首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高等植物重金属耐性与超积累特性及其分子机理研究   总被引:50,自引:0,他引:50       下载免费PDF全文
由于重金属污染日益严重, 重金属在土壤物系统中的行为引起了人们的高度重视。高等植物对重金 属的耐性与积累性, 已经成为污染生态学研究的热点。近年来, 由于分子生态学等学科的发展, 有关植物对重金属的解毒和耐性机理、重金属离子富集机制的研究取得了较大进展。高等植物对重金属的耐性和积累在种间和基因型之间存在很大差异。根系是重金 属等土壤污染物进入植物的门户。根系分泌物改变重金属的生物有效性和毒性, 并在植物吸收重金属的过程中发挥重要作用。土壤中的大部分重金属离子都是通过金属转运蛋白进入根细胞, 并在植物体内进一步转运至液泡贮存。在重金属胁迫条件下植物螯合肽 (PC) 的合成是植物对胁迫的一种适应性反应。耐性基因型合成较多的PC, 谷胱甘肽 (GSH) 是合成PC的前体, 重金属与PC螯合并转移至液泡中贮存, 从而达到解毒效果。金属硫蛋白 (MTs) 与PC一样, 可以与重金属离子螯合, 从而降低重金属离子的毒性。该文从分子水平上论述了根系分泌物、金属转运蛋白、MTs、PC、GSH在重金属耐性及超积累性中的作用, 评述了近 10年来这方面的研究进展, 并在此基础上提出存在的问题和今后研究的重点。  相似文献   

2.
植物对重金属的吸收和分布   总被引:70,自引:2,他引:68  
植物修复是利用植物来清除污染土壤中重金属的一项技术。该技术成功与否取决于植物从土壤中吸取金属以及向地上部运输金属的能力。植物对金属的吸收主要取决于自由态离子活度。许多螯合剂能诱导植物对重金属的吸收。金属离子在液泡中的区域化分布是植物耐重金属的主要原因。同时,细胞内的金属硫蛋白、植物螯合脓等蛋白质以及有机酸、氨基酸等在金属贮存和解毒方面也起重要作用。本文还论述了重金属在植物体内运输的生理及分子方面的研究进展。  相似文献   

3.
植物对重金属的吸收和分布   总被引:3,自引:0,他引:3  
植物修复是利用植物来清除污染土壤中重金属的一项技术。该技术成功与否取决于植 物从土壤中吸取金属以及向地上部运输金属的能力。植物对金属的吸收主要取决于自由态离子活度。许多螯合剂能诱导植物对重金属的吸收。金属离子在液泡中的区域化分布是植物耐 重金属的主要原因。同时,细胞内的金属硫蛋白、植物螯合肽等蛋白质以及有机酸、氨基酸等在金属贮存和解毒方面也起重要作用。本文还论述了重金属在植物体内运输的生理及分子 方面的研究进展。  相似文献   

4.
Plants experience oxidative stress upon exposure to heavy metals that leads to cellular damage. In addition, plants accumulate metal ions that disturb cellular ionic homeostasis. To minimize the detrimental effects of heavy metal exposure and their accumulation, plants have evolved detoxification mechanisms. Such mechanisms are mainly based on chelation and subcellular compartmentalization. Chelation of heavy metals is a ubiquitous detoxification strategy described in wide variety of plants. A principal class of heavy metal chelator known in plants is phytochelatins (PCs), a family of Cys-rich peptides. PCs are synthesized non-translationally from reduced glutathione (GSH) in a transpeptidation reaction catalyzed by the enzyme phytochelatin synthase (PCS). Therefore, availability of glutathione is very essential for PCs synthesis in plants at least during their exposure to heavy metals. Here, I reviewed on effect of heavy metals exposure to plants and role of GSH and PCs in heavy metal stress tolerance. Further, genetic manipulations of GSH and PCs levels that help plants to ameliorate toxic effects of heavy metals have been presented.  相似文献   

5.
Transporters of ligands for essential metal ions in plants   总被引:6,自引:1,他引:5  
Essential metals are required for healthy plant growth but can be toxic when present in excess. Therefore plants have mechanisms of metal homeostasis which involve coordination of metal ion transporters for uptake, translocation and compartmentalization. However, very little metal in plants is thought to exist as free ions. A number of small, organic molecules have been implicated in metal ion homeostasis as metal ion ligands to facilitate uptake and transport of metal ions with low solubility and also as chelators implicated in sequestration for metal tolerance and storage. Ligands for a number of essential metals have been identified and proteins involved in the transport of these ligands and of metal-ligand complexes have been characterized. Here we review recent advances in understanding the role of mugineic acid, nicotianamine, organic acids (citrate and malate), histidine and phytate as ligands for iron (Fe), zinc (Zn), copper (Cu), manganese (Mn) and nickel (Ni) in plants, and the proteins identified as their transporters.  相似文献   

6.
植物对重金属耐性的分子生态机理   总被引:24,自引:0,他引:24       下载免费PDF全文
植物适应重金属元素胁迫的机制包括阻止和控制重金属的吸收、体内螯合解毒、体内区室化分隔以及代谢平衡等。近年来,随着分子生物学技术在生态学研究中的深入应用,控制这些过程的分子生态机理逐渐被揭示出来。菌根、根系分泌物以及细胞膜是控制重金属进入植物根系细胞的主要生理单元。外生菌根能显著提高寄主植物的重金属耐性,根系分泌物通过改变根际pH、改变金属物质的氧化还原状态和形成络合物等机理减少植物对重金属的吸收。目前,控制菌根和根系分泌物重金属抗性的分子生态机理还不清楚。但细胞膜跨膜转运器已得到深入研究,相关金属离子转运器被鉴定和分离,一些控制基因如铁锌控制运转相关蛋白(ZIP)类、自然抵抗相关巨噬细胞蛋白(Nramp)类、P1B-type ATPase类基因已被发现和克隆。金属硫蛋白(MTs)、植物螯合素(PCs)、有机酸及氨基酸等是植物体内主要的螯合物质,它们通过螯合作用固定金属离子,降低其生物毒性或改变其移动性。与MTs合成相关的MT-like基因已经被克隆,PCs合成必需的植物螯合素合酶(PCS), 即γ-Glu-Cys二肽转肽酶(γ-ECS) 的编码基因已经被克隆,控制麦根酸合成的氨基酸尼克烟酰胺(NA)在重金属耐性中的作用和分子机理也被揭示出来。ATP 结合转运器(ABC)和阳离子扩散促进器(CDF) 是植物体内两种主要膜转运器,通过它们和其它跨膜方式,重金属被分隔贮藏于液泡内。控制这些蛋白转运器合成的基因也已经被克隆,在植物中的表达证实其与重金属的体内运输和平衡有关。热休克蛋白(HSP)等蛋白类物质的产生是一种重要的体内平衡机制,其分子机理有待进一步研究。重金属耐性植物在这些环节产生了相关响应基因或功能蛋白质,分子克隆和转基因技术又使它们在污染治理上得到了初步的应用。  相似文献   

7.
microRNA (miRNA)是一种新型的长度为20~24 nt的非编码RNA,通过对靶基因的表达调节进而参与调控植物体的多种生理代谢活动。重金属是一类重要的环境污染物,严重危害植物的生长发育,甚至导致植物死亡。植物在长期的进化过程中形成了抵御重金属胁迫的多种机制,如miRNA对特定基因转录后水平的调控就在逆境胁迫应答中发挥重要作用。本文综述了植物中参与重金属胁迫应答miRNA的种类及作用机制,为揭示重金属胁迫条件下基因表达调控机制,以及利用基因工程手段改良植物对重金属的耐受性提供了线索和依据。  相似文献   

8.
Antioxidant enzyme responses of plants to heavy metal stress   总被引:5,自引:0,他引:5  
Heavy metal pollutions caused by natural processes or anthropological activities such as metal industries, mining, mineral fertilizers, pesticides and others pose serious environmental problems in present days. Evidently there is an urgent need of efficient remediation techniques that can tackle problems of such extent, especially in polluted soil and water resources. Phytoremediation is one such approach that devices effective and affordable ways of engaging suitable plants to cleanse the nature. Excessive accumulation of metal in plant tissues are known to cause oxidative stress. These, in turn differentially affect other plant processes that lead to loss of cellular homeostasis resulting in adverse affects on their growth and development apart from others. Plants have limited mechanisms of stress avoidance and require flexible means of adaptation to changing. A common feature to combat stress factors is synchronized function of antioxidant enzymes that helps alleviating cellular damage by limiting reactive oxygen species (ROS). Although, ROS are inevitable byproducts from essential aerobic metabolisms, these are needed under sub-lethal levels for normal plant growth. Understanding the interplay between oxidative stress in plants and role of antioxidant enzymes can result in developing plants that can overcome oxidative stress with the expression of antioxidant enzymes. These mechanisms have been proving to have immense potential for remediating these metals through the process of phytoremediation. The aim of this review is to assemble our current understandings of role of antioxidant enzymes of plants subjected to heavy metal stress.  相似文献   

9.
Heavy metal pollution of soil is a significant environmental problem with a negative potential impact on human health and agriculture. Rhizosphere, as an important interface of soil and plants, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria or mycorrhizas have received more and more attention. In addition, some plants possess a range of potential mechanisms that may be involved in the detoxification of heavy metals, and they manage to survive under metal stresses. High tolerance to heavy metal toxicity could rely either on reduced uptake or increased plant internal sequestration, which is manifested by an interaction between a genotype and its environment.A coordinated network of molecular processes provides plants with multiple metal-detoxifying mechanisms and repair capabilities. The growing application of molecular genetic technologies has led to an increased understanding of mechanisms of heavy metal tolerance/accumulation in plants and, subsequently, many transgenic plants with increased heavy metal resistance, as well as increased uptake of heavy metals, have been developed for the purpose of phytoremediation. This article reviews advantages, possible mechanisms, current status and future direction of phytoremediation for heavy-metal–contaminated soils.  相似文献   

10.
高等植物金属抗性中有机酸的作用及其机理   总被引:2,自引:0,他引:2  
孙瑞莲  周启星 《生态学杂志》2006,25(10):1275-1279
植物的金属抗性可通过避性和耐性途径获得。具有螯合能力的有机酸在植物的金属外部排斥(避性)机制和内部耐受(耐性)机制中均具有重要作用。在金属的外部排斥过程中,植物根系分泌有机酸,与金属离子形成稳定的复合体,降低土壤金属的移动性,达到体外解毒的目的。超积累型植物的内部耐受机制主要体现在,有机酸可与金属元素发生螯合作用,将离子态的金属转变成低毒或无毒的螯合态,从而降低细胞内金属离子的毒害效应。有机酸的种类受植物种类、金属类型等因素的影响。  相似文献   

11.
Metallothioneins (MTs) are ubiquitous cysteine-rich proteins present in plants, animals, fungi and cyanobacteria. In plants, MTs are suggested to be involved in metal tolerance or homeostasis, as they are able to bind metal ions through the thiol groups of their cysteine residues. Recent reports show that MTs are also involved in the scavenging of reactive oxygen species (ROS). The interplay between these roles is not entirely clear. Plants have many MT isoforms with overlapping expression patterns, and no specific role for any of them has been assigned. This review is focused on recent findings on plant MTs.  相似文献   

12.
The role of the plasmalemma in metal tolerance in angiosperms   总被引:13,自引:0,他引:13  
Evidence for the role of the plasmalemma in metal tolerance of metal resistant ecotypes, cultivars and clones is presented. A range of tolerance mechanisms involving the plasmalemma are discussed including alterations to protein carrier and channel function and synthesis, efflux pumps and maintenance of plasmalemma integrity. Specific examples of such alterations from the literature on Al, As and Cu tolerance, where the plasmalemma has been shown to have a role in tolerance are considered. Tolerance by alterations to plasmalemma function in tolerant ecotypes may also rely on internal metal detoxification mechanisms constitutive in tolerant and non-tolerant plants.  相似文献   

13.
Bioremediation is an integrated management of a polluted ecosystem where different organisms are employed to catalyze the natural processes that decontaminate the environment. The potential role of bioremediation, particularly higher terrestrial plants (phytoremediation) research in the remediation of metal-polluted sites, has been the focus of much research in recent years. Arbuscular mycorrhizal fungi are soil microorganisms that establish mutual symbiosis with the majority of higher plants, providing direct links between fungi and roots. This paper reviews the incidence of arbuscular mycorrhizal fungi in metal polluted sites, their role in imparting metal tolerance to plants, the factors affecting arbuscular mycorrhizal fungi in metal polluted sites, and their mechanism of heavy metal tolerance. Particular attention is given to the current methodologies and challenges in this field.  相似文献   

14.
重金属胁迫下内生菌对宿主植物的解毒机制   总被引:4,自引:0,他引:4  
采用内生菌联合植物修复是土壤重金属污染修复理论研究和应用实践的新思路。较之根际促生菌,内生菌因生存环境稳定且与植物联系更加紧密,在实际应用中具有更大价值。在重金属胁迫下,部分具有特定功能的细菌可进入植物体内成为内生菌,这些内生菌通常在重金属吸收、耐受和解毒方面具有优良的特性,而且可以协同宿主植物耐受重金属胁迫,表现在直接或间接降低植物体内重金属胁迫强度和提高植物本身对重金属的耐受性两方面。系统分析了内生菌对宿主植物的解毒机制,综述了近年来内生菌增强植物重金属耐受性的研究,展望了重金属胁迫下植物和内生菌互作机制的研究思路和方向。  相似文献   

15.
植物螯合肽(phytochelatins,PCs)是由植物螯合肽合酶催化谷胱甘肽合成的一类生物小分子,结构式为(γ-Glu-Cys)n-Gly(n=2-11),在真菌和高等植物耐受重金属胁迫机制中具有重要作用。近年来,人们在Pc介导重金属脱毒害的分子机理研究上取得了重要进展,发JLSpHMT1和SpABC2是PC在裂殖酵母中介导重金属液泡区室化的主要转运蛋白,鉴定了拟南芥液泡膜PC转运蛋AtABCC1和AtABCC2。此外,PCs也可能在超积累植物细胞内对重金属脱毒害具有重要功能。  相似文献   

16.
Ling Li  Xuyu Yan 《Phyton》2021,90(6):1559-1572
Alleviating heavy metal pollution in farmland soil, and heavy metal toxicity in plants is the focus of global agricultural environmental research. Melatonin is a kind of indoleamine compound that wide exists in organisms; it is currently known as an endogenous free radical scavenger with the strongest antioxidant effect. As a new plant growth regulator and signaling molecule, melatonin plays an important role in plant resistance to biotic or abiotic stress. Recent studies indicate that melatonin can effectively alleviate heavy metal toxicity in crop plants, which provides a new strategy to minimize heavy metal pollution in crop plants. This study summarizes the research progress on the role of melatonin in alleviating heavy metal toxicity in crop plants and the related physiological and ecological mechanisms such as reducing the concentration of heavy metals in the rhizosphere, fixing and regionally isolating of heavy metals, maintaining the mineral element balance, enhancing the antioxidant defense system and interacting with hormonal signaling. Furthermore, future prospects for the mechanism of melatonin in regulating heavy metal toxicity, the pathway regulating synthesis and catabolism, and the interaction mechanism of melatonin signaling and other phytohormones are presented in this paper, with the goal of providing a theoretical basis for controlling heavy metal ion accumulation in crop plants grown in contaminated soil.  相似文献   

17.
The metal tolerance of metal hyper-accumulating plants is a poorly understood mechanism. In order to unravel the molecular basis of zinc (Zn) tolerance in the Zn hyper-accumulating plant Arabidopsis halleri ssp. halleri, we carried out a functional screening of an A. halleri cDNA library in the yeast Saccharomyces cerevisiae to search for genes conferring Zn tolerance to yeast cells. The screening revealed four A. halleri defensin genes (AhPDFs), which induced Zn but not cadmium (Cd) tolerance in yeast. The expression of AhPDF1.1 under the control of the 35S promoter in A. thaliana made the transgenic plants more tolerant to Zn than wild-type plants, but did not change the tolerance to Cd, copper (Cu), cobalt (Co), iron (Fe) or sodium (Na). Thus, AhPDF1.1 is able to confer Zn tolerance both to yeast and plants. In A. halleri, defensins are constitutively accumulated at a higher level in shoots than in A. thaliana. A. halleri defensin pools are Zn-responsive, both at the mRNA and protein levels. In A. thaliana, some but not all defensin genes are induced by ZnCl2 treatment, and these genes are not induced by NaCl treatment. Defensins, found in a very large number of organisms, are known to be involved in the innate immune system but have never been found to play any role in metal physiology. Our results support the proposition that defensins could be involved in Zn tolerance in A. halleri, and that a role for plant defensins in metal physiology should be considered.  相似文献   

18.
Phytochelatins and heavy metal tolerance   总被引:3,自引:0,他引:3  
The induction and heavy metal binding properties of phytochelatins in heavy metal tolerant (Silene vulgaris) and sensitive (tomato) cell cultures, in water cultures of these plants and in Silene vulgaris grown on a medieval copper mining dump were investigated. Application of heavy metals to cell suspension cultures and whole plants of Silene vulgaris and tomato induces the formation of heavy metal–phytochelatin-complexes with Cu and Cd and the binding of Zn and Pb to lower molecular weight substances. The binding of heavy metal ions to phytochelatins seems to play only a transient role in the heavy metal detoxification, because the Cd- and Cu-complexes disappear in the roots of water cultures of Silene vulgaris between 7 and 14 days after heavy metal exposition. Free heavy metal ions were not detectable in the extracts of all investigated plants and cell cultures. Silene vulgaris plants grown under natural conditions on a mining dump synthesize low molecular weight heavy metal binding compounds only and show no complexation of heavy metal ions to phytochelatins. The induction of phytochelatins is a general answer of higher plants to heavy metal exposition, but only some of the heavy metal ions are able to form stable complexes with phytochelatins. The investigation of tolerant plants from the copper mining dump shows that phytochelatins are not responsible for the development of the heavy metal tolerant phenotypes.  相似文献   

19.
Metals contaminate the soil when present in high concentrations causing soil and ultimately environmental pollution. “Phytoremediation” is the use of plants to remove pollutants from contaminated environments. Plants tightly regulate their internal metal concentrations in a process called “metal homeostasis”. Some species have evolved extreme tolerance and accumulation of Zn, Cd and Ni as a way to adapt to exposure to these metals. Such traits are beneficial for phytoremediation, however, most natural metal hyperaccumulator species are not adapted to agriculture and have low yields. A wealth of knowledge has been generated regarding metal homeostasis in plants, including hyperaccumulators, which can be used in phytoremediation of Zn, Cd and Ni. In this review, we describe the current state of Zn, Cd and Ni physiology in plants and the underlying molecular mechanisms. The ways to efficiently utilize this information in designing high biomass metal accumulator plants are discussed. The potential and application of genetic modification has extended our understanding about the mechanisms in plants dealing with the metal environment and has paved the way to achieve the goal of understanding metal physiology and to apply the knowledge for the containment and clean up of metal contaminated soils.  相似文献   

20.
金属结合蛋白基因及其在清除重金属污染中的应用   总被引:5,自引:0,他引:5  
焦芳婵  毛雪  李润植 《遗传》2002,24(1):82-86
一些微生物和植物由于对毒性金属具有独特的抗性机制,使得利用它们来清除日益严重的环境污染已发展成为一种十分有效的技术——生物修复。研究表明,不同的金属结合蛋白(如MT 和PC),在生物忍耐和降解过量重金属毒性机制中起重要作用。愈来愈多的MT 和PC基因被克隆,并已成功地应用于生物遗传转化,这些转基因生物在清除重金属污染方面已显示出潜在的应用价值。 Abstract:Heavy metal pollution has become a global environmental hazard.The use of microorganisms and plants for the decontamination of heavy metals is recognized as a low lost and high efficiency method for cleaning up metal contamination.It shows that various metal-binding proteins such as metallothioneins (MTs) or phytochelatines (PCs) play an important role in defense systems and detoxification to heavy metals in organisms.Many genes of MTs and PCs have been cloned and utilized successfully in genetically modified bacteria and plants for increasing remediation capacity.These transgenic organisms have been displayed a great potential in bioremediation and phytoremediation of heavy metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号