首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 During the normal development of echinoids, an animal cap consisting of 8 mesomeres in a 16-cell stage embryo differentiates exclusively into ectoderm. Micromeres in an embryo at the same stage differentiate into primary mesenchyme cells (PMC) and coelomic pouch constituents. An animal cap and a quartet of micromeres were isolated from a 16-cell stage embryo and recombined to make a chimeric embryo devoid of presumptive endoderm and secondary mesenchyme cells (SMC). The PMC in the chimeric embryo were completely removed at the mesenchyme blastula stage. The PMC-depleted chimeric embryos formed an archenteron derived from the mesomeres. Some secondary mesenchyme-like cells (induced SMC) were released from the archenteron tip. A considerable fraction of the induced SMC formed the typical mesenchyme pattern after migrating into the vegetal region, synthesized skeletogenic mesenchyme cell-surface protein (msp130) and produced the larval skeleton. These findings indicate that induced SMC derived from the presumptive ectoderm have the same nature as natural SMC in both the timing of their release and their skeletogenic potential expressed in the absence of PMC. Received: 14 November 1996 / Accepted: 30 December 1996  相似文献   

2.
3.
4.
Cell lineage conversion in the sea urchin embryo   总被引:17,自引:1,他引:16  
The mesoderm of the sea urchin embryo conventionally is divided into two populations of cells; the primary mesenchyme cells (PMCs), which produce the larval skeleton, and the secondary mesenchyme cells (SMCs), which differentiate into a variety of cell types but do not participate in skeletogenesis. In this study we examine the morphogenesis of embryos from which the PMCs have been removed microsurgically. We confirm the observation of Fukushi (1962) that embryos lacking PMCs form a complete skeleton, although in a delayed fashion. We demonstrate by microsurgical and cell marking experiments that the appearance of skeletogenic cells in such PMC-deficient embryos is due exclusively to the conversion of other cells to the PMC phenotype. Time-lapse video recordings of PMC-deficient embryos indicate that the converting cells are a subpopulation of late-ingressing SMCs. The conversion of these cells to the skeletogenic phenotype is accompanied by their de novo expression of cell surface determinants normally unique to PMCs, as shown by binding of wheat germ agglutinin and a PMC-specific monoclonal antibody. Cell transplantation and cell marking experiments have been carried out to determine the number of SMCs that convert when intermediate numbers of PMCs are present in the embryo. These experiments indicate that the number of converting SMCs is inversely proportional to the number of PMCs in the blastocoel. In addition, they show that PMCs and converted SMCs cooperate to produce a skeleton that is correct in both size and configuration. This regulatory system should shed light on the nature of cell-cell interactions that control cell differentiation and on the way in which evolutionary processes modify developmental programs.  相似文献   

5.
Primary mesenchyme cells (PMCs) are solely responsible for the skeletogenesis during early larval development of the sea urchin, but the cells responsible for late larval and adult skeletal formation are not clear. To investigate the origin of larval and adult skeletogenic cells, I first performed transplantation experiments in Pseudocentrotus depressus and Hemicentrotus pulcherrimus, which have different skeletal phenotypes. When P. depressus PMCs were transplanted into H. pulcherrimus embryos, the donor phenotype was observed only in the early larval stage, whereas when secondary mesenchyme cells (SMCs) were transplanted, the donor phenotype was observed in late and metamorphic larvae. Second, a reporter construct driven by the spicule matrix protein 50 (SM50) promoter was introduced into fertilized eggs and their PMCs/SMCs were transplanted. In the resultant 6-armed pluteus, green fluorescent protein (GFP) expression was observed in both PMC and SMC transplantations, suggesting SMC participation in late skeletogenesis. Third, transplanted PMCs or SMCs tagged with GFP were analyzed by PCR in the transgenic chimeras. As a result, SMCs were detected in both larval and adult stages, but GFP from PMCs was undetectable after metamorphosis. Thus, it appears that SMCs participate in skeletogenesis in late development and that PMCs disappear in the adult sea urchin, suggesting that the skeletogenesis may pass from PMCs to SMCs during the late larval stage.  相似文献   

6.
Carbonic anhydrases (CAs) are a family of widely distributed metalloenzymes, involved in diverse physiological processes. These enzymes catalyse the reversible conversion of carbon dioxide to protons and bicarbonate. At least 19 genes encoding for CAs have been identified in the sea urchin genome, with one of these localized to the skeletogenic mesoderm (primary mesenchyme cells, PMCs). We investigated the effects of a specific inhibitor of CA, acetazolamide (AZ), on development of two sea urchin species with contrasting investment in skeleton production, Paracentrotus lividus and Heliocidaris tuberculata, to determine the role of CA on PMC differentiation, skeletogenesis and on non‐skeletogenic mesodermal (NSM) cells. Embryos were cultured in the presence of AZ from the blastula stage prior to skeleton formation and development to the larval stage was monitored. At the dose of 8 mmol/L AZ, 98% and 90% of P. lividus and H. tuberculata embryos lacked skeleton, respectively. Nevertheless, an almost normal PMC differentiation was indicated by the expression of msp130, a PMC‐specific marker. Strikingly, the AZ‐treated embryos also lacked the echinochrome pigment produced by the pigment cells, a subpopulation of NSM cells with immune activities within the larva. Conversely, all ectoderm and endoderm derivatives and other subpopulations of mesoderm developed normally. The inhibitory effects of AZ were completely reversed after removal of the inhibitor from the medium. Our data, together with new information concerning the involvement of CA on skeleton formation, provide evidence for the first time of a possible role of the CAs in larval immune pigment cells.  相似文献   

7.
8.
In the sea urchin embryo, primary mesenchyme cells (PMCs) are committed early in development to direct skeletogenesis, provided that a permissive signal is conveyed from adjacent ectoderm cells. We showed that inhibition of extracellular matrix (ECM)-ectoderm cells interaction, by monoclonal antibodies (mAb) to Pl-nectin, causes an impairment of skeletogenesis and reduced expression of Pl-SM30, a spicule-specific matrix protein. When PMCs are experimentally removed, some secondary mesenchyme cells (SMCs) switch to skeletogenic fate. Here, for the first time we studied SMC transfating in PMC-less embryos of Paracentrotus lividus. We observed the appearance of skeletogenic cells within 10 h of PMCs removal, as shown by binding of wheat germ agglutinin (WGA) to cell surface molecules unique to PMCs. Interestingly, the number of WGA-positive cells, expressing also msp130, another PMC-specific marker, doubled with respect to that of PMCs present in normal embryos, though the number of SM30-expressing cells remained constant. In addition, we investigated the ability of SMCs to direct skeletogenesis in embryos exposed to mAbs to Pl-nectin after removal of PMCs. We found that, although phenotypic SMC transfating occurred, spicule development, as well as Pl-SM30-expression was strongly inhibited. These results demonstrate that ectoderm inductive signals are necessary for transfated SMCs to express genes needed for skeletogenesis.  相似文献   

9.
In the sea urchin embryo, the micromeres act as a vegetal signaling center. These cells have been shown to induce endoderm; however, their role in mesoderm development has been less clear. We demonstrate that the micromeres play an important role in the induction of secondary mesenchyme cells (SMCs), possibly by activating the Notch signaling pathway. After removing the micromeres, we observed a significant delay in the formation of all mesodermal cell types examined. In addition, there was a marked reduction in the numbers of pigment cells, blastocoelar cells and cells expressing the SMC1 antigen, a marker for prospective SMCs. The development of skeletogenic cells and muscle cells, however, was not severely affected. Transplantation of micromeres to animal cells resulted in the induction of SMC1-positive cells, pigment cells, blastocoelar cells and muscle cells. The numbers of these cell types were less than those found in sham transplantation control embryos, suggesting that animal cells are less responsive to the micromere-derived signal than vegetal cells. Previous studies have demonstrated a role for Notch signaling in the development of SMCs. We show that the micromere-derived signal is necessary for the downregulation of the Notch protein, which is correlated with its activation, in prospective SMCs. We propose that the micromeres induce adjacent cells to form SMCs, possibly by presenting a ligand for the Notch receptor.  相似文献   

10.
11.
Partitioning-defective (par) genes were originally identified as genes that are essential for the asymmetric division of the Caenorhabditis elegans zygote. Studies have since revealed that the gene products are part of an evolutionarily conserved PAR-atypical protein kinase C system involved in cell polarity in various biological contexts. In this study, we analyzed the function of par6 during sea urchin morphogenesis by morpholino-mediated knockdown and by manipulation swapping of the primary mesenchyme cells (PMCs). Loss of Par6 resulted in defects in skeletogenesis and gut differentiation in larvae. Phenotypic analyses of chimeras constructed by PMC swapping showed that Par6 in non-PMCs is required for differentiation of archenteron into functional gut. In contrast, Par6 in both PMCs and ectodermal cells cooperatively regulates skeletogenesis. We suggest that Par6 in PMCs plays an immediate role in the deposition of biomineral in the syncytial cable, whereas Par6 in ectoderm may stabilize skeletal rods via an unknown signal(s).  相似文献   

12.
To understand the roles of hesC and gcm during larval mesenchyme specification and differentiation in echinoids, we performed perturbation experiments for these genes in two distantly related euechinoids, Hemicentrotus pulcherrimus and Scaphechinus mirabilis. The number of larval mesenchyme cells increased when the translation of hesC was inhibited, thereby suggesting that hesC has a general role in larval mesenchyme development. We confirmed previous results by demonstrating that gcm is involved in pigment cell differentiation. Simultaneous inhibition of the translation of hesC and gcm induced a significant increase in the number of skeletogenic cells, which suggests that gcm functions in skeletogenic fate repression. Based on these observations, we suggest that: (i) hesC participates in some general aspects of mesenchymal cell development; and (ii) gcm is involved in the mechanism responsible for the binary specification of skeletogenic and pigment cell fates.  相似文献   

13.
Although sea urchin gastrulation is well described at the cellular level, our understanding of the molecular changes that trigger the coordinated cell movements involved is not complete. Jun N‐terminal kinase (JNK) is a component of the planar cell polarity pathway and is required for cell movements during embryonic development in several animal species. To study the role of JNK in sea urchin gastrulation, embryos were treated with JNK inhibitor SP600125 just prior to gastrulation. The inhibitor had a limited and specific effect, blocking invagination of the archenteron. Embryos treated with 2 μM SP600125 formed normal vegetal plates, but did not undergo invagination to form an archenteron. Other types of cell movements, specifically ingression of the skeletogenic mesenchyme, were not affected, although the development and pattern of the skeleton was abnormal in treated embryos. Pigment cells, derived from nonskeletogenic mesenchyme, were also present in SP600125‐treated embryos. Despite the lack of a visible archenteron in treated embryos, cells at the original vegetal plate expressed several molecular markers for endoderm differentiation. These results demonstrate that JNK activity is required for invagination of the archenteron but not its differentiation, indicating that in this case, morphogenesis and differentiation are under separate regulation. genesis 53:762–769, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
15.
Summary During the course of sea urchin development, from early blastula to pluteus larva, there are two major visible processes toward which all activities seem to be focused. They are the differentiation of the larval skeleton by the primary mesenchyme cells and the differentiation of the primitive gut by the secondary mesenchyme cells. These activities take place within the shell-like layer of epithelial cells, or ectodermal wall. The interactive role of the ectodermal wall with the mesenchyme cells is not yet clearly understood. A number of earlier studies have proposed that the ectoderm may have an inductive influence on the mesenchyme cells and that its inner surface forms a molecular template for guiding the mesenchyme cells. In this report, we suggest an additional role for the ectodermal wall. We show that some primary mesenchyme cells and secondary mesenchyme cells insert between the cells of the ectodermal wall in order to firmly anchor the anlage of the larval skeleton and primitive gut during differentiation. This mechanism may provide a physical basis for maintaining the stable positional relationship of the anlage during development.  相似文献   

16.
17.
The mechanism of micromere specification is one of the central issues in sea urchin development. In this study we have identified a sea urchin homologue of ets 1 + 2. HpEts, which is maternally expressed ubiquitously during the cleavage stage and which expression becomes restricted to the skeletogenic primary mesenchyme cells (PMC) after the hatching blastula stage. The overexpression of HpEts by mRNA injection into fertilized eggs alters the cell fate of non-PMC to migratory PMC. HpEts induces the expression of a PMC-specific spicule matrix protein, SM50, but suppresses of aboral ectoderm-specific arylsulfatase and endoderm-specific HpEndo16. The overexpression of dominant negative delta HpEts which lacks the N terminal domain, in contrast, specifically represses SM50 expression and development of the spicule. In the upstream region of the SM50 gene there exists an ets binding site that functions as a positive cis-regulatory element. The results suggest that HpEts plays a key role in the differentiation of PMCs in sea urchin embryogenesis.  相似文献   

18.
The flat bones of the vertebrate skull vault develop from two migratory mesenchymal cell populations, the cranial neural crest and paraxial mesoderm. At the onset of skull vault development, these mesenchymal cells emigrate from their sites of origin to positions between the ectoderm and the developing cerebral hemispheres. There they combine, proliferate and differentiate along an osteogenic pathway. Anomalies in skull vault development are relatively common in humans. One such anomaly is familial calvarial foramina, persistent unossified areas within the skull vault. Mutations in MSX2 and TWIST are known to cause calvarial foramina in humans. Little is known of the cellular and developmental processes underlying this defect. Neither is it known whether MSX2 and TWIST function in the same or distinct pathways. We trace the origin of the calvarial foramen defect in Msx2 mutant mice to a group of skeletogenic mesenchyme cells that compose the frontal bone rudiment. We show that this cell population is reduced not because of apoptosis or deficient migration of neural crest-derived precursor cells, but because of defects in its differentiation and proliferation. We demonstrate, in addition, that heterozygous loss of Twist function causes a foramen in the skull vault similar to that caused by loss of Msx2 function. Both the quantity and proliferation of the frontal bone skeletogenic mesenchyme are reduced in Msx2-Twist double mutants compared with individual mutants. Thus Msx2 and Twist cooperate in the control of the differentiation and proliferation of skeletogenic mesenchyme. Molecular epistasis analysis suggests that Msx2 and Twist do not act in tandem to control osteoblast differentiation, but function at the same epistatic level.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号