首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Negative curvature-dependent localized surface plasmon resonance (LSPR) properties of concentric core–shell metallic nanostructure have been studied using quasistatic approach and plasmon hybridization theory. Whether in single-layered gold nanoshell or double gold nanoshells, the oscillating surface charges always concentrate close to the poles of the metal surface with negative curvature, which results in the anisotropic local electric field distribution and affects both the inter-surface plasmonic coupling and inter-shell plasmonic coupling. Therefore, the change of the radius of the gold surface with negative curvature could modulate the plasmon hybridization and lead to the LSPR shifting. The physical mechanism of the negative curvature-dependent LSPR presents a potential for design and fabrication of nanoscale optical device based on core–shell type metallic nanostructures.  相似文献   

2.
Though the plasmonic property for a passive nanoparticle dimer has been studied widely, the performance of a nanoparticle dimer with gain material is still inexplicit to our knowledge. Therefore, in this paper, we focus on the plasmonic effect of a nanoshell dimer, with its core filled with different gain materials, under a polarized plane wave excitation using a three-dimensional finite difference time domain method. It is shown that the gain materials in the core of the nanoshell can compensate the intrinsic absorption of the metal shell, resulting in a local energy enhancement in the junction of the active nanoshell dimer. The physics is supported by the detailed energy distribution of the active nanoshell dimer in each geometry region. It is found that the plasmonic coupling between two active nanoshell particles is more compact than the case of passive ones. The influence of shell thickness on the interaction between two adjacent active nanoshells is also analyzed.  相似文献   

3.
In this paper, we establish the full-wave electromagnetic scattering theory to study the electromagnetic scattering from infinitely long cylinders with cylindrically anisotropic coatings. We show that the total effective scattering width can be dramatically reduced by the suitable adjustment of the dielectric anisotropy of the shell, while it is not the case for tuning the dielectric anisotropy of the core. Furthermore, we could make the cylindrical objects invisible when both dielectric and magnetic anisotropies are adjusted. In the long wavelength limit, we develop effective medium theory to derive the effective isotropic permittivity and permeability for the anisotropic coated cylinders, and the invisibility radius ratio derived from the full-wave theory for small coated cylinders can be well described within the effective medium theory.  相似文献   

4.
We demonstrate the synthesis and characterization of core–shell nanowires consisting of a non-centrosymmetric KNbO3 core and a gold shell. This type of nanostructure combines the nonlinear optical properties of the core and the plasmonic resonance of the shell in the near infrared spectral range. We report successful spectroscopic measurements on coated single wires to characterize the resonant behavior of the gold shell. We present a theoretical model based on the electrostatic approximation to estimate the enhancement of second-harmonic generation in a nanowire due to the shell. It suggests a possible enhancement factor of up to 4,000 for a system with a nanoshell of 16 nm thickness at a wavelength of 900 nm.  相似文献   

5.

The surface plasmon resonance (SPR)-induced local field effect in Al-Au-Ag trimetallic three-layered nanoshells has been studied theoretically. Because of having three kinds of metal, three plasmonic bands have been observed in the absorption spectra and the local electric field factor spectra. The local electric field enhancement and the corresponding resonance wavelength for different plasmon coupling modes and spatial positions of the Al-Au-Ag nanoshells with various geometry dimensions are investigated to find the maximum local electric field enhancement. The calculation results indicate that the giant local electric field enhancement could be stimulated by the plasmon coupling in the middle Au shell or the outer Ag shell and could be optimized by increasing the Ag shell thickness and decreasing the Au shell thickness. What is more, the local electric field enhancement also nonmonotonously depends on the dielectric constant of the environment; the local electric field intensity will be weakened when the surrounding dielectric constant is too small or too large.

  相似文献   

6.
In this communication, light harvesting and photoelectrochemical (PEC) hydrogen generation beyond the visible region are realized by an anisotropic plasmonic metal/semiconductor hybrid photocatalyst with precise control of their topology and heterointerface. Controlling the intended configuration of the photocatalytic semiconductor to anisotropic Au nanorods' plasmonic hot spots, through a water phase cation exchange strategy, the site‐selective overgrowth of a CdSe shell evolving from a core/shell to a nanodumbbell is realized successfully. Using this strategy, tip‐preferred efficient photoinduced electron/hole separation and plasmon enhancement can be realized. Thus, the PEC hydrogen generation activity of the Au/CdSe nanodumbbell is 45.29 µmol cm?2 h?1 (nearly 4 times than the core/shell structure) beyond vis (λ > 700 nm) illumination and exhibits a high faradic efficiency of 96% and excellent stability with a constant photocurrent for 5 days. Using surface photovoltage microscopy, it is further demonstrated that the efficient plasmonic hot charge spatial separation, which hot electrons can inject into CdSe semiconductors, leads to excellent performance in the Au/CdSe nanodumbbell.  相似文献   

7.
In this study, the optical properties induced by dual symmetry breaking including both shell cutting and core offsetting in the gold-silica-gold multilayer nanoshells have been studied by the discrete dipole approximation simulations and the plasmon hybridization theory. The influences of the incident polarization and geometrical parameters on the plasmon resonances of these dual-symmetry-breaking Au-silica-Au multilayer nanoshells (DSMNS) are investigated. Under the combined effect of the two types of symmetry breaking, it is found that the polarization-dependent multiple plasmon resonances can be induced in the DSMNS. By changing the polarization of 90o, the switching of the two transparency windows can be flexibly adjusted in the DSMNS with different types of Au core offsetting. This polarization-controlled transparency is likely to generate a wide range of photonic applications such as filters and color displays. Furthermore, the local refractive index sensitivity of the DSMNS is also investigated, and the triple extinction peaks simultaneous shift is found as the surrounding medium changed, which suggests the potential applications for biological sensors.  相似文献   

8.
In this study, the effect of plasmonic core‐shell structures, consisting of dielectric cores and metallic nanoshells, on energy conversion in dye‐sensitized solar cells (DSSCs) is investigated. The structure of the core‐shell particles is controlled to couple with visible light so that the visible component of the solar spectrum is amplified near the core‐shell particles. In core‐shell particle – TiO2 nanoparticle films, the local field intensity and light pathways are increased due to the surface plasmons and light scattering. This, in turn, enlarges the optical cross‐section of dye sensitizers coated onto the mixed films. When 22 vol% of core‐shell particles are added to a 5 μm thick TiO2 film, the energy conversion efficiency of DSSCs increases from 2.7% to 4.0%, in spite of a more than 20% decrease in the amount of dyes adsorbed on the composite films. The correlation between core‐shell particle content and energy conversion efficiency in DSSCs is explained by the balance among near‐field effects, light scattering efficiency, and surface area in the composite films.  相似文献   

9.

We demonstrate the optical response of metal nanoparticles and their interaction with organic-inorganic perovskite (methyl ammonia lead halide (CH3NH3PbI3)) environment using discrete dipole approximation (DDA) simulation technique. Important optical properties like absorption, scattering, and electric field calculations for metal nanoparticle using different geometry have been analyzed. The metal nanoparticles embedded in the perovskite media strongly support surface plasmon resonances (SPRs). The plasmonic interaction of metal nanoparticles with perovskite matrix is a strong function of MNP’s shape, size, and surrounding environment that can manipulate the optical properties considerably. The cylindrical shape of MNPs embedded in perovskite environment supports the SPR which is highly tunable to subwavelength range of 400–800 nm. Wide range of particle sizes has been selected for Ag, Au, and Al spherical and cylindrical nanostructures surrounded by perovskite matrix for simulation. The chosen hybrid material and anisotropy of structure together make a complex function for resonance shape and width. Among all MNPs, 70-nm spherical silver nanoparticle (NP) and cylindrical Ag NP having diameter of 50 nm and length of 70 nm (aspect ratio 1.4) generate strong electric field intensity that facilitates increased photon absorption. The plasmonic perovskite interaction plays an important role to improve the absorption of photon inside the thin film perovskite environment that may be applicable to photovoltaics and photonics.

  相似文献   

10.
In this paper, the characteristics of a novel terahertz plasmonic microcavity consisting of a circular hole and a coaxial (metallic) cylindrical core machined on a planar metal surface is theoretically investigated. It is shown that such a structure can sustain plasmonic modes, whose resonant wavelengths are much larger than the hole diameter and fields tightly localized within the cavity. For this cavity, both high quality factor and ultrasmall mode volume can be achieved in the terahertz range. As this type of microcavity is particularly compatible with planar technology, it has promising applications in the miniaturization and integration of terahertz optical components.  相似文献   

11.

We study the optical bistability and multistability in a defect structure doped with polaritonic materials and three-level nanoparticles. It is realized that the threshold of optical bistability can be manipulated by some controllable parameters such as Rabi frequency, line width of upper level, and thickness of defect structure. Due to dense doping of three-level nanoparticles, the dipole-dipole interactions (DDI) between nanoparticles become important. Therefore, the DDI has been considered as an interesting mechanism for transition from optical bistability to multistability. The line width effect of upper level and thickness of defect structure on threshold of optical multistability has also been investigated. We hope that our proposed model may be useful for developing the future all-optical devices in nanoscales.

  相似文献   

12.
Based on a coupled meta-atom and metal-nonlinear dielectric-metal nanocavity, nonlinear all-optical strong coupling switches are proposed and numerically investigated. In the absence of the external pumping light, the resonances of the meta-atom are continuously tuned across the one of the nanocavity by changing the size of the meta-atom. The meta-atomic electric dipole and quadrupole interaction with the plasmonic nanocavity is obtained. The characteristic anticrossing behaviors manifest the occurrence of the strong coupling. With the resonance of the meta-atom being tuned to the one of the nanocavity, we dynamically tune the coupled strength of the system by changing intensity (power) of the pumping light and realize the transition from the strong coupling regime to the weak one. This means that this system can be used as an on/off switch in which the strong coupling can be on/off with an external control light, and the on/off states correspond to strong/weak coupling regime, respectively. Such a strong coupling all-optical switching is of considerable interest for applications in nanoscale plasmonic circuits.  相似文献   

13.

An all-optical switch based on plasmonic metal–insulator–metal (MIM) waveguides and the Mach–Zehnder (MZ) interferometer is designed. In order to realize an all-optical and active switch, a nonlinear material with intensity-dependent refractive index is introduced in one arm. Other than studying a typical MZ structure, we also investigate the asymmetric case where unequal thicknesses and distances for MZ arms are proposed. The finite element method (FEM) with a refined triangle mesh is employed for simulations. Results for ON and OFF states are provided with or without employing the pump field. Investigation of the geometrical dispersion reveals tunability of the structure for specific frequencies in the terahertz region. Finally, we show that introducing asymmetric arms provides better tunability in the designed ultrafast nano-scale switch and suggests its potential applications in integrated optical circuits.

  相似文献   

14.
Plasmonics - We study the main nonlinear solutions of plasmonic slot waveguides made from an anisotropic metamaterial core with a positive Kerr-type nonlinearity surrounded by two semi-infinite...  相似文献   

15.
Consisting of a silica core surrounded by a thin gold shell, nanoshells possess an optical tunability that spans the visible to the near infrared (NIR) region, a region where light penetrates tissues deeply. Conjugated with tumor-specific antibodies, NIR-absorbing immunonanoshells can preferentially bind to tumor cells. NIR light then heats the bound nanoshells, thus destroying the targeted cells. Antibodies can be consistently bound to the nanoshells via a bifunctional polyethylene glycol (PEG) linker at a density of approximately 150 antibodies per nanoshell. In vitro studies have confirmed the ability to selectively induce cell death with the photothermal interaction of immunonanoshells and NIR light. Prior to incubation with anti-human epidermal growth factor receptor (HER2) immunonanoshells, HER2-expressing SK-BR-3 breast carcinoma cells were seeded alone or adjacent to human dermal fibroblasts (HDFs). Anti-HER2 immunonanoshells bound to HER2-expressing cells resulted in the death of SK-BR-3 cells after NIR exposure only within the irradiated area, while HDFs remained viable after similar treatment since the immunonanoshells did not bind to these cells at high levels. Control nanoshells, conjugated with nonspecific anti-IgG or PEG, did not bind to either cell type, and cells continued to be viable after treatment with these control nanoshells and NIR irradiation.  相似文献   

16.
In this article, we report the synthesis strategy and optical properties of a novel type of fluorescence metal nanoshell when it was used as imaging agent for fluorescence cell imaging. The metal nanoshells were made with 40 nm silica cores and 10 nm silver shells. Unlike typical fluorescence metal nanoshells which contain the organic dyes in the cores, novel metal nanoshells were composed of Cy5-labelled monoclonal anti-CK19 antibodies (mAbs) on the external surfaces of shells. Optical measurements to the single nanoparticles showed that in comparison with the metal free labelled mAbs, the mAb-Ag complexes displayed significantly enhanced emission intensity and dramatically shortened lifetime due to near-field interactions of fluorophores with metal. These metal nanoshells were found to be able to immunoreact with target cytokeratin 19 (CK19) molecules on the surfaces of LNCAP and HeLa cells. Fluorescence cell images were recorded on a time-resolved confocal microscope. The emissions from the metal nanoprobes could be clearly isolated from the cellular autofluorescence backgrounds on the cell images as either individuals or small clusters due to their stronger emission intensities and shorter lifetimes. These emission signals could also be precisely counted on single cell images. The count number may provide an approach for quantifying the target molecules in the cells.  相似文献   

17.
All-optical plasmonic switches based on a novel coupled nano-disk cavity configuration containing nonlinear material are proposed and numerically investigated. The finite difference time domain simulation results reveal that the single-disk plasmonic structure can operate as an “on–off” switch with the presence/absence of pumping light. We also demonstrate that the proposed T-shaped plasmonic structure with two disk cavities can switch signal light from one port to another under an optical pumping light, functioning as a bidirectional switch. The proposed nano-disk cavity plasmonic switches have many advantages such as compact size, requirement of low pumping light intensity, and ultra-fast switching time at a femto-second scale, which are promising for future integrated plasmonic devices for applications such as communications, signal processing, and sensing.  相似文献   

18.
Dual-band light absorption with the maximal absorptivity up to 99.7% and the minimal spectral bandwidth down to 3 nm is obtained in the plasmonic absorbers consisting of triple-layer plasmonic crystal-nonlinear medium cavity-metal substrate structure, where the intercalated dielectric material is chosen to be a Kerr medium cavity. Efficient all-optical controlling with high spectral intensity change ratios and detecting signal-to-noise is achieved for the system after a slight increase of pumping intensity. These impressive results mainly result from the strong plasmonic resonant field confinement in the middle nonlinear Kerr medium cavity and the near-perfect relative intensity change response by the ultra-sharp anti-reflection spectrum. This work can lay a foundation for advanced all-optical devices by exploiting light perfect absorption behavior and resonant optical field enhancement.  相似文献   

19.
Plasmonic Fano resonances arise in symmetric single-layer conical nanoshells, which can be switched on and off by changing the polarization of the incident electric field. By breaking the symmetry, higher-order dark hybridized modes emerge in the spectrum, which couple to the superradiant bright mode and induce higher-order plasmonic Fano resonances. From a comparison with spherical nanostructures, it comes out that single-layer conical nanoshells are found to be highly capable in the generation of higher-order Fano resonances with larger modulation depths in the optical spectra. Such nanostructures are also found to offer high values of figure of merit and contrast ratio due to which they are highly suitable for biological sensors.  相似文献   

20.
Plasmonic nanoparticles (NPs) with photothermal effects can be exploited as efficient heat sources in various applications. Here, the photothermal properties in core-shell structured plasmonic NPs, including metal/silica NP, silica/metal NP, and metal/silica/metal NP, are investigated. Compared with bare metal NPs, the core-shell plasmonic NPs not only exhibit extremely agile tunability in the surface plasmon resonances but also show considerably enhanced photothermal effects in terms of the maximum temperature rise. For metal/silica NPs and metal/silica/metal NPs, the SiO2 shells function as effective thermal-protective layers for enhanced photothermal effect. For silica/metal NPs, the SiO2 core and the metal shell show uniform temperature rise. These findings are essential for applying the core-shell structured plasmonic NPs on photothermal imaging, nanofluidics, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号