首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The winter-active Diamesa mendotae Muttkowski (Diptera: Chironomidae) is freeze intolerant in the adult stage with a low mean supercooling point (SCP) of ~−20 °C. However, cold-hardiness strategies for immatures of this species are unknown. In this study, we measured SCP values for D. mendotae larvae, pupae and adults using surface-contact thermometry. In addition, the lower lethal temperature (LLT) was determined for the larval stage. The mean SCPs for larvae (−7.4 °C) and pupae (−9.1 °C) were relatively high compared to adults (−19.7 °C). Our results indicate that the larvae of D. mendotae are freeze tolerant with a LLT99 (−25.4 °C), ~−10 °C lower than their minimum SCP (−15.6 °C). Freeze tolerance in these larvae may be a strategy to provide protection from short-term exposures to ice crystals or to permit diapause within frozen substrates. The change in cold-hardiness strategy from freeze tolerant to freeze intolerant between the larval and adult stages of this species is likely a result of the different habitats occupied by these two life stages.  相似文献   

2.
Asian corn borer, Ostrinia furnacalis (Guenée), is a key corn pest in the Asian‐Western Pacific countries. It overwinters as full‐grown larvae in plant stalks or in a spun‐silk covering located in the plant debris in the temperate regions of China. Supercooling point (SCP) and survival rate after low sub‐zero temperature treatment were assessed for field‐collected populations in the laboratory using a cool bath with a 1°C/min cooling rate until ?40°C. Mean SCPs were varied among geographical populations, with a significant decline from ?22.7°C of Haikou, the multivoltine tropical population in the south, to ?28.5°C of Gongzhuling, the univoltine temperate population in the northeast of China. In addition, there was more than 1°C difference in SCP between Gongzhuling univoltine and bivoltine populations that were from the same geographic origin. Mean SCPs of the Guangzhou population fluctuated over the year, with significantly lower SCPs in winter than in other seasons, which correlated with a significantly higher proportion of diapausing larvae in winter than in other seasons. Over 41% of overwintering larvae from the northeast population could withstand to be supercooled for a few minutes to the low sub‐zero temperature of ?40°C, but only 6.7% of their southern counterparts did so. The findings from this study suggest that O. furnacalis mostly takes advantage of freeze avoidance as diapausing larvae for overwintering in the southern region, whereas it exhibits freeze tolerance in diapause in the northeastern region.  相似文献   

3.
4.
Supercooling point (SCP) and cold‐hardiness of the pollen beetle Meligethes aeneus (Fabricius) (Coleoptera: Nitidulidae) were investigated. Mature eggs from the oviduct were supercooled on average to ?28.0 °C and from oilseed rape buds to ?24.4 °C; first instars were supercooled to ?21.0 °C and second instars to ?16.8 °C. Despite their high supercooling ability, none of the eggs survived 24 h exposure to ?2.5 °C. The supercooling ability of adults varied significantly among feeding and non‐feeding beetles: high SCPs prevailed during the whole warm period, being about ?12 °C; low values of SCP of ?20 °C dominated in non‐feeding beetles. In spring and autumn, beetles displayed the same acclimation efficiency: after 1 week of exposure at 2.0 °C with no access to food their SCPs were depressed equally by about 3 °C. Meligethes aeneus beetles have a different response to low temperatures depending on the season. The lowest tolerance was found in reproductively active beetles after emergence from overwintering sites; the time needed to kill 50% of individuals (Ltime50) was 56.2 h at ?7 °C and the lower lethal temperature needed to kill 50% (Ltemp50) after 24 h exposure was ?8.6 °C. Cold hardiness increased from midsummer to midwinter; Ltime50 was 80 h in August, 182.8 h in September, and 418.1 h in January. Lethal temperature after 24 h exposure was ?9.1 °C in August and ?9.8 °C in September. In February, after diapause, the beetles started to loose their cold tolerance, and Ltemp50 was slightly increased to ?9.5 °C. Hibernating beetles tolerated long exposure at ?7 °C well, but mortality was high after short exposure if the temperature dropped below ?9 °C for 24 h. Despite the season, the beetles died at temperatures well above their mean SCP; consequently, SCP is not a suitable index for cold hardiness of M. aeneus.  相似文献   

5.
Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae), is a pest of stored grain in Africa, Asia, and Europe. It is a quarantine insect for much of the rest of the world. Control of T. granarium can be achieved with methyl bromide, but this fumigant is an ozone‐depleting substance and is being phased out worldwide. Thus, there is an urgent need to find new methods of control, including the use of low temperatures. Here, we assess the effects of diapause and cold acclimation on the cold tolerance of T. granarium. The percentage of larvae in diapause increased with larval density, reaching 57.3% when reared at a density of 73 larvae g?1 diet. The cold tolerance of T. granarium was assessed by the supercooling points (SCPs) of various life stages. The SCP of non‐acclimated insects ranged from ?26.2 ± 0.2 °C (mean ± SEM) for eggs to ?14.4 ± 0.4 °C for larvae. The lowest SCP for larvae, ?24.3 ± 0.3 °C, was obtained for diapausing‐acclimated larvae. Based on mean LT50 values, the most cold‐tolerant stage at ?10 °C was the diapausing‐acclimated larvae (87 days) followed by non‐diapausing‐acclimated larvae (51 days), diapausing non‐acclimated larvae (19 days), adults (4 days), non‐diapausing non‐acclimated larvae (2 days), pupae (0.4 days), and eggs (0.2 days). The estimated times to obtain 99.9968% mortality (Probit 9) for diapausing‐acclimated larvae are 999, 442, 347, 84, and 15 days at 0, ?5, ?10, ?15, and ?20 °C, respectively. Probit 9 is an estimated value used by quarantine experts to estimate conditions that are required to kill all insects. In light of the long exposure time needed to control T. granarium even at ?20 °C, cooling to below ?27 °C (i.e., below the SCP of eggs) will quickly kill all life stages and may be the best way to control this insect with low temperatures.  相似文献   

6.
The threats posed by climate change make it important to expand knowledge concerning cold and heat tolerance in stenothermal species from habitats potentially threatened by temperature changes. Thermal limits and basal metabolism variations were investigated in Pseudodiamesa branickii (Diptera: Chironomidae) under thermal stress between ‐20 and 37 °C. Supercooling point (SCP), lower (LLTs) and upper lethal temperatures (ULTs), and oxygen consumption rate were measured in overwintering young (1st and 2nd instar) and mature (3rd and 4th instar) larvae from an Alpine glacier‐fed stream. Both young and mature larvae were freezing tolerant (SCPs = ‐7.1 °C and ‐6.4 °C, respectively; LLT100 <SCP and > ‐20 °C) and thermotolerant (ULT50 = 31.7 ± 0.4, 32.5 ± 0.3, respectively). However, ontogenetic differences in acute tolerance were observed. The LLT50 calculated for the young larvae (= ‐7.4 °C) was almost equal to their SCP (= ‐7.1 °C) and the overlapping of the proportion of mortality curve with the CPIF curve highlighted that the young larvae are borderline between freezing tolerance and freezing avoidance. Furthermore, a lower ULT100 in the young larvae (of ca. 1 °C), suggests that they are less thermotolerant than mature larvae. Finally, young larvae exhibit a higher oxygen consumption rate (mgO2/gAFDM/h) at any temperature tested and are overall less resistant to oxygen depletion compared to mature larvae at ≥10 °C. These findings suggest that mature larvae enter into a dormant state by lowering their basal metabolism until environmental conditions improve in order to save energy for life cycle completion during stressful conditions.  相似文献   

7.
Abstract. Investigations of the responses to acclimation of upper and lower lethal limits and limits to activity in insects have focused primarily on Drosophila. In the present study, Halmaeusa atriceps (Staphylinidae) is examined for thermal tolerance responses to acclimation, and seasonal acclimatization. In summer and winter, lower lethal temperatures of adults and larvae are approximately −7.6 ± 0.03 and −11.1 ± 0.06 °C, respectively. Supercooling points (SCPs) are more variable, with winter SCPs of −5.4 ± 0.4 °C in larvae and −6.3 ± 0.8 °C in adults. The species appears to be chill susceptible in summer and moderately freeze tolerant in winter, thus showing seasonal acclimatization. Similar changes cannot be induced solely by acclimation to low temperatures in the laboratory. Upper lethal temperatures show a weaker response to acclimation. There are also significant responses to acclimation of critical thermal limits. Critical thermal minima vary between −3.6 ± 0.2 and −0.6 ± 0.2 °C in larvae, and from −4.1 ± 0.1 to −0.8 ± 0.2 °C in adults. By contrast, critical thermal maxima vary much less within adults and larvae. These findings are in keeping with the general pattern found in insects, although this species differs in several respects from others found on Marion Island.  相似文献   

8.
9.
  1. The invasive sawfly Aproceros leucopoda causes severe defoliation of various elm species and thus can be a major pest in forest stands and urban environments.
  2. The overwintering biology of A. leucopoda has not been investigated so far; therefore, the aim of this study was to determine the cold tolerance strategy and cold hardiness of hibernating A. leucopoda eonymphs.
  3. The supercooling points (SCPs) of overwintering individuals varied geographically, monthly and interannually and ranged between ?12.14 °C and ?24.22 °C.
  4. As none of the eonymphs survived once the SCP had been reached, A. leucopoda is classified as a freeze‐avoidant species.
  5. Survival rates of overwintering eonymphs exposed to different sub‐zero temperatures above the SCP (?1.6 °C and ?4.0 °C for 10, 20 and 30 days and ?10.5 °C for 9 days) ranged between 89.2% and 100%, suggesting that A. leucopoda is not a chill‐susceptible species.
  6. Our results suggest that low winter temperatures may not be expected to be an important limiting factor for the overwintering success of A. leucopoda.
  相似文献   

10.
Lobesia botrana (Denis & Schiffermüller) (Lepidoptera: Tortricidae) is a key pest of grapes in Europe. It overwinters as a pupa in the bark crevices of the plant. Supercooling point (SCP) and low temperature survival was investigated in the laboratory and was determined using a cool bath and a 1 °C min?1 cooling rate. Freezing was fatal both to diapausing and non‐diapausing pupae. SCP was significantly lower in diapausing male (?24.8 °C) and female (?24.5 °C) pupae than in non‐diapausing ones (?22.7 and ?22.5 °C, respectively). Sex had no influence on SCP both for diapausing and non‐diapausing pupae. Supercooling was also not affected by acclimation. However, acclimation did improve survival of diapausing pupae at temperatures above the SCP. Survival increased as acclimation period increased and the influence was more profound at the lower temperatures examined. Diapausing pupae could withstand lower temperatures than non‐diapausing ones and lethal temperature was significantly lower than for non‐diapausing pupae. Freezing injury above the SCP has been well documented for both physiological stages of L. botrana pupae. Our findings suggest a diapause‐related cold hardiness for L. botrana and given its cold hardiness ability, winter mortality due to low temperatures is not expected to occur, especially in southern Europe.  相似文献   

11.
Under stressful thermal environments, insects adjust their behavior and physiology to maintain key life‐history activities and improve survival. For interacting species, mutual or antagonistic, thermal stress may affect the participants in differing ways, which may then affect the outcome of the ecological relationship. In agroecosystems, this may be the fate of relationships between insect pests and their antagonistic parasitoids under acute and chronic thermal variability. Against this background, we investigated the thermal tolerance of different developmental stages of Chilo partellus Swinhoe (Lepidoptera: Crambidae) and its larval parasitoid, Cotesia sesamiae Cameron (Hymenoptera: Braconidae) using both dynamic and static protocols. When exposed for 2 h to a static temperature, lower lethal temperatures ranged from ?9 to 6 °C, ?14 to ?2 °C, and ?1 to 4 °C while upper lethal temperatures ranged from 37 to 48 °C, 41 to 49 °C, and 36 to 39 °C for C. partellus eggs, larvae, and C. sesamiae adults, respectively. Faster heating rates improved critical thermal maxima (CTmax) in C. partellus larvae and adult C. partellus and C. sesamiae. Lower cooling rates improved critical thermal minima (CTmin) in C. partellus and C. sesamiae adults while compromising CTmin in C. partellus larvae. The mean supercooling points (SCPs) for C. partellus larvae, pupae, and adults were ?11.82 ± 1.78, ?10.43 ± 1.73 and ?15.75 ± 2.47, respectively. Heat knock‐down time (HKDT) and chill‐coma recovery time (CCRT) varied significantly between C. partellus larvae and adults. Larvae had higher HKDT than adults, while the latter recovered significantly faster following chill‐coma. Current results suggest developmental stage differences in C. partellus thermal tolerance (with respect to lethal temperatures and critical thermal limits) and a compromised temperature tolerance of parasitoid C. sesamiae relative to its host, suggesting potential asynchrony between host–parasitoid population phenology and consequently biocontrol efficacy under global change. These results have broad implications to biological pest management insect–natural enemy interactions under rapidly changing thermal environments.  相似文献   

12.
Potato tuber moth (PTM), Phthorimaea operculella (Zeller), (Lepidoptera: Gelechiidae) is an invasive insect pest damaging solanaceous crops. We measured the supercooling point (SCP) and survival at low temperature of different development stages to determine which would be capable of overwintering in the Korean climate and adapting to low temperatures. The SCP ranges from ?23.8°C of the egg to ?16.8 of fourth instar larvae (L4). After short periods of low temperature acclimation in L3 (third instar larva), L4 and prepupae, only the prepupal stage showed a significant lowered SCP from ?20.78 to ?22.37°C. When exposed to different subzero temperature for two hours the egg turned out to be the most cold tolerant stage showing LT50 of ?21.7°C followed by the pupal stage with ?15.89°C. One hundred percent mortality was observed when the larvae or adults were exposed to temperatures below ?15.1°C even for a period as short as 2 h. The results suggest that PTM pupae and egg would be the main overwintering stage in Korea where winter temperature does not drop below ?15°C.  相似文献   

13.
Abstract This study reports on the low temperature tolerance and cold hardiness of larvae of false codling moth, Thaumatotibia leucotreta. We found that larvae have mean critical thermal minima (lower limits of activity) of 6.7°C which was influenced by feeding status. The effects of low temperature exposure and duration of exposure on larval survival were assessed and showed that the temperature at which 50% of the population survives is ?11.5 ± 0.3°C after 2 h exposure. The supercooling point (SCP, i.e., freezing temperature) was investigated using a range of cooling rates and under different conditions (feeding and hydration status) and using inoculative freezing treatments (in contact with water or orange juice). The SCP decreased significantly from ?15.6°C to ?17.4°C after larvae were fasted for 24 h. Twenty‐four hour treatments at either high or low relative humidity (95.9% or 2.4%) also significantly decreased SCP to ?17.2°C and ?18.2°C respectively. Inoculative freezing (by water contact) raised SCP from ?15.6°C to ?6.8°C which could have important implications for post‐harvest sterilization. Cooling rates did not affect SCP which suggests that there is limited phenotypic plasticity of SCP during the larval life‐stage, at least over the short time‐scales investigated here. In conclusion, larvae of T. leucotreta are chill‐susceptible and die upon freezing. These results are important in understanding this pest's response to temperature variation, understanding pest risk status and improving post‐harvest sterilization efficacy.  相似文献   

14.
ABSTRACT. Supercooling points (SCP) and low temperature tolerance were determined for larval, pupal and adult stages of Sarcophaga crassipalpis Macquart (Diptera: Sarcophagidae). No stage tolerates tissue-freezing. Ontogenetic changes in SCP profiles are similar for comparable developmental stages of diapause and non-diapause groups. Feeding larvae have SCPs near -7°C which decrease to -11°C in the postfeeding wandering phase of the final larval instar. The lowest SCPs are recorded for pupae at -23°C. The capacity to survive at -17°C varies with age of the diapausing pupae: 10-day-old pupae are less cold tolerant than pupae that have been in diapause for 45–80 days. Although the SCP of non-diapausing pupae is as low as in diapausing pupae, non-diapausing pupae are extremely sensitive to low temperature exposure and do not survive to adult eclosion when exposed to -17°C for as little as 20 min. The use of hexane to break pupal diapause has no effect on SCPs or low temperature tolerance.  相似文献   

15.
  1. The North American oak lace bug (OLB), Corythucha arcuata, is an invasive species in Europe and a serious threat to oak-dominated forests.
  2. Survival at low temperatures is one major factor determining the spread of invasive insects. Thus, we studied key traits, that is, cold-tolerance strategy, supercooling points (SCP) and chilling-related mortality, of overwintering adults to assess their potential to withstand harsh winters.
  3. Samples for SCP measurements were collected once a month from November 2020 until March 2021 at three different locations in Hungary; specimens for chilling experiments were sampled in November 2020, January 2021 and March 2021.
  4. SCPs of overwintering adults ranged from −29.68 to −7.49 °C, with only moderate variation among months; C. arcuata is a freeze-avoidant species.
  5. Mortality rates of adults exposed to two sub-zero temperatures above the SCP (−3 and −5 °C) for 1, 2 and 3 weeks ranged between 0% and 69.1%, suggesting that OLB has a moderate risk to die from chilling injuries. Exposure time and sampling date affected mortality, with lowest survival rates after 3 weeks, collected in March 2021.
  相似文献   

16.
The cold-hardening capacity of larvae of the pink maize stalk borer,Sesamia nonagrioides Lef., was examined. Supercooling points (SCPs) of field collected diapausing larvae from south-east and south-west France and non-diapausing and diapausing laboratory-reared larvae did not differ and ranged between –5 and –8°C. Thus, this insect possesses sufficient supercooling ability to avoid freezing over its normal environmental temperature ranges. Despite this, we found thatSesamia presents paradoxical cold reactions. Mortality of cold acclimated diapausing larvae after short-term exposure to temperatures above the SCP is high, supporting the view thatSesamia is cold-sensitive. On the other hand,Sesamia could survive freezing for at least 24 h to temperatures close to the SCP. This ability does not seem to be related to haemolymph trehalose, the sole cold-accumulated compound detected by gas chromatography and mass spectrometry. Despite the mildness of the winter 1990–1991, only 5% of the field population survive and pupate in April. The main part of the population died from November to January, the period during which larvae were mainly located in the part of the corn stem above the ground and experienced air temperatures. After January, all surviving larvae were excuusively located in the root, 10 cm below the soil, where they experienced milder temperatures than air. They exhibited a constant low rate of mortality, possibly independent of the cold. In their current distribution area, survival of overwintering larvae ofS. nonagrioides is only related to the microclimate of the overwintering site and freezing tolerance capacity seems to be irrelevant. This study allows us to propose a non-pollutant pest control method based on the behavioral strategy of this insect.  相似文献   

17.
During the late 1960s, larvae of the flightless midge Eretmoptera murphyi Schaeffer were accidentally transferred from the sub‐Antarctic island of South Georgia to Signy Island in the maritime Antarctic. Higher insects are rare in the Antarctic and the introduction and establishment of a new species is an unusual event. The fly has overcome the two major barriers to colonization of the Antarctic by new species: the geographical isolation of the region and its severe climate. Larvae of the flightless midge overwinter in the surface layers of soil on Signy Island where the temperature may fall to below ?10 °C, compared with as little as ?1.5 °C on South Georgia. This suggests the possession of a level of pre‐adaption to colder conditions. Summer‐collected larvae have a supercooling point (SCP or whole body freezing point) of approximately ?5.0 °C but survive experimental exposure to ?13 °C, giving them a level of freeze tolerance. After acclimation at ?4 °C for 4 days, the SCP changes little but the temperature at which 50% of the population would die decreases to lower than ?19 °C. Larvae are also resistant to dehydration. Under experimental conditions of 88% relative humidity at 5 °C, larvae lose water linearly (0.42% h?1) over the first 30 h but resist further water loss once their water content decreases to approximately 1.4 g g?1 dry weight. All larvae survive these conditions for the duration of the experiment (55 h). Eretmoptera murphyi is well adapted to survive on Signy Island, and these studies suggest that it has the ability to survive at more extreme locations at higher latitudes if it were to be inadvertently transferred to a suitable habitat.  相似文献   

18.
19.
The ability of a pest insect species to enter diapause, a physiological state of dormancy, has significant implications for population dynamics and pest management practises in agricultural landscapes. The false codling moth Thaumatotibia leucotreta is a major pest of deciduous and citrus fruit in southern Africa and a quarantine pest of international concern. Apart from an early field assessment that may have been compromised by taxonomic uncertainty surrounding cryptic developing life stages, no studies have investigated diapause induction within an experimental framework for this species, and none to date have used a suite of physiological traits potentially indicative of the diapause state. Here, we subjected larvae to cooling and shortening day length over a period of 14 days [Diapause Treatment (DT) group] relative to a similar‐aged control (CON) group held at optimal rearing conditions (25°C, 12 : 12 L : D) and tested if physiological traits, including resting metabolic rate, body freezing temperature (=supercooling point, equivalent to the low‐temperature mortality threshold) and body condition (body mass, body lipid and water content) varied in a direction that may be reflective of diapause induction. Mean metabolic rate in DT larvae was 0.044 ml CO2/h (mean mass: 52.7 mg), which was significantly higher than in CON larvae [0.025 ml CO2/h, mean mass: 51.5 mg (P = 0.04)]. Supercooling points were not statistically lower in the CON group than in DT larvae (DT:?15.6 ± 1.5°C; CON: ?16.4 ± 2.8°C; P = 0.33). Measures of body size, body condition and resting water loss rates remained similar between groups. These results support the conclusion of early field observations that T. leucotreta does not undergo diapause that has significant implications for the management of the species.  相似文献   

20.
Abstract Diapause larvae of the European corn borer (Ostrinia nubilalis (Hubn.)) and the related Mediterranean noctuid Sesamia cretica Led. possess sufficient supercooling ability to avoid freezing over their normal environmental temperature ranges. In progressive chilling experiments (10 days acclimation at each 5° step in the temperature range from 15 to ?5°C), mean supercooling points (measured at a cooling rate of 0.1°C min?1) were lowered from ?20.4°C at 15°C to ?24.0°C at 5°C (lower lethal temperatures: c.?28°C) in O.nubilalis, compared with ?15.0 to ?17.2°C (lower lethal temperatures: ?15 to ?17°C respectively) in S.cretica. Concentrations of glycerol and trehalose determined by gas chromatography of whole body extracts were consistently higher in the former than in the latter species at both 15 and 5°C, and may be responsible for the deeper supercooling in O.nubilalis larvae. Acclimation to 5°C increased glycerol levels in O. nubilalis extracts compared with 15°C, and this was enhanced in larvae exposed for a further 10 days at each of 0 and ?5°C (glycerol being 438μmol ml?1 body water). Haemolymph glycerol concentrations showed a similar pattern to whole body extracts in this species. Fat body glycogen was reduced during low temperature acclimation in both species. Body water contents did not change with acclimation in O.nubilalis, whilst S.cretica, containing significantly more water, lost c.7% during acclimation from 15 to 5°C. Haemolymph osmolalities increased during acclimation, especially in Ostrinia larvae, probably as a result of the accumulation of cryoprotectants. The majority of O.nubilalis larvae survived freezing under the conditions of the cooling experiments, whilst larvae of S.cretica did not, thereby confirming an element of freezing tolerance in the former.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号