒酸钠会降低根系对Fe(Ⅲ)的还原能力;说明根际酸化与根系还原Fe(Ⅲ)能力相互联系,初步证实根细胞原生质膜H+-ATP酶和缺铁诱导的还原酶相互偶联的假说。  相似文献   

10.
缺铁敏感度不同的大豆品种对缺铁的适应机制   总被引:5,自引:0,他引:5  
与供铁处理相比,对缺铁敏感的大豆品种“哈83”幼苗在缺铁胁迫和上根际没有酸化现象,根系对Fe(Ⅲ)的还原能力也没有明显增强。但抗缺铁的大豆品种“8701”幼苗根际则严重酸化,根系对Fe(Ⅲ)的还原能力显著增强;加入能抑制根系H^+-ATP酶活性、减弱根际酸化作用的H^+-ATP酶抑制剂正钒酸钠会降低根系对Fe(Ⅲ)的还原能力;说明根际酸化与根系还原Fe(Ⅲ)能力相互联系,初步证实根细胞原生质膜H^  相似文献   

11.
This study evaluated the changes in root length, mass, and diameter after air drying and rehydration of corn (Zea mays L.) root samples. For corn roots washed from soil, rehydrated root length was not reduced when compared with fresh root length, but rehydrated root mass was reduced to about half of fresh root mass, and rehydrated root diameter was approximately 75% of fresh diameter. Three storage methods (air dried, 70% ethanol, and 5% formaldehyde solution) were also compared for corn roots grown in moist paper towels. Although root mass and diameter were significantly reduced by air drying, root length was not altered by any of the treatments.  相似文献   

12.
《植物生态学报》2016,40(12):1344
The morphology of fine root branching of woody plants is highly variable in their forms and functions. In the past two decades, researchers have increasingly recognized that the root-diameter-based method, using an arbitrary size of root diameter, failed to precisely characterize the physiological and ecological processes involved in finest roots. The number of publications using root-order-based approaches has increased regardless the fact that root trait-measurements based on root order are time-consuming and labor-intensive. A new approach—root functional classification method—was proposed and had been applied in the literature. The functional classification of fine roots separates roots of < 2 mm to absorptive and transport pools, making it more feasible for studies on root biomass and turnover. This new concept redefines fine root guild and has great potentials for future studies. Our literature review of the topic indicates that less is known about the inter-specific differences in estimates of biomass of absorptive and/or transport roots, with a large variation of absorptive roots on global scale. In addition, our review emphasizes the importance in: a) precision estimating of the absorptive biomass of fine roots, and b) proper definition of the range of the transport roots within and among forest ecosystems. Finally, after compare the strengths and weaknesses of the functional classification method, we propose several specific suggestions to improve the applications of this approach.  相似文献   

13.
The study of fine roots growing under field conditions is limited by the techniques currently available for separating these roots from soil. This study had two objectives: to measure the total root length of field grown corn (Zea mays L.) by root diameter class, and to develop an inexpensive and efficient root washing device that would effectively capture all of the roots in a field soil sample. An inexpensive Fine Root Extraction Device (FRED) was constructed from readily available materials and was successful at extracting all roots, including very fine diameter roots (0.025 mm), from field soil samples. Greater than 99.7% of marked roots introduced to the FRED were recaptured by the device. Soil samples from three depths, and on three dates, from field grown corn were placed in the FRED. We found that more than 56% of total root length occurred in roots whose diameters were smaller than 0.175 mm, and more than 35% of root length occurred in roots smaller than 0.125 mm in diameter. Corn roots of the diameters described here have not been reported in field soils prior to this study. Root researchers who fail to measure these very fine roots will significantly underestimate root length density. Widespread use of the FRED should improve our understanding of root distribution in field soils.  相似文献   

14.
Watson  Alex  Phillips  Chris  Marden  Michael 《Plant and Soil》1999,217(1-2):39-47
Information on live root-wood strength, rates of root decay and root growth of both radiata pine (Pinus radiata D. Don) and kanuka (Kunzea ericoides (A. Rich.) Joy Thomps. var. ericoides) are combined to form a generalized conceptual model of changes in nett root reinforcement. The model provides an initial opportunity to rank the plant species having specific below-ground rooting habits that can be used to control erosion, and when linked with extreme flood probability can be used to indicate the risk of a storm likely to cause slope instability in the period between clear-felling and regrowth. Erosion-susceptible slopes planted 1 year after clearfelling in radiata pine at 1250 stems ha-1 regain root site-occupancy in 4.7 years, an interval during which there is an 80% chance of experiencing an extreme flood. Similarly for radiata planted at 800 and 400 stems ha-1, root site-occupancy is regained in 5.6 and 7.5 years, and the probability of occurrence of an extreme event within these periods is 85 and 90%, respectively. For erosion-susceptible slopes on which kanuka has become established, the probability of a significant event within the 2.8 years prior to root site-occupancy is 60%. Slopes felled of radiata pine are potentially more vulnerable to the stresses promoting slope instability, at least in the earlier years. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
16.
小麦种子根的发育解剖   总被引:1,自引:0,他引:1  
小麦胚胎发育过程中通常形成5条幼根(少数可形成6条),这些根统称为种子根,中间最先发生的为初生根.初生根的原基在胚胎发育的早期就在胚轴的一侧发生,原基细胞由不规则到规则排列。侧生种子根的原基在胚胎发育后期才出现,通常成对发生,并且是由胚轴上的节(盾片节和胚芽鞘节)维管束外方的细胞形成。侧生种子根的发育明显较初生根的快,分化能力也较强,后生木质部导管母细胞出现早,数目较多.因此,小麦胚胎发育过程中从胚轴上形成的这些侧生的种子根,形态上,仍应看作是一些不定根,其结构特征与后来形成须根系的不定根的比较近似。  相似文献   

17.
Wheat embryo usually gives rise to five seminal roots in matured caryopsls, although, the sixth root might develop in some cases. The first one is known as the primary root. Primary root emerged early, and its primodium was distinctly originated from the proembryo and could be gradually identified as three layers of initials. Lateral seminal roots emerged later from the embryonic axis in pairs, and originated from the surrouding cells of the procambium. Differentiation of lateral roots was much more vigorous than that of the first seminal root (primary root), and, its mother cells of metaxylem vessel appeared soon, Lateral seminal roots usually had more metaxylem vessels. In short, only the first root is the primary root, the lateral seminal roots are adventitious in nature, since their structures are similar to those of other adventitious roots.  相似文献   

18.
19.
Chopart  J. L.  Siband  P. 《Plant and Soil》1999,214(1-2):61-74
Root length density (RLD) is an important determinant of crop water and nutrient acquisition, but is difficult to measure in the field. On a soil profile, in-situ counts of root impacts per unit surface on soil profiles (NI) can be used to calculate RLD if crop-specific parameters for preferential root orientation (anisotropy) are known. An improved method for field determinations of RLD was developed and validated for maize at sites in Côte d'Ivoire and Burkina Faso. Root anisotropy was measured with cubes of undisturbed soil with 0.1 m sidelength, based on NI observed on three planes oriented perpendicularly to each other. RLD was also measured for the enclosed volume. Repetition of such measurements enabled estimation of the robustness across sites of empirical and geometric models for the relationship between RLD and NI:RLD = NI CO, with CO being the coefficient of root orientation, theoretically equals 2 for an isotropic distribution. Root systems were found to be nearly isotropic, except near the root front (0.3 to 0.5 m), where roots had a preferentially orthotropic orientation. Measured RLD was generally about 50% larger than RLD calculated from observed NI and CO, indicating that at least one of the measurement techniques had a systematic error. The ratio between measured and calculated RLD (CE), which ranged from 0.8 to 2, increased with the age of the plants and decreased with soil depth. CE was therefore introduced as an additional coefficient, resulting in RLD = NI CO CE. The empirical value for CO CE was between 2 and 5. The empirical coefficients CO and CE were the same for the sites in Cote d'Ivoire (oxisol with an iron pan at 0.6 to 0.9 m) and Burkina Faso (alfisol with an iron pan at 0.4 to 0.8 m). The model was validated with independent data sets at both sites, and gave satisfactory predictions of RLD on the basis of NI obtained from single soil planes, which can be easily measured in the field.  相似文献   

20.
Root respiration is a critical physiological trait involved in root resource acquisition strategies, yet it is less represented in root trait syndrome. Here we compiled a large dataset of root respiration associated with root chemical and morphological traits from 245 plant species. Our results demonstrated that root respiration correlated positively with root nitrogen concentration (RNC) and negatively with root tissue density (RTD) across and within woody and non‐woody species. However, the relationships between root respiration and specific root length (SRL) and root diameter (RD) were weak or even insignificant. Such root respiration–traits relationships were not completely in line with predictions by the root economics spectrum (RES). Furthermore, the principal component analysis showed that root trait syndrome was multidimensional. Root respiration was associated more strongly with the RNC‐RTD axis (the classical RES) than with the orthogonal SRL‐RD axis for woody species, but not for non‐woody species. Collectively, the linkages of root physiological, chemical, and morphological traits provide a better understanding of root trait covariation and root resource acquisition strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号