首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
为了解铁皮石斛(Dendrobium officinale)种质间的亲缘关系,利用ISSR技术对34份铁皮石斛种质资源进行亲缘关系和遗传多样性分析。结果表明,9条ISSR引物在34份种质中共扩增出78条带,多态位点百分率达100%。UPGMA聚类分析表明,种质的相似系数为0.61~0.92,在相似系数0.626处,福建省泰宁的野生铁皮石斛与栽培铁皮石斛分为两大类。泰宁野生铁皮石斛种群的Nei’s基因多样性(H)和遗传分化系数(Gst)分别为0.3111和0.4609,均高于栽培种群(0.3056和0.4204),表明泰宁野生铁皮石斛具有较丰富的多样性和较高的种群分化系数。AMOVA分析表明,铁皮石斛种群内变异指数为74%,种群间变异指数为26%,表明不同种群间可能存在基因交流。这些为不同地域的野生铁皮石斛资源的有效保护及利用提供理论依据及技术参考。  相似文献   

2.
Allozyme variation at eleven loci encoding seven enzyme systems were examined in 20 populations of diploid (genome AA, 2n = 16)Scilla scilloides in China. In comparison with the average species of seed plants studied, populations of this species display a high amount of genetic variation (A = 2.0, P = 58.6%, Ho = 0.172, and He = 0.185). Allozyme variation pattern revealed predominant outcrossing within populations and considerable differentiation (FST = 0.314) among populations as well as between the subtropic and temperate regions. The wide distribution, long existence and outcrossing are presumably the main factors responsible for the high genetic diversity within populations. But the gravity dispersal of seeds and pollination by small insects set limits to the increase of genetic variation within populations and promote differentiation between populations and regions. In addition, allozyme variation does not distinguishS. scilloides var.albo-viridis and suggests that subtropic populations may be considered as a genetic entity.  相似文献   

3.
The genetic diversity within and among populations of Shorea leprosula and Shorea parvifolia from Indonesia was investigated using amplified fragment length polymorphisms (AFLPs). The results indicated that S. leprosula is genetically more variable than S. parvifolia. At the population level, a higher level of genetic diversity was revealed for S. leprosula with a percentage of polymorphic loci (PPLp) of 53.32% and an expected heterozygosity (H ep) of 0.16 in comparison with S. parvifolia showing PPLp of 51.79% and H ep of 0.14. At the species level, S. leprosula showed PPLs of 92.86% and H es of 0.21, while S. parvifolia showed PPLs of 85.71% and H es of 0.21. Genetic differentiation (G st) indicated that 25 and 31% of total genetic diversity in S. leprosula and S. parvifolia, respectively, were attributed to the differences among populations. An analysis of molecular variance (AMOVA) at two hierarchical levels exhibited that most genetic variation resided within populations with proportion of 70.2% for S. leprosula and 66.2% for S. parvifolia. The AMOVA at three hierarchical levels performed for S. leprosula and S. parvifolia together revealed that the genetic difference between the two species was remarkably higher with a proportion of 44.1% than the differences within and among populations (38.1 and 17.8%, respectively). The genetic differentiation between islands was significant for S. leprosula but not for S. parvifolia. The observed genetic diversity agreed with the life history traits of Shorea species. Highly differentiating individual AFLP markers were found for each species, which will serve as diagnostic markers for the identification of wood of different species, from different islands and regions.  相似文献   

4.
Chen S  Xia T  Chen S  Zhou Y 《Biochemical genetics》2005,43(3-4):189-201
Random amplified polymorphic DNA (RAPD) markers were used to measure genetic diversity of Coelonema draboides (Brassicaceae), a genus endemic to the Qilian Mountains of the Qinghai-Tibet Plateau. We sampled 90 individuals in 30 populations of Coelonema draboides from Datong and Huzhu counties of Qinghai Province in P.R. China. A total of 186 amplified bands were scored from the 14 RAPD primers, with a mean of 13.3 amplified bands per primer, and 87% (161 bands) polymorphic bands (PPB) was found. Analysis of molecular variance (AMOVA) shows that a large proportion of genetic variation (84.2%) resides among individuals within populations, while only 15.8% resides among populations. The species shows higher genetic diversity between individuals than other endemic and endangered plants. The RAPDs provide a useful tool for assessing genetic diversity of rare, endemic species and for resolving relationships among populations. The results show that the genetic diversity of this species is high, possibly allowing it to adapt more easily to environmental variations. The main factor responsible for the high level of differentiation within populations and the low level of diversity among populations is probably the outcrossing and long-lived nature of this species. Some long-distance dispersal, even among far separated populations, is also a crucial determinant for the pattern of genetic variation in the species. This distributive pattern of genetic variation of C. draboides populations provides important baseline data for conservation and collection strategies for the species. It is suggested that only populations in different habitats should be studied and protected, not all populations, so as to retain as much genetic diversity as possible.  相似文献   

5.
Cycas fairylakea is an endangered endemic species in China. Genetic diversity within and among four natural populations of this species in China was investigated using amplified fragments length polymorphism (AFLP). A moderate to low level of intraspecific genetic diversity was detected in this species (at population level: P = 39.57 %, H0 = 0.244; at species level: P = 60.22%, H0 = 0.356). The among-population component accounted for, respectively, 25.7 and 31.5% of the genetic variation, according to AMOVA and Shannon’s index, indicating most of the genetic variation was found between individuals within populations. All four populations have opposite pyramid age structure, and few coning individuals, which is still decreasing. Possibly because of habitat degradation and environmental pollution, plant diseases and insect pests in the populations were extremely serious, suggesting that the main factors threatening the survival of C. fairylakea populations were not genetic variation, but human activities and the breeding system of this species.  相似文献   

6.
Phenakospermum guyannense is a monotypic, arborescent, long-lived monocot that is widespread in Amazonian South America. This outcrossing species is pollinated primarily by phyllostomid bats. Given these life-history characteristics,P. guyannense is expected to exhibit high levels of genetic variation and gene flow. We used isozyme electrophoresis and randomly amplified polymorphic DNA (RAPD) to characterize genetic variation in populations ofP. guyannense from French Guiana. Both measures detected a surprisingly low level of genetic variation, with only five out of twenty (25%) allozyme loci polymorphic (P), 1.35 alleles per locus (A), and an expected heterozygosity (He) of 0.090 at the species level. Isozymic genetic variation was even lower within populations (P = 17.5, A = 1.24, He = 0.074), and was corroborated by a RAPD assay that used 26 arbitrary primers (P = 3.61, A = 1.04, He = 0.014). Although overall levels of variation were low, the detectable variation was distributed as would be expected for an outcrossing species with extensive gene flow (mean GST = 0.230). We suspect thatP. guyannense is depauperate in genetic variation because of a series of bottlenecks that affected the species over this portion of its range.  相似文献   

7.
Repeated cycles of retreat and recolonization during the Quaternary ice ages are thought to have greatly influenced current species distributions and their genetic diversity. It remains unclear how this climatic oscillation has affected the distribution of genetic diversity between populations of wind-pollinated conifers in the Qinghai-Tibetan region. In this study, we investigated the within-species genetic diversity and phylogenetic relationships of Picea likiangensis, a dominant forest species in this region using polymorphic DNA (RAPD) markers. Our results suggest that this species has high overall genetic diversity, with 85.42% of loci being polymorphic and an average expected heterozygosity (H E) of 0.239. However, there were relatively low levels of polymorphism at population levels and the differences between populations were not significant, with percentages of polymorphic bands (PPB) ranging from 46.88 to 69.76%, Nei’s gene diversity (H E) from 0.179 to 0.289 and Shannon’s indices (Hpop) from 0.267 to 0.421. In accordance with our proposed hypothesis, a high level of genetic differentiation among populations was detected based on Nei’s genetic diversity (G ST = 0.256) and AMOVA analysis (Phi st = 0.236). Gene flow between populations was found to be limited (Nm = 1.4532) and far lower than reported for other conifer species with wide distribution ranges from other regions. No clusters corresponding to three morphological varieties found in the south, north and west, respectively, were detected in either UPGMA or PCO analyses. Our results suggest that this species may have had different refugia during the glacial stages in the southern region and that the northern variety may have multiple origins from these different refugia.  相似文献   

8.
Cordyceps sinensis is one of the most valuable medicinal caterpillar fungi native to China. However, its productivity is extremely limited and the species is becoming endangered. The genetic diversity of eighteen C. sinensis populations across its major distributing regions in China was evaluated by inter-simple sequence repeat (ISSR) markers. A total of 141 markers were produced in 180 individuals from the 18 populations, of which 99.3% were polymorphic. The low average of Shannon (0.104) and Nei index (0.07) of the 18 populations indicates that there are little genetic variations within populations. For all 18 populations, estimates of total gene diversity (HT), gene diversity within populations (HS), coefficient of genetic differentiation (GST), and gene flow (Nm) were 0.170, 0.071, 0.583, and 0.357, respectively. This pattern suggests that the genetic diversity of C. sinensis is low and most of the ISSR variations are found among populations with little gene exchange. The 18 populations are divided into five groups based on the genetic distance and the grouping pattern matches with the geographic distribution along the latitudinal gradient. The five groups show obvious difference in the GST and Nm values. Therefore, the genetic diversification of C. sinensis populations may be determined by geographic isolation and the combined effects of life history characters and the interaction with host insect species. The information illustrated by this study is useful for selecting in situ conservation sites of C. sinensis.  相似文献   

9.
披碱草属(Elymus L.)是禾本科(Poaceae)小麦族(Triticeae)中的一个多年生属,该属在青藏高原地区有广泛分布,多数物种是草原和草甸的组成成分,许多种类为品质优良的牧草。垂穗披碱草(E.nutans)和达乌力披碱草(E.dahuricus)同为禾本科小麦族披碱草属异源六倍体物种,染色体组组成皆为StYH。为探究垂穗披碱草遗传多样性形成的内在机制,该研究利用微卫星(SSR)分子标记,对采自青藏高原地区同域分布的垂穗披碱草和达乌力披碱草两个居群共58个个体进行遗传多样性和遗传结构分析。结果表明:8对引物在垂穗披碱草和达乌力披碱草扩增条带分别为163条和124条,多态性位点百分率(PPB)分别为89.71%和76.07%,多态性信息含量(PIC)分别介于0.583~0.929和0.524~0.830之间。垂穗披碱草遗传多样性(He=0.69,I=1.34,Pp=100%)高于达乌力披碱草(He=0.53,I=0.80,Pp=93.75%);同域分布的垂穗披碱草和达乌力披碱草居群,垂穗披碱草呈现出更高的遗传多样性。AMOVA分子变异显示,两个物种居群内遗传变异分别80.92%和63.62%,但居群间遗传分化水平较低。遗传结构分析揭示两个物种间有基因流存在。综合分析结果认为,该地区种间杂交基因渗透引起的种内遗传分化,在这两个物种多样性形成中可能起着重要作用。  相似文献   

10.
Dipteronia is an endemic genus to China and includes only two species, Dipteronia sinensis and D. dyeriana. Based on random amplified polymorphic DNA (RAPD) markers, a comparative study of the genetic diversity and genetic structure of Dipteronia was performed. In total, 128 and 103 loci were detected in 17 D. sinensis populations and 4 D. dyeriana populations, respectively, using 18 random primers. These results showed that the proportions of polymorphic loci for the two species were 92.97% and 81.55%, respectively, indicating that the genetic diversity of D. sinensis was higher than that of D. dyeriana. Analysis, based on similarity coefficients, Shannon diversity index and Nei gene diversity index, also confirmed this result. AMOVA analysis demonstrated that the genetic variation of D. sinensis within and among populations accounted for 56.89% and 43.11% of the total variation, respectively, and that of D. dyeriana was 57.86% and 42.14%, respectively. The Shannon diversity index and Nei gene diversity index showed similar results. The abovementioned characteristics indicated that the genetic diversity levels of these two species were extremely similar and that the interpopulational genetic differentiation within both species was relatively high. Analysis of the genetic distance among populations also supported this conclusion. Low levels of interpopulational gene flow within both species were believed to be among the leading causes for the above-mentioned phenomenon. The correlation analysis between genetic and geographical distances showed the existence of a remarkably significant correlation between the genetic distance and the longitudinal difference among populations of D. sinensis (p < 0.01), while no significant correlation was found between genetic and geographical distances among populations of D. dyeriana. This indicated that genetic distance was correlated with geographical distances on a large scale rather than on a small scale. This result may be related to differences in the selection pressure on species by their habitats with different distribution ranges. We suggest that in situ conservation efforts should focus on establishing more sites to protect the natural populations and their habitats. Ex situ conservation efforts should focus on enhancing the exchange of seeds and seedlings among populations to facilitate gene exchange and recombination, and to help conserve genetic diversity. __________ Translated from Acta Phytoecologica Sinica, 2005, 29(5): 785–792 [译自: 植物生态学报, 2005, 29(5): 785–792]  相似文献   

11.
Chinese alligator (Alligator sinensis) is a critically endangered species endemic to China. In this study, the extent of genetic variation in the captive alligators of the Changxing Reserve Center was investigated using microsatellite markers derived from American alligators. Out of 22 loci employed, 21 were successfully amplified in the Chinese alligator. Sequence analysis showed loci in American alligators had a bigger average size than that of the Chinese alligators and the longest allele of an individual locus almost always existed in the species with longer stretch of repeat units. Eight of the 22 loci were found to be polymorphic with a total of 26 alleles present among 32 animals scored, yielding an average of 3.25 alleles per polymorphic locus. The expected heterozygosity (H E) ranged at a moderate level from 0.4385 to 0.7163 in this population. Compared to that in the American alligators, a lower level of microsatellite diversity existed in the Changxing population as revealed by about 46% fewer alleles per locus and smaller H E at the homologous loci. The average exclusion power and the ability to detect shared genotypes and multiple paternity were evaluated for those markers. Results suggested that when the polymorphic loci were combined, they could be sensitive markers in genetic diversity study and relatedness inference within the Chinese alligator populations. The level of genetic diversity present in the current Changxing population indicated an important resource to complement reintroductions based on the individuals from the other population. In addition, the microsatellite markers and their associated diversity characterized in this population could be utilized to further investigate the genetic status of this species.  相似文献   

12.
Random amplified polymorphic DNA (RAPD) and microsatellite markers were applied to evaluate the genetic variation in endemic and endangered yellow catfish, Horabagrus brachysoma sampled from three geographic locations of Western Ghat, South India river systems. In RAPD, of 32 10-mer RAPD primers screened initially, 10 were chosen and used in a comparative analysis of H. brachysoma collected from Meenachil, Chalakkudy and Nethravathi River systems. Of the 124 total RAPD fragments amplified, 49 (39.51%) were found to be shared by individuals of all 3 populations. The remaining 75 fragments were found to be polymorphic (60.48%). In microsatellites, six polymorphic microsatellite loci were identified by using primers developed for Pangasius hypophthalmus, Clarias macrocephalus and Clarias gariepinus. The identified loci were confirmed as microsatellite by sequencing after making a clone. The nucleotide sequences of 6 loci were published in NCBI genbank. The number of alleles across the six loci ranged from 4 to 7 and heterozygosities ranged from 0.07 to 0.93. The mean number of alleles and effective number of alleles per locus were 5.00 and 3.314, respectively. The average heterozygosity across all investigated samples was 0.72, indicating a significant deficiency of heterozygotes in this species. RAPD and microsatellite methods reported a high degree of gene diversity and genetic distances depicted by UPGMA dendrograms among the populations of H. brachysoma.  相似文献   

13.
Li Q  Xiao M  Guo L  Wang L  Tang L  Xu Y  Yan F  Chen F 《Biochemical genetics》2005,43(7-8):445-458
The genetic diversity and genetic structure of Trillium tschonoskii (Maxim) were investigated using amplified fragment length polymorphism markers. Eight primer combinations were carried out on 105 different individuals sampled from seven populations. Of the 619 discernible DNA fragments generated, 169 (27.3%) were polymorphic. The percentage of polymorphic bands within populations ranged from 4.52 to 10.50. Genetic diversity (HE) within populations ranged from 0.0130 to 0.0379, averaging 0.0536 at the species level. Genetic differentiation among populations was detected based on Nei's genetic diversity analysis (53.03%) and analysis of molecular variance (AMOVA) (52.43%). AMOVA indicated significant genetic differentiation among populations (52.43% of the variance) and within populations (47.57% of the variance) (p < 0.0002). Gene flow was low (0.4429) among populations. Species breeding system and limited gene flow among populations are plausible reasons for the high genetic differentiation observed for this species. We propose an appropriate strategy for conserving the genetic resources of T. tschonoskii in China.  相似文献   

14.
Xia T  Chen S  Chen S  Ge X 《Biochemical genetics》2005,43(3-4):87-101
Genetic variation of 10 Rhodiola alsia (Crassulaceae) populations from the Qinghai–Tibet Plateau of China was investigated using intersimple sequence repeat (ISSR) markers. R. alsia is an endemic species of the Qinghai–Tibet Plateau. Of the 100 primers screened, 13 were highly polymorphic. Using these primers, 140 discernible DNA fragments were generated with 112 (80%) being polymorphic, indicating pronounced genetic variation at the species level. Also there were high levels of polymorphism at the population level with the percentage of polymorphic bands (PPB) ranging from 63.4 to 88.6%. Analysis of molecular variance (AMOVA) showed that the genetic variation was mainly found among populations (70.3%) and variance within populations was 29.7%. The main factors responsible for the high level of differentiation among populations are probably the isolation from other populations and clonal propagation of this species. Occasional sexual reproduction might occur in order to maintain high levels of variation within populations. Environmental conditions could also influence population genetic structure as they occur in severe habitats. The strong genetic differentiation among populations in our study indicates that the conservation of genetic variability in R. alsia requires maintenance of as many populations as possible.  相似文献   

15.
Amplified fragment length polymorphism (AFLP) markers were used to estimate the genetic diversity of seven wild populations of Sinopodophyllum hexandrum (Royle) Ying from the Tibetan region of Sichuan Province, China. Six primer combinations generated a total of 428 discernible DNA fragments, of which 111 were polymorphic. The percentage of polymorphic bands (PPB) was 25.93 at the species level, and PPB within population ranged from 4.91 to 12.38%. Genetic diversity (H E) within populations varied from 0.01 to 0.04, averaging 0.05 at the species level. As revealed by the results of AMOVA analysis, 58.8% of the genetic differentiation occurred between populations, and 41.2% within populations. The genetic differentiation was, perhaps, due to the limited gene flow (N m=0.43) of the species. The correlation coefficient (r) between genetic and geographical distance using Mantel's test for all populations was 0.698 (P=0.014). The UPGMA cluster analysis revealed a similar result in that the genetic distances among the populations show, to a certain extent, a spatial pattern corresponding to their geographic locations. On the basis of the genetic and ecological information, we propose some appropriate strategies for conserving the endangered S. hexandrum in this region.  相似文献   

16.
为了解海南岛油茶(Camellia oleifera)种质资源的遗传多样性,采用SRAP分子标记,对海南岛油茶主要分布区的31个居群进行了遗传多样性和亲缘关系分析。结果表明,海南岛油茶资源的遗传多样性低,物种水平的多态性百分率(PPB)为98.30%,Nei’s基因多样性(H)为0.222 8,Shannon信息指数(I)为0.353 8;居群水平的PPB=40.96%,观测等位基因数(Na)为1.409 6,有效等位基因数(Ne)为1.237 1, H=0.138 5, I=0.208 3,这与海南岛油茶丰富的表型多样性水平不一致。海南岛油茶资源遗传分化较大,居群间基因交流有限,不同居群间的遗传分化指数(Gst)为0.380,基因流(Nm)为0.813 91。遗传变异主要发生在居群内,有38.05%的变异存在居群间,61.95%存在于居群内。遗传距离为0.022 6~0.276 4,平均为0.107 7,居群间的亲缘关系较近。UPGMA聚类分析表明,在遗传距离为0.11处,可将31个油茶居群聚为6类,表现出明显的行政区域性,而与地理距离关系不大。因此,海南岛油茶资源遗传多样性低,亲缘关系近可能导致自交或近交不亲和,可能是海南油茶林分花量大而结实低的主要内在原因。  相似文献   

17.
We examined genetic variation in allozyme loci, nuclear DNA restriction fragment length polymorphisms (RFLPs), and random amplified polymorphic DNAs (RAPDs) in 130 trembling aspen (Populus tremuloides) and 105 bigtooth aspen (P. grandidentata) trees. In trembling aspen 10 out of 13 allozyme loci assayed (77%) were polymorphic (P), with 2.8 alleles per locus (A) and an expected heterozygosity (He) of 0.25. In contrast, bigtooth aspen had a much lower allozyme genetic variability (P=29%; A=1.4; He=0.08). The two species could be distinguished by mutually exclusive alleles at Idh-1, and bigtooth aspen has what appears to be a duplicate 6PG locus not present in trembling aspen. We used 138 random aspen genomic probes to reveal RFLPs in HindIII digests of aspen DNA. The majority of the probes were from sequences of low copy number. RFLP results were consistent with those of the allozyme analyses, with trembling aspen displaying higher genetic variation than bigtooth aspen (P=71%, A=2.7, and He=0.25 for trembling aspen; P=65%, A=1.8, and He=0.13 for bigtooth aspen). The two species could be distinguished by RFLPs revealed by 21 probes (15% of total probes assayed). RAPD patterns in both species were studied using four arbitrary decamer primers that revealed a total of 61 different amplified DNA fragments in trembling aspen and 56 in bigtooth aspen. Assuming a Hardy-Weinberg equilibrium, estimates of P=100%, A=2, and He=0.30 in trembling aspen and P=88%, A=1.9, and He=0.31 in bigtooth aspen were obtained from the RAPD data. Five amplified DNA fragments were species diagnostic. All individuals within both species, except for 2 that likely belong to the same clone, could be distinguished by comparing their RAPD patterns. These results indicate that (1) RFLPs and allozymes reveal comparable patterns of genetic variation in the two species, (2) trembling aspen is more genetically variable than bigtooth aspen at both the allozyme and DNA levels, (3) one can generate more polymorphic and species-specific loci with DNA markers than with allozymes in aspen, and (4) RAPDs provide a very powerful tool for fingerprinting aspen individuals.  相似文献   

18.
Genetic variability in 10 natural Tunisian populations of Medicago laciniata were analysed using 19 quantitative traits and 12 polymorphic microsatellite loci. A large degree of genetic variability within-populations and among-populations was detected for both quantitative characters and molecular markers. High genetic differentiation among populations for quantitative traits was seen, with Q ST = 0.47, and F ST = 0.47 for microsatellite markers. Several quantitative traits displayed no statistical difference in the levels of Q ST and F ST . Further, significant correlations between quantitative traits and eco-geographical factors suggest that divergence in the traits among populations may track environmental differences. There was no significant correlation between genetic variability at quantitative traits and microsatellite markers within populations. The site-of-origin of eco-geographical factors explain between 18.13% and 23.40% of genetic variance among populations at quantitative traits and microsatellite markers, respectively. The environmental factors that most influence variation in measured traits among populations are assimilated phosphorus (P205) and mean annual rainfall, followed by climate and soil texture, altitude and organic matter. Significant associations between eco-geographical factors and gene diversity, H e , were established in five-microsatellite loci suggesting that these simple sequence repeats (SSRs) are not necessarily biologically neutral.  相似文献   

19.
Random amplified polymorphic DNA (RAPD) markers were used to determine the levels and pattern of molecular variation in four populations of Elymus trachycaulus, and to estimate genetic similarity among different populations of E. trachycaulus from British Columbia and the Northwest Territories and one population of Elymus alaskanus from the Northwest Territories. Based on 124 RAPD bands (loci), mean percent polymorphic loci for E. trachycaulus (PP) was 67.4% (a range 41.2% to 86.3%), and mean gene diversity (He) for E. trachycaulus species was 0.23 (range 0.18 to 0.27). The total genetic diversity was 0.32. Differentiation among populations was 31% (FST = 0.31) with most of the genetic variation found within populations (69%). This pattern of genetic variation was different from that reported for inbred species in general.The authors are very grateful to Michael Bond for excellent Laboratory assistance, to Dr. Mary Barkworth for her encouragement. This study was supported by a Natural Science and Engineering Research Council (NSERC) discovery grant and by a Saint Marys University Internal grant to G.S.  相似文献   

20.
Tribulus terrestris is well known for its medicinal importance in curing urino-genital disorders. Amplified fragment length polymorphism (AFLP), selective amplification of microsatellite polymorphic loci (SAMPL), inter-simple sequence repeat (ISSR) and randomly amplified polymorphic DNA (RAPD) markers were used for the first time for the detection of genetic polymorphism in this medicinal herb from samples collected from various geographical regions of India. Six assays each of AFLP and SAMPL markers and 21 each of ISSR and RAPD markers were utilized. AFLP yielded 500 scorable amplified products, of which 82.9% were polymorphic. SAMPL primers amplified 488 bands, 462 being polymorphic (94.7%). The range of amplified bands was 66 [(TC)8G + M-CAG] to 98 [(CA)6AG + M-CAC] and the percentage polymorphism, 89.9 [from (CT)4C (AC)4A + M-CTG] to 100 [from (GACA)4 + M-CTA]. The ISSR primers amplified 239 bands of 0.4–2.5 kb, 73.6% showed polymorphism. The amplified products ranged from 5 to 16 and the percentage polymorphism 40–100. RAPD assays produced 276 bands, of which 163 were polymorphic (59%). Mantel test employed for detection of goodness of fit established cophenetic correlation values above 0.9 for all the four marker systems. The dendrograms and PCA plots derived from the binary data matrices of the four marker systems are highly concordant. High bootstrap values were obtained at major nodes of phenograms through WINBOOT software. The relative efficiency of the four molecular marker systems calculated on the basis of multiplex ratio, marker index and average heterozygosity revealed SAMPL to be the best. Distinct DNA fingerprinting profile, unique to every geographical region could be obtained with all the four molecular marker systems. Clustering can be a good indicator for clear separation of genotypes from different regions in well-defined groups that are supported by high bootstrap values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号