首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The photosynthetic performance of C4 plants is generally inferior to that of C3 species at low temperatures, but the reasons for this are unclear. The present study investigated the hypothesis that the capacity of Rubisco, which largely reflects Rubisco content, limits C4 photosynthesis at suboptimal temperatures. Photosynthetic gas exchange, chlorophyll a fluorescence, and the in vitro activity of Rubisco between 5 and 35 °C were measured to examine the nature of the low‐temperature photosynthetic performance of the co‐occurring high latitude grasses, Muhlenbergia glomerata (C4) and Calamogrostis canadensis (C3). Plants were grown under cool (14/10 °C) and warm (26/22 °C) temperature regimes to examine whether acclimation to cool temperature alters patterns of photosynthetic limitation. Low‐temperature acclimation reduced photosynthetic rates in both species. The catalytic site concentration of Rubisco was approximately 5.0 and 20 µmol m?2 in M. glomerata and C. canadensis, respectively, regardless of growth temperature. In both species, in vivo electron transport rates below the thermal optimum exceeded what was necessary to support photosynthesis. In warm‐grown C. canadensis, the photosynthesis rate below 15 °C was unaffected by a 90% reduction in O2 content, indicating photosynthetic capacity was limited by the capacity of Pi‐regeneration. By contrast, the rate of photosynthesis in C. canadensis plants grown at the cooler temperatures was stimulated 20–30% by O2 reduction, indicating the Pi‐regeneration limitation was removed during low‐temperature acclimation. In M. glomerata, in vitro Rubisco activity and gross CO2 assimilation rate were equivalent below 25 °C, indicating that the capacity of the enzyme is a major rate limiting step during C4 photosynthesis at cool temperatures.  相似文献   

2.
Abstract. Seasonal patterns in photosynthetic temperature acclimation and growth were investigated in the sedge, Carex eleocharis Bailey, a species which has demonstrated a marked capacity for shifts in the photosynthetic temperature optimum in previous growth chamber studies. The seasonal production of new leaves was 90% complete by the earliest study date, June 3. Shifts in the photosynthetic temperature optimum of 10°C (from 15 to 25°C) were observed during the months of June and July. These results indicate that in situ acclimatory adjustments in C. eleocharis occur in existing leaf tissue, rather than new leaves which are produced as the season progresses. Despite the 10°C increase in the temperature optimum, mean mid-day leaf temperatures were higher than the optimum throughout the summer. A broad temperature response appeared to be more important than the acclimation adjustments in maintaining near-maximum photosynthesis rates during the mid-day period. Seasonal shifts in the photosynthetic temperature optimum were not as great as those previously observed in growth chamber studies. This discrepancy arises because of the capacity for growth chamber grown plants to produce new leaves with temperature response characteristics closely tuned to the growth temperature regime. In field-grown plants the production of 90% of the leaves during the cool portion of the season places limitations on the potential for acclimation to the warmer midsummer temperatures.  相似文献   

3.
Summary The temperatures at which chlorophyll fluorescence yield is substantially increased and the temperatures at which the quantum yield for CO2 uptake is irreversibly inhibited were measured for three shortgrass prairie species. The experimental taxa include, a cool season species (Agropyron smithii), a warm season species (Bouteloua gracilis), and a species which grows throughout the cool and warm seasons (Carex stenophylla). Agropyron smithii exhibited lower high temperature damage thresholds (43°C in cool grown plants, 46°C in warm grown plants), relative to the other two species. Bouteloua gracilis exhibited the highest tolerance to high temperature, with threshold values being 44–49°C for cool grown plants and 53–55°C for warm grown plants. Carex stenophylla exhibited threshold values which were intermediate to the other two species (43–47°C for cool grown plants, and 51–53°C for warm grown plants). Seasonal patterns in the fluorescence rise temperatures of field grown plants indicated acclimation to increased temperatures in all three species. The results demonstrate a correlation between the high temperature thresholds for damage to the photosynthetic apparatus, and in situ seasonal phenology patterns for the three species.  相似文献   

4.
Abstract. Factors underlying the process of photosynthetic acclimation to temperature were investigated for the shrub Nerium oleander L. Ramets of a single clone were grown under day/night temperature regimes of 20°C/15°C or 45°C/32°C. Plants grown at the lower temperature regime possessed rates of photosynthesis twice that of the high-temperature grown plants when CO2 fixation was measured at 20°C. In contrast, the plants grown at the high-temperature regime had twice the rate of CO2 fixation of the 20°C/l 5°C-grown plants at a measurement temperature of 45° C. It was determined that the ability to acclimate to changes in temperature regime was present in fully mature leaves. A reciprocal transfer of plants between the two growth regimes resulted in the appearance of the CO2 fixation characteristics appropriate to the new growth temperature after 12–14d. The response of CO2 fixation to light, temperature, and CO2 partial pressure and the temperature responses of soluble and membrane-bound photosynthetic enzyme systems were analysed to determine which components might be responsible for the superior photosynthetic performance of the 20°C/I5°C-grown plants at 20°C, and the enhanced high-temperature stability of the 45°C/32°C plants. The measured photosynthetic capacity of the 20°C/15°C plants could not be attributed to gross morphological, stomatal, or other physical changes, or to a general increase in the concentration of components of the photosynthetic process. Only a single enzyme, Fru-P2 phosphatase, was affected to an extent similar to that of photosynthesis. The enhanced thermal stability of the 45°C/32°C plants may be attributed primarily to an enhanced stability of the chloroplast membrane-bound enzymatic activities and the stability of the photosynthetic carbon metabolism enzymes which require lighl for activation.  相似文献   

5.
Photosynthetic and respiratory activities and gross production in relation to temperature conditions were investigated in the population of an evergreen herb,Pyrola japonica, growing on the floor of a deciduous forest in the warm temperate region of central Japan. Analysis of the temperature-photosynthesis relationship ofP. japonica leaves during the growing season indicated distinct seasonal changes in the temperature optimum for photosynthesis. This population was found to be acclimatable to ambient air temperatures exceeding 15C, but this acclimation became less pronounced under thermal conditions below 15 C. This plant possessed narrow photosynthetic optima in the warm season but wide optima in the cold season. The shape of the temperature-respiration curve did not vary significantly with the months except for April. The Q10 for respiration between 10 C and 20 C was calculated to be 1.93–2.65. Annual dry matter loss associated with respiration was estimated to amount to 159.1 g d.w.m−2 based on the measurements of the seasonal changes in the respiratory activity of each organ. Gross production of this population was estimated to be 219.3 g d.w.m−2 year−1 as the sum total of the net production (60.2 g d.w.m−2year−1) and the respiration. Monthly gross production was high in the early growing season, and low and stable in winter.  相似文献   

6.
The relationships between photosynthesis, flowering, and growth temperatures were examined experimentally in four populations of the C4 grass genus Bouteloua. Field-collected plants were grown under two temperature regimes, cool (20 C day/6 C night) and warm (30/16), representative of the extreme populations. Populations collected from the warm climates had significantly lower photosynthetic capacity when grown in the cool chamber relative to the warm chamber, while photosynthetic capacity in the cool climate populations did not differ between the growth conditions. Additionally, exposure to a 2-day cold temperature treatment (10/-2), representative of late-season frosts in high altitude sites, resulted in further reductions in photosynthesis in the warm climate plants, but not in the cool climate plants. This effect was greater for plants grown in the cool growth chamber. Flowering was reduced by 70% in the warm climate plants grown in the cool chamber, and was correlated with photosynthetic inhibition following the short-term cold temperature treatment. These results indicate that genetic differentiation for photosynthetic temperature sensitivity has occurred in the cool climate populations, and that long-term exposure to cool temperatures coupled with short-term relatively extreme low temperatures results in greater photosynthetic inhibition in nontolerant populations.  相似文献   

7.
Eucalyptus species are grown widely outside of their native ranges in plantations on all vegetated continents of the world. We predicted that such a plantation species would show high potential for acclimation of photosynthetic traits across a wide range of growth conditions, including elevated [CO2] and climate warming. To test this prediction, we planted temperate Eucalyptus globulus Labill. seedlings in climate‐controlled chambers in the field located >700 km closer to the equator than the nearest natural occurrence of this species. Trees were grown in a complete factorial combination of elevated CO2 concentration (eC; ambient [CO2] +240 ppm) and air warming treatments (eT; ambient +3 °C) for 15 months until they reached ca. 10 m height. There was little acclimation of photosynthetic capacity to eC and hence the CO2‐induced photosynthetic enhancement was large (ca. 50%) in this treatment during summer. The warming treatment significantly increased rates of both carboxylation capacity (Vcmax) and electron transport (Jmax) (measured at a common temperature of 25 °C) during winter, but decreased them significantly by 20–30% in summer. The photosynthetic CO2 compensation point in the absence of dark respiration (Γ*) was relatively less sensitive to temperature in this temperate eucalypt species than for warm‐season tobacco. The temperature optima for photosynthesis and Jmax significantly changed by about 6 °C between winter and summer, but without further adjustment from early to late summer. These results suggest that there is an upper limit for the photosynthetic capacity of E. globulus ssp. globulus outside its native range to acclimate to growth temperatures above 25 °C. Limitations to temperature acclimation of photosynthesis in summer may be one factor that defines climate zones where E. globulus plantation productivity can be sustained under anticipated global environmental change.  相似文献   

8.
We investigated the extent to which leaf and root respiration (R) differ in their response to short‐ and long‐term changes in temperature in several contrasting plant species (herbs, grasses, shrubs and trees) that differ in inherent relative growth rate (RGR, increase in mass per unit starting mass and time). Two experiments were conducted using hydroponically grown plants. In the long‐term (LT) acclimation experiment, 16 species were grown at constant 18, 23 and 28 °C. In the short‐term (ST) acclimation experiment, 9 of those species were grown at 25/20 °C (day/night) and then shifted to a 15/10 °C for 7 days. Short‐term Q10 values (proportional change in R per 10 °C) and the degree of acclimation to longer‐term changes in temperature were compared. The effect of growth temperature on root and leaf soluble sugar and nitrogen concentrations was examined. Light‐saturated photosynthesis (Asat) was also measured in the LT acclimation experiment. Our results show that Q10 values and the degree of acclimation are highly variable amongst species and that roots exhibit lower Q10 values than leaves over the 15–25 °C measurement temperature range. Differences in RGR or concentrations of soluble sugars/nitrogen could not account for the inter‐specific differences in the Q10 or degree of acclimation. There were no systematic differences in the ability of roots and leaves to acclimate when plants developed under contrasting temperatures (LT acclimation). However, acclimation was greater in both leaves and roots that developed at the growth temperature (LT acclimation) than in pre‐existing leaves and roots shifted from one temperature to another (ST acclimation). The balance between leaf R and Asat was maintained in plants grown at different temperatures, regardless of their inherent relative growth rate. We conclude that there is tight coupling between the respiratory acclimation and the temperature under which leaves and roots developed and that acclimation plays an important role in determining the relationship between respiration and photosynthesis.  相似文献   

9.
This study examined temperature acclimation, growth, and photosynthetic characteristics of the zygote-derived seedlings of Hizikia fusiformis (Harvey) Okamura (Sargassaceae). The seedlings were cultured at 15°C or 25°C for 4 weeks. The average relative growth rate was significantly higher in seedlings acclimated at 25°C. The photosynthetic rate measured at 15°C was much higher in seedlings grown at 15°C than those grown at 25°C, indicating photosynthetic acclimation to a lower temperature. At 35°C, the photosynthetic rate of 15°C-grown seedlings was drastically decreased, whereas that of 25°C-grown seedlings was significantly increased. The maximum relative electron transport rate (rETRmax) measured at the respective growth temperature was significantly higher in seedlings grown at 25°C than at 15°C. At a measuring temperature of 35°C, the rETRmax in both 15°C- and 25°C-grown seedlings were considerably reduced with regard to those measured at 15°C or 25°C. Our results suggested that, compared with the seedlings grown at 25°C, those acclimated at a lower temperature could be disadvantaged under adverse conditions such as increased temperatures.  相似文献   

10.
The increasing air temperatures central to climate change predictions have the potential to alter forest ecosystem function and structure by exceeding temperatures optimal for carbon gain. Such changes are projected to threaten survival of sensitive species, leading to local extinctions, range migrations, and altered forest composition. This study investigated photosynthetic sensitivity to temperature and the potential for acclimation in relation to the climatic provenance of five species of deciduous trees, Liquidambar styraciflua, Quercus rubra, Quercus falcata, Betula alleghaniensis, and Populus grandidentata. Open‐top chambers supplied three levels of warming (+0, +2, and +4 °C above ambient) over 3 years, tracking natural temperature variability. Optimal temperature for CO2 assimilation was strongly correlated with daytime temperature in all treatments, but assimilation rates at those optima were comparable. Adjustment of thermal optima was confirmed in all species, whether temperatures varied with season or treatment, and regardless of climate in the species' range or provenance of the plant material. Temperature optima from 17° to 34° were observed. Across species, acclimation potentials varied from 0.55 °C to 1.07 °C per degree change in daytime temperature. Responses to the temperature manipulation were not different from the seasonal acclimation observed in mature indigenous trees, suggesting that photosynthetic responses should not be modeled using static temperature functions, but should incorporate an adjustment to account for acclimation. The high degree of homeostasis observed indicates that direct impacts of climatic warming on forest productivity, species survival, and range limits may be less than predicted by existing models.  相似文献   

11.
Thermal acclimation of photosynthesis and respiration can enable plants to maintain near constant rates of net CO2 exchange, despite experiencing sustained changes in daily average temperature. In this study, we investigated whether the degree of acclimation of photosynthesis and respiration of mature leaves differs among three congeneric Plantago species from contrasting habitats [two fast‐growing lowland species (Plantago major and P. lanceolata), and one slow‐growing alpine species (P. euryphylla)]. In addition to investigating some mechanisms underpinning variability in photosynthetic acclimation, we also determined whether leaf respiration in the light acclimates to the same extent as leaf respiration in darkness, and whether acclimation reestablishes the balance between leaf respiration and photosynthesis. Three growth temperatures were provided: constant 13, 20, or 27°C. Measurements were made at five temperatures (6–34°C). Little acclimation of photosynthesis and leaf respiration to growth temperature was exhibited by P. euryphylla. Moreover, leaf masses per area (LMA) were similar in 13°C‐grown and 20°C‐grown plants of the alpine species. In contrast, growth at 13°C increased LMA in the two lowland species; this was associated with increased photosynthetic capacity and rates of leaf respiration (both in darkness and in the light). Alleviation of triose phosphate limitation and increased capacity of electron transport capacity relative to carboxylation were also observed. Such changes demonstrate that the lowland species cold‐acclimated. Light reduced the short‐term temperature dependence (i.e. Q10) of leaf respiration in all three species, irrespective of growth temperature. Collectively, our results highlight the tight coupling that exists between thermal acclimation of photosynthetic and leaf respiratory metabolism (both in darkness and in the light) in Plantago. If widespread among contrasting species, such coupling may enable modellers to assume levels of acclimation in one parameter (e.g. leaf respiration) where details are only known for the other (e.g. photosynthesis).  相似文献   

12.
Several morphological characteristics differed when wheat (Triticum aestivum L. cv. Doha 88) was grown under a cool (10 °C), warm (20 °C), and hot (30 °C) regime. Development of leaves was linearly related to shoot meristem temperature, and the time between appearance of successive leaves on the main culm was independent of growth temperature. Area and dry mass of leaves and roots increased exponentially with time, and variations between growth temperature regimes were reduced when plants were compared at a similar developmental age. In isolated thylakoids thermal stability of photosystem 2 and of whole electron transport chain was enhanced with the increase in growth temperature. Therefore this cultivar is able to acclimate to contrasting temperature regimes.  相似文献   

13.
Groundsel (Senecio vulgaris) was grown in either a warm (20°C) or a cool (8°C) controlled environment and infected with Puccinia lagenophorae. Dark respiration, measured over the range 6 to 18°C, was higher in leaves of healthy plants grown under low temperatures than in those of plants grown under high temperatures. Infection increased the rates of dark respiration in the region of sporulating lesions in both sets of plants, but the greater increase in plants grown under warm conditions resulted in both sets having similar respiration rates across the range 6 to 18°C. The conclusion that the magnitude of the respiratory increase following rust infection depends upon the conditions under which plants were grown is supported by literature on other rust diseases and has implications for the utilization of carbohydrate reserves and the survival of both rust and host populations over winter.  相似文献   

14.
Low temperature effects on photosynthesis and growth of grapevine   总被引:7,自引:0,他引:7  
Growth and photosynthesis of grapevine (Vitis vinifera L.) planted on two sloping cool climate vineyards were measured during the early growth season. At both vineyards, a small difference in mean minimum air temperature (1–3 °C) between two microsites accumulated over time, producing differences in shoot growth rate. The growth rates of the warmer (upper) microsite were 34–63% higher than the cooler (lower) site. Photosynthesis measurements of both east and west canopy sides revealed that the difference in carbon gain between the warmer and cooler microsites was due to low temperatures restricting the photosynthetic contribution of east‐facing leaves. East‐facing leaves at the warmer microsite experienced less time at suboptimal temperature while being exposed to high irradiance, contributing to an average 10% greater net carbon gain compared to the east‐facing leaves at the cooler microsite. This chilling‐induced reduction in photosynthesis was not due to net photo‐inhibition. Further analysis revealed that CO2‐ and light‐saturated photosynthesis of grapevines was restricted by stomatal closure from 15 to 25 °C and by a limitation of RuBP regeneration and/or end‐product limitation from 5 to 15 °C. Changes in photosynthetic carboxylation efficiency implied that Rubisco activity may also play a regulatory role at all temperatures. This restriction of total photosynthetic carbon gain is proposed to be a major contributor to the temperature dependence of growth rate at both vineyards during the early season growth period.  相似文献   

15.
We investigated the acclimation of Chondrus crispus to growth at 5°C and 20°C in the laboratory. We were specifically interested in the responses of light-limited photosynthesis to temperature and the effects of short-term thermal changes (of the order of minutes). Thermal acclimation to constant temperatures over 3–4 weeks had significant effects on the light-use characteristics of this species such that in comparison with those grown at 5°C, 20°C-grown plants had higher concentrations of chlorophyll a and total phycobilins, which were associated with larger photosynthetic unit sizes. Plants grown at the higher temperature had greater photosynthetic efficiencies (α) and higher rates of light-limited photosynthesis at a given photon flux density than did plants acclimated to 5°C. Plants acclimated to 20°C were less sensitive to short-term temperature changes than were 5°C-acclimated plants. These results are discussed in terms of (1) the effects of growth temperature on light harvesting and (2) the implications of exposure to constant temperature for short-term thermal responses.  相似文献   

16.
Effects of temperature were studied on the current and following season's growth of shoots from chilled rhizomes of Variegated Solomon's Seal. The rate of progress to completed elongation of the aerial shoot in chilled plants increased linearly with increasing temperature up to 28°C (24 h mean). A post‐chilling thermal time of 658 ± 47°Cd (> ‐1.3°C) was required for aerial shoots to become fully extended. Temperatures of 28°C and 33°C accelerated aerial shoot senescence and decreased rhizome and root dry weights, as compared with 18°C and 23°C treatments. Leaf number and variegation were not affected by temperature treatments during current growth season and all plants produced 12–13 leaves with between 7% and 9% leaf area variegated. Leaf variegation, however, was significantly increased in plants that had been grown after chilling at 28°C during the preceding growing season. Proteins of approximately 26, 32 and 62 kDa were present in the green parts of leaves but not in the white parts.  相似文献   

17.
Experiments performed under controlled conditions showed that level of PPFD (photosynthetic photon flux density) during early seedlings growth (preceding cold acclimation at +2 °C) was not the key factor for the development of frost resistance. It did not modify the beneficial effects of prehardening (Rapacz 1997, in this issue) at moderately low (+12 °C) day temperature. Now I have shown that the increase of PPFD may replace to some extent prehardening in the development of frost resistance. It was particularly seen in non-prehardened plants, which had been grown under warm-day (+20 °C) conditions. Prehardening performed under controlled conditions, as well as seedlings growth under natural autumn conditions in the field, allowed to maintain a high net-photosynthesis rate at chilling temperatures. A net-photosynthesis rate during cold acclimation at +2 °C corresponded well with higher frost resistance. As a result, seedlings non subjected to prehardening and grown before cold acclimation under low PPFD acclimated better, if the cold treatment was applied only at nights (+20/2 °C day/night). Only under such conditions the photosynthetic rate was sufficiently high to allow plants to reach a higher level of frost resistance. All other plants acclimated better when they were exposed to the hardening temperature continuously during days and nights (+2/2 °C day/night).  相似文献   

18.
Four populations of Cannabis sativa L. grown from seeds collected in Panama, Jamaica, Nepal, and east central Illinois were grown under controlled conditions in growth chambers. One set was grown under warm conditions (32° day and 23° night) and the other set was grown under lower temperatures (23° day and 16° night). CO2 exchange and transpiration were examined under various temperatures and light intensities. Observations on growth, and analyses for chlorophyll and Δ1THC (tetrahydrocannabinol) content were made. Under warm growth conditions, the central Illinois population had the highest photosynthetic rate at all temperatures investigated. The Nepal population had intermediate rates, while the Jamaica and the Panama populations had the lowest rate. The Jamaica and Panama populations had insignificant changes in photosynthetic response to changes in temperatures between 15° and 30°. Under cool growing conditions the central Illinois population had the highest rate of photosynthesis with a definite peak at 25°. Nepal plants had intermediate rates of photosynthesis, while the Panama and Jamaica populations had the lowest rate. Differences in chlorophyll and drug content were also significant between these populations. From these data it is suggested that the four populations can be grouped into different ecotypes genetically adapted to their respective environments.  相似文献   

19.
To examine the role of acclimation versus adaptation on the temperature responses of CO2 assimilation, we measured dark respiration (R n) and the CO2 response of net photosynthesis (A) in Populus balsamifera collected from warm and cool habitats and grown at warm and cool temperatures. R n and the rate of photosynthetic electron transport (J) are significantly higher in plants grown at 19 versus 27°C; R n is not affected by the native thermal habitat. By contrast, both the maximum capacity of rubisco (V cmax) and A are relatively insensitive to growth temperature, but both parameters are slightly higher in plants from cool habitats. A is limited by rubisco capacity from 17–37°C regardless of growth temperature, and there is little evidence for an electron-transport limitation. Stomatal conductance (g s) is higher in warm-grown plants, but declines with increasing measurement temperature from 17 to 37°C, regardless of growth temperature. The mesophyll conductance (g m) is relatively temperature insensitive below 25°C, but g m declines at 37°C in cool-grown plants. Plants acclimated to cool temperatures have increased R n/A, but this response does not differ between warm- and cool-adapted populations. Primary carbon metabolism clearly acclimates to growth temperature in P. balsamifera, but the ecotypic differences in A suggest that global warming scenarios might affect populations at the northern and southern edges of the boreal forest in different ways.  相似文献   

20.
The influence of temperature was studied in relation to nitrate reductase activity of creeping bentgrass (Agrostis palustris Huds. cv. ‘Toronto’) a cool season grass and bermudagrass (Cynodon dactylon L. cv. ‘Tifgreen’) a warm season grass. Maximum nitrate reductase activity of both species occurred at 20°C. The nitrate reductase level in bentgrass leaves was reduced when grown at 35°C while bermudagrass leaves were relatively unaffected. The activity per se of the bentgrass enzyme preparation was inhibited rather than synthesis of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号