首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
St Gelais C  Coleman CM  Wang JH  Wu L 《PloS one》2012,7(3):e34521
HIV-1 Nef enhances dendritic cell (DC)-mediated viral transmission to CD4(+) T cells, but the underlying mechanism is not fully understood. It is also unknown whether HIV-1 infected DCs play a role in activating CD4(+) T cells and enhancing DC-mediated viral transmission. Here we investigated the role of HIV-1 Nef in DC-mediated viral transmission and HIV-1 infection of primary CD4(+) T cells using wild-type HIV-1 and Nef-mutated viruses. We show that HIV-1 Nef facilitated DC-mediated viral transmission to activated CD4(+) T cells. HIV-1 expressing wild-type Nef enhanced the activation and proliferation of primary resting CD4(+) T cells. However, when co-cultured with HIV-1-infected autologous DCs, there was no significant trend for infection- or Nef-dependent proliferation of resting CD4(+) T cells. Our results suggest an important role of Nef in DC-mediated transmission of HIV-1 to activated CD4(+) T cells and in the activation and proliferation of resting CD4(+) T cells, which likely contribute to viral pathogenesis.  相似文献   

2.
Antibodies against various proteins of HIV type 1 (HIV-1) can be detected in HIV-1-infected individuals. We previously reported that the level of Ab response against one Nef epitope is correlated with HIV-1 disease progression. To elucidate the mechanism for this correlation, we examined Ab-dependent cellular cytotoxicity (ADCC) against target cells expressing Nef. We observed efficient cytotoxicity against Nef-expressing target cells in the presence of patient plasma and PBMCs. This ADCC activity was correlated with the dilution of plasma from HIV-1-infected patients. Addition of a specific synthetic peptide (peptide 31:FLKEKGGLE) corresponding to the Nef epitope reduced cell lysis to approximately 50%. These results suggest that PBMCs of HIV-1-infected patients may exert ADCC via anti-Nef Abs in the patients' own plasma and serve as a mechanism used by the immune system to regulate HIV-1 replication.  相似文献   

3.
The susceptibility of monocyte-derived cultured dendritic cells (DCs) to human immunodeficiency virus (HIV) infection and their role in viral transmission in the immune response were studied in detail. We observed that highly purified cultured DCs were infected with the T-tropic Lai strain of HIV type 1 (HIV-1Lai) via the CD4 receptor, and this was followed by formation of the complete provirus as detected by PCR. HIV mRNAs were transcribed at only low levels, and virus production was undectable; however, the addition of the purified protein derivative antigen of tuberculin and of autologous resting T cells to HIV-1Lai-infected DCs but not to HIV-1Lai-infected macrophages led to massive HIV transmission and production. These data suggest that the interaction of infected DCs with T cells during the normal immune response could play an important role in the activation and expansion of HIV.  相似文献   

4.
Already at initial phases of infection, HIV is coated with complement fragments. During the chronic phase, when HIV-specific IgGs appear, the virus circulates immune complexed with IgG and complement. Thus, we studied the interaction of dendritic cells (DCs) and DC-T cell cocultures with complement (C)-opsonized and C-IgG-opsonized HIV. HIV infection of monocyte-derived DCs and circulating BDCA-1-positive DCs was significantly reduced upon the presence of virus-specific but non-neutralizing IgGs. DCs exposed to C-Ig-HIV or IgG-opsonized HIV showed an impaired provirus formation and p24 production and a decreased transmission rate to autologous nonstimulated T cells upon migration along a chemokine gradient. This reduced infectivity was also observed in long-term experiments, when T cells were added delayed to DCs exposed to IgG-coated HIV without migration. Similar kinetics were seen when sera from HIV-1-infected individuals before and after seroconversion were used in infection assays. Both C- and C-IgG-opsonized HIV were captured and targeted to a tetraspanin-rich endosome in immature DCs, but differed with respect to MHC class II colocalization. The reduced infection by IgG-opsonized HIV is possibly due to interactions of virus-bound IgG with FcgammaRIIb expressed on DCs. Therefore, the intracellular fate and transmission of immune-complexed HIV seems to differ depending on time and opsonization pattern.  相似文献   

5.
In HIV infection, dendritic cells (DCs) may play multiple roles, probably including initial HIV uptake in the anogenital mucosa, transport to lymph nodes, and subsequent transfer to T cells. The effects of HIV-1 on DC maturation are controversial, with several recent conflicting reports in the literature. In this study, microarray studies, confirmed by real-time PCR, demonstrated that the genes encoding DC surface maturation markers were among the most differentially expressed in monocyte-derived dendritic cells (MDDCs), derived from human blood, treated with live or aldrithriol-2-inactivated HIV-1(BaL). These effects translated to enhanced cell surface expression of these proteins but differential expression of maturation markers was only partial compared with the effects of a conventional potent maturation stimulus. Such partially mature MDDCs can be converted to fully mature cells by this same potent stimulus. Furthermore, live HIV-1 stimulated greater changes in maturation marker surface expression than aldrithriol-2-inactivated HIV-1 and this enhanced stimulation by live HIV-1 was mediated via CCR5, thus suggesting both viral replication-dependent and -independent mechanisms. These partially mature MDDCs demonstrated enhanced CCR7-mediated migration and are also able to stimulate interacting T cells in a MLR, suggesting DCs harboring HIV-1 might prepare CD4 lymphocytes for transfer of HIV-1. Increased maturation marker surface expression was also demonstrated in native DCs, ex vivo Langerhans cells derived from human skin. Thus, HIV initiates maturation of DCs which could facilitate subsequent enhanced transfer to T cells.  相似文献   

6.
Dendritic cells (DCs) loaded with viral peptides are a potential form of immunotherapy of human immunodeficiency virus type 1 (HIV-1) infection. We show that DCs derived from blood monocytes of subjects with chronic HIV-1 infection on combination antiretroviral drug therapy have increases in expression of HLA, T-cell coreceptor, and T-cell activation molecules in response to the DC maturation factor CD40L comparable to those from uninfected persons. Mature DCs (mDCs) loaded with HLA A*0201-restricted viral peptides of the optimal length (9-mer) were more efficient at activating antiviral CD8(+) T cells than were immature DCs or peptide alone. Optimal presentation of these exogenous peptides required uptake and vesicular trafficking and was comparable in DCs derived from HIV-1-infected and uninfected persons. Furthermore, DCs from HIV-1-infected and uninfected persons had similar capacities to process viral peptides with C-terminal and N-terminal extensions through their proteasomal and cytosolic pathways, respectively. We conclude that DCs derived from HIV-1-infected persons have similar abilities to process exogenous peptides for presentation to CD8(+) T cells as those from uninfected persons. This conclusion supports the use of DCs loaded with synthetic peptides in immunotherapy of HIV-1 infection.  相似文献   

7.
Induction of apoptosis by HIV-1-infected monocytic cells   总被引:1,自引:0,他引:1  
We have previously described a soluble 6000-Da peptide produced by an HIV-1-infected human macrophage cell line, clone 43(HIV), which induces apoptosis in T and B cells. We have identified this factor as the novel cDNA clone FL14676485 that encodes for the human hypothetical protein, FLJ21908. The FL14676485 cDNA clone was isolated from a 43(HIV) lambda ZAP Escherichia coli expression library and screened with a panel of rabbit and mouse anti-apoptotic Abs. We transfected the FL14676485 clone into Bosc cells and non-HIV-1-infected 43 cells. Western blot analysis of lysates from the FL14676485-transfected 43 cells and Bosc cells using anti-proapoptotic factor Abs revealed a protein with a molecular mass of 66 kDa corresponding to the size of the full-length gene product of the FL14676485 clone, while Western blot of the supernatant demonstrated a doublet of 46-kDa and 6000-Da peptide that corresponds to our previously described proapoptotic factor. Primary HIV-1(BaL)-infected monocytes also produce the FLJ21908 protein. Supernatants from these transfected cells induced apoptosis in PBMC, CD4(+), and CD8(+) T and B cells similar to the activity of our previously described proapoptotic factor. PCR analysis of 43 cells and 43(HIV) cells revealed a base pair fragment of 420 bp corresponding to the FL14676485 gene product in 43(HIV) cells, but not in 43 cells. The FLJ21908 protein induces apoptosis through activation of caspase-9 and caspase-3. We have further demonstrated that the FLJ21908 protein has apoptotic activity in the SH-SY5Y neuronal cell line and can be detected in brain and lymph tissue from HIV-1-infected patients who have AIDS dementia. The FLJ21908 protein may contribute to the apoptosis and dementia observed in AIDS patients.  相似文献   

8.
The C-type lectin dendritic cell-specific ICAM 3-grabbing nonintegrin (DC-SIGN)/CD209 efficiently binds several pathogens, including HIV-1. DC-SIGN is expressed on monocyte-derived DCs in culture, and importantly, it is able to sequester HIV-1 within cells and facilitate transmission of virus to CD4+ T cells. To investigate DC-SIGN function, we have generated new mAbs. We report in this study that these and prior anti-DC-SIGN mAbs primarily label macrophages in the medullary sinuses of noninflamed human lymph node. In contrast, expression is not detected on most DCs in the T cell area, except for occasional cells. We also noted that IL-4 alone can induce expression of DC-SIGN in CD14+ monocytes and circulating blood DCs. However, blockade of DC-SIGN with Abs and DC-SIGN small interfering RNA did not result in a major reduction in the capacity of these DCs to transfer HIV to T cells, confirming significant DC-SIGN-independent mechanisms. The blocking approaches did reduce HIV-1 transmission by DC-SIGN-transfected cells by >90%. DC-SIGN blockade also did not reduce the ability of DCs to stimulate T cell proliferation in the MLR. These results indicate that DC-SIGN has the potential to contribute to macrophage function in normal human lymph node, and that DCs do not require DC-SIGN to transmit HIV or to initiate T cell responses.  相似文献   

9.
10.
The loss of CD4(+) T cells and the impairment of CD8(+) T cell function in HIV infection suggest that pharmacological treatment with IL-7 and IL-15, cytokines that increase the homeostatic proliferation of T cells and improve effector function, may be beneficial. However, these cytokines could also have a detrimental effect in HIV-1-infected individuals, because both cytokines increase HIV replication in vitro. We assessed the impact of IL-7 and IL-15 treatment on viral replication and the immunogenicity of live poxvirus vaccines in SIV(mac251)-infected macaques (Macaca mulatta). Neither cytokine augmented the frequency of vaccine-expanded CD4(+) or CD8(+) memory T cells, clonal recruitment to the SIV-specific CD8(+) T cell pool, or CD8(+) T cell function. Vaccination alone transiently decreased the viral set point following antiretroviral therapy suspension. IL-15 induced massive proliferation of CD4(+) effector T cells and abrogated the ability of vaccination to decrease set point viremia. In contrast, IL-7 neither augmented nor decreased the vaccine effect and was associated with a decrease in TGF-beta expression. These results underscore the importance of testing immunomodulatory approaches in vivo to assess potential risks and benefits for HIV-1-infected individuals.  相似文献   

11.
Unlike HIV-1-infected people, most HIV-2-infected subjects maintain a healthy CD4+ T cell count and a strong HIV-specific CD4+ T cell response. To define the cellular immunological correlates of good prognosis in HIV-2 infection, we conducted a cross-sectional study of HIV Gag-specific T cell function in HIV-1- and HIV-2-infected Gambians. Using cytokine flow cytometry and lymphoproliferation assays, we show that HIV-specific CD4+ T cells from HIV-2-infected individuals maintained proliferative capacity, were not terminally differentiated (CD57-), and more frequently produced IFN-gamma or IL-2 than CD4+ T cells from HIV-1-infected donors. Polyfunctional (IFN-gamma+/IL-2+) HIV-specific CD4+ T cells were found exclusively in HIV-2+ donors. The disparity in CD4+ T cell responses between asymptomatic HIV-1- and HIV-2-infected subjects was not associated with differences in the proliferative capacity of HIV-specific CD8+ T cells. This study demonstrates that HIV-2-infected donors have a well-preserved and functionally heterogeneous HIV-specific memory CD4+ T cell response that is associated with delayed disease progression in the majority of infected people.  相似文献   

12.
We investigated the effect of IL-10 on replication of primary CXCR4-dependent (X4) HIV-1 strains by monocyte-derived dendritic cells (DCs) and macrophages (M Phis). M Phis efficiently replicated CXCR4-dependent HIV-1 (X4 HIV-1) strains NDK and VN44, whereas low levels of p24 were detected in supernatants of infected DCs. IL-10 significantly increased X4 HIV-1 replication by DCs but blocked viral production by M Phis as determined by p24 levels and semiquantitative nested PCR. IL-10 up-regulated CXCR4 mRNA and protein expression on DCs and M Phis, suggesting that IL-10 enhances virus entry in DCs but blocks an entry and/or postentry step in M Phis. The effect of IL-10 on the ability of DCs and M Phis to transmit virus to autologous CD4(+) T lymphocytes was investigated in coculture experiments. DCs exhibited a greater ability than did M Phis to transmit a vigorous infection to CD4(+) T cells despite their very low replication capacity. IL-10 had no effect on HIV-1 replication in DC:T cell cocultures but markedly decreased viral production in M Phi:T cell cocultures. These results demonstrate that IL-10 has opposite effects on the replication of primary X4 HIV-1 strains by DCs and M Phis. IL-10 increases X4-HIV-1 replication in DCs but does not alter their capacity to transmit virus to CD4(+) T lymphocytes. These findings suggest that increased levels of IL-10 observed in HIV-1-infected patients with disease progression may favor the replication of X4 HIV-1 strains in vivo.  相似文献   

13.
Dendritic cells (DCs) are essential antigen-presenting cells for the induction of T cell immunity against HIV. On the other hand, due to the susceptibility of DCs to HIV infection, virus replication is strongly enhanced in DC–T cell interaction via an immunological synapse formed during the antigen presentation process. When HIV-1 is isolated from individuals newly infected with the mixture of R5 and X4 variants, R5 is predominant, irrespective of the route of infection. Because the early massive HIV-1 replication occurs in activated T cells and such T-cell activation is induced by antigen presentation, we postulated that the selective expansion of R5 may largely occur at the level of DC–T cell interaction. Thus, the immunological synapse serves as an infectious synapse through which the virus can be disseminated in vivo. We used fluorescent recombinant X4 and R5 HIV-1 consisting of a common HIV-1 genome structure with distinct envelopes, which allowed us to discriminate the HIV-1 transmitted from DCs infected with the two virus mixtures to antigen-specific CD4+ T cells by flow cytometry. We clearly show that the selective expansion of R5 over X4 HIV-1 did occur, which was determined at an early entry step by the activation status of the CD4+ T cells receiving virus from DCs, but not by virus entry efficiency or productivity in DCs. Our results imply a promising strategy for the efficient control of HIV infection.  相似文献   

14.
Infection by HIV-1 is a major risk factor predisposing for fungal infection. However, few studies have addressed the immunological status of HIV-1 patients suffering fungal infections. This study examines the status of polymorphonuclear phagocytes (PMN) and T cells in HIV-1-infected patients suffering from mucosal Candida infections. These patients had a more immature population of blood PMN, as detected by lower CD18 expression, than HIV asymptomatics or healthy controls. They also had a selective defect in T cell activation in response to phytohemagglutinin (PHA), but not to stimulation through the T cell receptor by anti-CD3 crosslinking, when compared to HIV-1 asymptomatic patients. This was shown by a decrease in cellular proliferation and cell surface expression of CD69, CD25 and CD71 activation antigens. There was also a severe impairment of IL-2 production upon activation by PHA. IL-10, and TNF secretion was also reduced, whereas IFN-gamma and IL-5 production was not affected. No correlation with viral load, CD4 or CD8 T cell number or clinical stage was found. In conclusion, our results indicate that Candida-infected HIV patients have a selective defect, independent of viral load, CD4 or clinical status, involving some aspects of T cell activation, IL-2 production being severely impaired.  相似文献   

15.
We have developed a method for isolating and characterizing pigtailed macaque dendritic cells (DCs) generated from CD34(+) bone marrow (BM) progenitors based on methods previously developed for isolating human DCs. Macaque DCs displayed a characteristic morphology and were potent stimulators of allogeneic T cell proliferation. They expressed a set of DC-associated markers, such as MHC class II, CD1a, CD4, CD11a, CD40, CD58, CD80, CD83, CD86, and CXCR4. Macaque DCs, as well as peripheral blood CD4(+) T cells, were highly susceptible to HIV-2 infection, as detected by DNA-PCR. The expression of HIV-2 in macaque DCs was downregulated by treatment with the beta-chemokine RANTES. Macaque DCs will be useful for defining the in vivo role of DCs in HIV pathogenesis and for optimizing and testing peptide-DC vaccines or tolerizing regimens.  相似文献   

16.
Generation of CD3+CD8low thymocytes in the HIV type 1-infected thymus   总被引:3,自引:0,他引:3  
Infection with the HIV type 1 (HIV-1) can result both in depletion of CD4(+) T cells and in the generation of dysfunctional CD8(+) T cells. In HIV-1-infected children, repopulation of the peripheral T cell pool is mediated by the thymus, which is itself susceptible to HIV-1 infection. Previous work has shown that MHC class I (MHC I) molecules are strongly up-regulated as result of IFN-alpha secretion in the HIV-1-infected thymus. We demonstrate in this study that increased MHC I up-regulation on thymic epithelial cells and double-positive CD3(-/int)CD4(+)CD8(+) thymocytes correlates with the generation of mature single-positive CD4(-)CD8(+) thymocytes that have low expression of CD8. Treatment of HIV-1-infected thymus with highly active antiretroviral therapy normalizes MHC I expression and surface CD8 expression on such CD4(-)CD8(+) thymocytes. In pediatric patients with possible HIV-1 infection of the thymus, a low CD3 percentage in the peripheral circulation is also associated with a CD8(low) phenotype on circulating CD3(+)CD8(+) T cells. Furthermore, CD8(low) peripheral T cells from these HIV-1(+) pediatric patients are less responsive to stimulation by Ags from CMV. These data indicate that IFN-alpha-mediated MHC I up-regulation on thymic epithelial cells may lead to high avidity interactions with developing double-positive thymocytes and drive the selection of dysfunctional CD3(+)CD8(low) T cells. We suggest that this HIV-1-initiated selection process may contribute to the generation of dysfunctional CD8(+) T cells in HIV-1-infected patients.  相似文献   

17.
HIV-1-infected patients are in chronic oxidative stress and clastogenic factors (CFs) are present in their plasma. CFs from patients with HIV are formed via superoxide anion radical and stimulate further superoxide production. The pathophysiolgic significance and the exact composition of the circulating clastogenic material in patients with HIV is unknown. Cytokines, such as tumor necrosis factor-alpha (TNF-alpha), are increased in the plasma of patients with HIV and TNF-alpha shows clastogenic activity in vitro. The aim of this clinical study was to compare levels of CF in HIV-1-positive patients with asymptomatic disease, opportunistic infections, and malignancies with those in HIV-1-negative control groups and to correlate CF activity with CD4+ T cell numbers, the cytokines (TNF-alpha, interleukin-2 [IL-2], IL-6), and the inflammatory markers (C-reactive protein [CRP], neopterin, granulocyte elastase). CFs were significantly increased in all HIV-1-positive patients and in HIV-1-negative patients with malignant tumors. HIV-1-positive patients with Kaposi's sarcoma showed the highest CF activity in their plasma (p < 0.08). CFs appear very early in HIV infection, and they correlate negatively with CD4+ T cells, which are an indicator of disease activity. The presence of CF in the plasma of HIV-infected patients is not a general response to a viral infection because these factors are not increased in HIV-1-negative patients with viral infection (zoster). CFs are not specific for the HIV-1 infection; they also occur in HIV-1-negative patients with malignant tumors. There was a tendency towards a positive correlation (p < 0.14) between CF and TNF-alpha but there was no positive correlation of CF with IL-2, IL-6, CRP, elastase, and neopterin levels. This indicates that TNF-alpha may be among the components of CF in HIV-1-infected patients. In addition, other unidentified components may contribute to the clastogenic activity of the plasma or the composition of CF may vary from patient to patient. Further clinical studies with larger sample populations are necessary to analyze the composition of CF in HIV-1-positive patients.  相似文献   

18.
Gut-associated lymphoid tissue (GALT) harbors the majority of T lymphocytes in the body and is an important target for human immunodeficiency virus type 1 (HIV-1). We analyzed longitudinal jejunal biopsy samples from HIV-1-infected patients, during both primary and chronic stages of HIV-1 infection, prior to and following the initiation of highly active antiretroviral therapy (HAART) to determine the onset of CD4(+) T-cell depletion and the effect of HAART on the restoration of CD4(+) T cells in GALT. Severe depletion of intestinal CD4(+) T cells occurred during primary HIV-1 infection. Our results showed that the restoration of intestinal CD4(+) T cells following HAART in chronically HIV-1-infected patients was substantially delayed and incomplete. In contrast, initiation of HAART during early stages of infection resulted in near-complete restoration of intestinal CD4(+) T cells, despite the delay in comparison to peripheral blood CD4(+) T-cell recovery. DNA microarray analysis of gene expression profiles and flow-cytometric analysis of lymphocyte homing and cell proliferation markers demonstrated that cell trafficking to GALT and not local proliferation contributed to CD4(+) T-cell restoration. Evaluation of jejunal biopsy samples from long-term HIV-1-infected nonprogressors showed maintenance of normal CD4(+) T-cell levels in both GALT and peripheral blood. Our results demonstrate that near-complete restoration of mucosal immune system can be achieved by initiating HAART early in HIV-1 infection. Monitoring of the restoration and/or maintenance of CD4(+) T cells in GALT provides a more accurate assessment of the efficacy of antiviral host immune responses as well as HAART.  相似文献   

19.
Lu W  Andrieu JM 《Journal of virology》2001,75(19):8949-8956
Despite significant immune recovery with potent highly active antiretroviral therapy (HAART), eradication of human immunodeficiency virus (HIV) from the bodies of infected individuals represents a challenge. We hypothesized that an inadequate or inappropriate signal in virus-specific antigen presentation might contribute to the persistent failure to mount efficient anti-HIV immunity in most HIV-infected individuals. Here, we conducted an in vitro study with untreated (n = 10) and HAART-treated (n = 20) HIV type 1 (HIV-1) patients which showed that pulsing of monocyte-derived dendritic cells (DC) with aldrithiol-2-inactivated autologous virus resulted in the expansion of virus-specific CD8(+) T cells which were capable of killing HIV-1-infected cells and eradicating the virus from cultured patient peripheral blood mononuclear cells independently of the disease stages and HAART response statuses of the patients. This in vitro anti-HIV effect was further enhanced by the HIV protease inhibitor indinavir (at a nonantiviral concentration), which has been shown previously to be able to up-regulate directly patient T-cell proliferation following immune stimulation. However, following a 2-day treatment with culture supernatant derived from immune-activated T cells (which mimics an in vivo environment of HIV-disseminated and immune-activated lymphoid tissues), DC lost their capacity to present de novo inactivated-virus-derived antigens. These findings provide important information for understanding the establishment of chronic HIV infection and indicate a perspective for clinical use of DC-based therapeutic vaccines against HIV.  相似文献   

20.
Understanding the cellular mechanisms that ensure an appropriate innate immune response against viral pathogens is an important challenge of biomedical research. In vitro studies have shown that natural killer (NK) cells purified from healthy donors can kill heterologous cell lines or autologous CD4+ T cell blasts exogenously infected with several strains of HIV-1. However, it is not known whether the deleterious effects of high HIV-1 viremia interferes with the NK cell-mediated cytolysis of autologous, endogenously HIV-1-infected CD4+ T cells. Here, we stimulate primary CD4+ T cells, purified ex vivo from HIV-1-infected viremic patients, with PHA and rIL2 (with or without rIL-7). This experimental procedure allows for the significant expansion and isolation of endogenously infected CD4+ T cell blasts detected by intracellular staining of p24 HIV-1 core antigen. We show that, subsequent to the selective down-modulation of MHC class-I (MHC-I) molecules, HIV-1-infected p24(pos) blasts become partially susceptible to lysis by rIL-2-activated NK cells, while uninfected p24(neg) blasts are spared from killing. This NK cell-mediated killing occurs mainly through the NKG2D activation pathway. However, the degree of NK cell cytolytic activity against autologous, endogenously HIV-1-infected CD4+ T cell blasts that down-modulate HLA-A and -B alleles and against heterologous MHC-I(neg) cell lines is particularly low. This phenomenon is associated with the defective surface expression and engagement of natural cytotoxicity receptors (NCRs) and with the high frequency of the anergic CD56(neg)/CD16(pos) subsets of highly dysfunctional NK cells from HIV-1-infected viremic patients. Collectively, our data demonstrate that the chronic viral replication of HIV-1 in infected individuals results in several phenotypic and functional aberrancies that interfere with the NK cell-mediated killing of autologous p24(pos) blasts derived from primary T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号