首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
目的:探讨硝酸士的宁对刺激皮肤激活鲫鱼Mauthner细胞产生胞内电位的影响.方法:运用微电极穿刺技术.结果:①直接刺激皮肤,可在同侧或者对侧的M细胞产生一种高幅度的复合性突触后电位(postsynaptic potentials,PSPs).此反应在不同的刺激频率下表现出不同的幅度.②肌注硝酸士的宁后皮肤刺激诱发的胞内反应的幅度增加,甚至在原有去极化的基础上爆发动作电位.③将逆向动作电位重合到胞内反应的不同时刻,观察到逆向动作电位在整个由皮肤刺激诱发的胞内反应期间都降低.④肌注硝酸士的宁后逆向动作电位衰减的逐渐幅度减小,峰值提前,时程缩短,直至不发生衰减.结论:从皮肤到M细胞的传入通路中既有兴奋性成分,又有抑制性成分,二者相互制约平衡,对M细胞的兴奋性进行精密的调节.  相似文献   

2.
迷走神经感觉输入诱发的鲫鱼Mauthner细胞胞内电位变化   总被引:5,自引:0,他引:5  
Liu LM  Xie Y  Yu F  Zhang MX 《生理学报》2001,53(4):252-256
实验运用微电极穿刺技术,初步探索了刺激鲫鱼右侧迷走神经在双侧Mauthner(M)细胞胞体诱发的胞内电位变化。结果表明:(1)直接刺激鲫鱼右侧迷走神经,可在同侧或对侧M细胞胞体记录到一种短潜伏期、长持续时间、分级的、复合的突触后电位(postsynaptic potentials,PSPs)。此PSPs表现出明显的强度依从性和频率依赖性。(2)刺激迷走神经诱发的PSPs可使逆向锋电位的幅度降低。(3)肌注士的宁后,PSPs的幅度增高、平均持续时间增加、峰值前移。并且可爆发两个以上的动作电位,上述结果提示:迷走神经到M细胞的通路可能 是由长短不等的神经链群组成的。且此通路中不仅包含有兴奋性成分还包含有抑制性成分,而兴奋和抑制之间的相互关系可能起着调节M细胞兴奋性的作用。  相似文献   

3.
刺激迷走神经引起的鲫鱼Mauthner细胞顺向激活   总被引:1,自引:0,他引:1  
目的 :研究迷走神经感觉传入信息对Mauthner细胞 (M细胞 )兴奋性的影响。方法 :刺激鲫鱼迷走神经 ,并运用微电极穿刺技术记录鲫鱼M细胞胞内电位变化。结果 :在M细胞胞内记录到分级的、复合的兴奋性突触后电位(EPSP) ,分为第一成分和第二成分。随着刺激强度的增大 ,EPSP的幅度增大 ,反应持续时间延长。当刺激强度足够大时 ,在第一成分或第二成分的基础上可爆发动作电位。结论 :①刺激迷走神经可引起M细胞顺向激活 ,这与以往的观点不同 ;②从迷走神经到M细胞的感觉传入通路可能由含有兴奋性和抑制性成分的不同种类的神经链构成 ,M细胞的兴奋性取决于兴奋和抑制之间的相互关系  相似文献   

4.
Yan N  Li XH  Cheng Q  Yan J  Ni X  Sun JH 《生理学报》2007,59(2):240-246
慢性压迫大鼠背根神经节(chronic compression of the dorsal root,ganglion,CCD)后,背根神经节细胞兴奋性升高,但引起神经元兴奋性改变的离子通道机制还需进一步探索。本实验采用胞内记录以及全细胞膜片钳记录方法,研究急性分离的大鼠背根神经节细胞兴奋性改变与瞬时外向钾电流(A-type potassium current,ⅠA)的关系。结果表明,CCD术后背根神经节细胞兴奋性升高,在急性分离的体外细胞中仍继续存在,表现为对辣椒素敏感的背根神经节细胞产生动作电位的最小电流刺激强度,即阈电流(current threshold)及阈电位(voltage threshold)降低;给予正常对照组神经元(未压迫损伤)瞬时外向钾通道阻断剂4-氨基吡啶,出现了类似CCD术后兴奋性升高的改变。进一步用两步电压钳方法分离ⅠA,研究CCD术后神经元ⅠA的变化,结果表明,CCD组神经元的ⅠA比对照组神经元ⅠA降低,并且与其阈电位的改变一致。以上结果提示,背根神经节压迫受损后,神经节细胞ⅠA降低可能参与介导了神经节细胞兴奋性的升高。  相似文献   

5.
用非连续 Ficoll-蔗糖密度梯度超离心方法分离幼年、成年和老年大鼠大脑皮层的神经元胞体和胶质细胞。观察到以幼年大鼠为材料分离得到的神经元胞体和胶质细胞纯度高;而以成年、老年大鼠为材料分离得到的神经元胞体和胶质细胞则有少量污染。用 Dans 反应-聚酰胺薄膜层析-荧光方法测定神经元胞体和胶质细胞中的 GABA、甘氨酸、谷氨酸、天冬氨酸、牛磺酸含量。发现:(1)幼年与成年大鼠神经元胞体的递质氨基酸含量少于胶质细胞中的含量。老年大鼠的这种差异不显著。(2)由幼年到成年,胶质细胞中的牛磺酸含量显著下降,而神经元胞体中的牛磺酸含量无显著变化。(3)由幼年到成年,神经元胞体与胶质细胞中的“抑制性”与“兴奋性”递质氨基酸总量的比值皆下降50%左右。本文讨论了神经元胞体和胶质细胞的分离纯度及这两类细胞的“抑制性”与“兴奋性”递质氨基酸含量比值的年龄特点。  相似文献   

6.
新生大鼠离体脊髓薄片侧角中间外侧核细胞的电生理特性   总被引:1,自引:0,他引:1  
祝延  马如纯 《生理学报》1989,41(1):63-69
在新生大鼠离体脊髓薄片的中间外侧核作细胞内记录,研究细胞膜的静态与动态电生理特性。细胞的静息电位(RP)变动于-46—-70mV,膜的输入阻抗为108.3±67.9MΩ(X±SD,下同),时间常数9.9±5.6ms,膜电容138.6±124.2pF。用去极化电流进行细胞内刺激时,大部份细胞(85.4%)能产生高频率连续发放,其余细胞(15.6%)仅产生初始单个发放。胞内直接刺激引起的动作电位(AP)幅度为63.4±9.0mV,时程2.4±0.6ms,阈电位水平在RP基础上去极18.7±6.2mV。大部份细胞的锋电位后存在明显的超极化后电位,其幅度为5.1±2.7mV、持续90±31.8ms。刺激背根可在记录细胞引起EPSP或顺向AP,少数细胞尚出现IPSP。而刺激腹根则可引起逆向AP。  相似文献   

7.
兔肠系膜下神经节细胞的两种非胆碱能性慢突触后电位   总被引:4,自引:2,他引:2  
以常规细胞内记录技术对兔肠系膜下神经节细胞的跨膜电位进行了观察。对节前神经的短串脉冲刺激,可诱发出一串快兴奋性突触后电位(f-EPSP)或顺向动作电位;在此之后,大多数细胞还出现一个持续约2min 的缓慢去极化电位。该电位具有抗箭毒和阿托品性质,受低钙高镁溶液的可逆性阻抑,因而可称为非胆碱能性兴奋性突触后电位,或者也可归入迟慢兴奋性突触后电位(ls-EPSP)。多数细胞的 ls-EPSP 伴有膜电阻增大,电位的幅度随细胞静息电位的超极化而变小;提示在这些细胞上,钾电导的失活很可能参与了电位的发生。以P物质溶液灌流神经节未见该电位有显著改变。另外,在箭毒化加阿托品化的神经节中,还发现少数细胞对节前神经的串刺激发生一个持续约一分钟的超极化电位。它也具有抗胆碱能受体阻断剂的性质,受低钙高镁溶液可逆性阻抑,为此我们命之为“极慢抑制性突触后电位”(vs-IPSP),以区别于“慢抑制性突触后电位”(s-IPSP),后者是通常用以表示一种胆碱能性的慢电位。本文所述的这两种非胆碱能性的突触电位有关递质,尚待探索。  相似文献   

8.
用本实验室改进的超微量 DANS 反应-聚酰胺薄膜层析-荧光方法测定了新生、成年和老年小鼠尾壳核、皮层运动区和脊髓的递质氨基酸:GABA、牛磺酸、甘氨酸、谷氨酸、天冬氨酸和丙氨酸。实验结果表明,不同年龄小鼠中枢神经系统不同部位的“抑制性”和“兴奋性”递质氨基酸的含量不同:(1)尾壳核的“抑制性”递质 GABA 含量随年龄的增长而增加。在发育过程中“兴奋性”递质天冬氨酸、谷氨酸也显著升高,而“抑制性”递质牛磺酸含量却显著降低。老化时除 GABA 继续升高外,所测定的其他递质氨基酸皆无显著变化。(2)皮层运动区的“抑制性”递质牛磺酸和甘氨酸含量在发育过程中是降低的,而“兴奋性”递质谷氨酸显著升高。在老化时只有“抑制性”递质 GABA 继续升高。(3)脊髓的“抑制性”递质 GABA 和牛磺酸含量在发育过程中显著降低,而“兴奋性”递质天冬氨酸含量却显著升高。(4)由新生到成年,尾壳核、皮层运动区和脊髓的“抑制性”与“兴奋性”递质氨基酸总量的比值是降低的。成年小鼠的此比值近似于1,新生小鼠此比值(?)1。而老年小鼠的脊髓此比值<1。新生小鼠尾壳核的高比值可能在生物化学上反映了其在发育期的功能特点。  相似文献   

9.
1.蝾螈胚胎表皮在分期26动作电位刚出现时,同一胚胎不同部位表皮细胞的兴奋性不同,存在一个沿头—尾轴的梯度变化。头部细胞引起动作电位所需的阈值??最低,即细胞兴奋性最强。尾部所需阈值最高,中部在两者之间。这一梯度在分期26末消失。2.胚胎在整个传导期间(分期26至分期37),表皮细胞兴奋性也不是恒定的,呈低一高一低的变化过程。在分期32,阈值线达最低值,即此时表皮细胞最容易兴奋。3.在胚胎表皮动作电位消失过程中表皮细胞兴奋性存在一个与动作电位出现时相反的梯度。不仅头一尾、而且背、腹也存在这种兴奋性梯度。背面头部动作电位最早消失,腹面尾部可维持到分期38中期。4.表皮细胞兴奋性出现时,动作电位有一个发生、发展的过程。离体实验表明,含有头部中胚层的表皮,动作电位的出现早于含有尾部中胚层的表皮,平均早出现2.4小时。这说明表皮兴奋性按时空顺序出现可能受到其下不同部位中胚层的某些影响。5.离体实验还提出了神经嵴对表皮兴奋性的出现也有一定影响,虽然作用似乎比中胚层要弱一些。  相似文献   

10.
本文结合作者的工作介绍5-羟色胺(5-HT)对交感节前与节后神经元的作用。作者应用离体脊髓切片细胞内生物电记录的新技术,证明了5-HT 对节前神经元的直接作用是兴奋而不是抑制;并从电生理、药理、生化与组化等不同角度,证明了5-HT 是豚鼠腹腔神经节大部分节后神经元非胆碱能迟缓兴奋性突触后电位(ls-EPSP)的递质。  相似文献   

11.
The localization of Ca2+ in control and adapted goldfish fry Mauthner cells (M-cells) revealed by sedimentation with potassium pyroantimonate technique was investigated. It has been shown the following. 1. In the control M-cells electron dense precipitates are present in the extracellular space, commonly within the active zone clefts of chemical synapses, throughout the whole apposition of the mixed synapses and in the synaptoplasm of both type afferent boutons. No precipitates were seen in the cytoplasm of M-cells. 2. After long term natural (vestibular) stimulation (LTNS), resulting in a strong functional suppression of M-cells, precipitates disappeared entirely from active zones but remained numerous in the cytoplasm of M-cells. The distribution of precipitates within the cytoplasm was non-uniform, the highest density was observed on the surfaces of intracellular organelles and elements of the cytoskeleton. 3. In fatigued M-cells after LTNS and after a subsequent one day rest the distribution of precipitates was less intensive, while in the whole it resembled that of fatigued M-cells. 4. In adapted M-cells the distribution of precipitates was similar to that observed in control. M-cells after LTNS, but the amount and size of the precipitated grains were noticeably increased. 5. The most numerous precipitates were seen in adapted M-cells after LTNS. They were localized throughout the postsynaptic cytoplasm and in a lesser order in the presynaptic cytoplasm. 6. After one day rehabilitation the intensitivity of cytochemical reaction of Ca2+ ion precipitation restored to the initial stage characteristic of adapted M-cells before LTVS. The results obtained suggest that the total concentration of Ca2+ ions in adapted M-cells and the dynamics of their exchanges between cytosole and intracellular depots, such as the smooth endoplasmic reticulum, may increase to keep a normal or even increased functional activity of M-cells, both before and after the LTNS.  相似文献   

12.
Membranous (M)-cells are specialized epithelial cells of the Peyer's patch domes that transport antigens from the intestinal lumen to the lymphoid tissue. Vimentin is a reliable marker for M-cells in rabbits. Using immunohistochemistry (IHC), a subpopulation of epithelial cells has recently been identified in ordinary rabbit ileal villi, which are vimentin-positive and share morphological characteristics with the M-cells of the domes. To test the hypothesis that these cells represent M-cells outside the organized lymphoid tissue, lectin labeling and tracer uptake experiments were performed. Lectins specific for N-acetyl-glucosamine oligomers selectively bound to the vimentin-positive villous cells but not to M-cells in the domes. Microbeads instilled into the ileal lumen were taken up by M-cells within 45 min but not by the vimentin-positive cells in the villi. Lectin-gold labeling on ultrathin sections revealed that the lectin binding sites were located in the brush border and in vesicles in the apical cytoplasm. The vimentin/lectin-positive cells shared ultrastructural characteristics with the so-called "cup cells." We conclude (a) that the vimentin-positive cells in ordinary villi represent cup cells but not M-cells, (b) that they are readily detectable by (GlucNAc)(N)-specific lectins, and (c) that they do not transcytose experimental tracers. Although the specific function of cup cells is still obscure, they most probably represent a cell type distinct from M-cells of the domes with respect to both function and expression of the two new markers.  相似文献   

13.
Cytokeratin 18 is an M-cell marker in porcine Peyer's patches   总被引:8,自引:0,他引:8  
The intermediate filaments of the dome epithelium of porcine Peyer's patches were studied by immunohistochemistry. The labelling patterns of monospecific antibodies directed against cytokeratins 8, 18 and 19 differed considerably. About 40% of the dome epithelial cells were intensely labelled by three different anti-cytokeratin 18 antibodies, indicating that large amounts of cytokeratin 18 are present in these cells. In order to verify that these cytokeratin-18-immunoreactive cells were M-cells, uptake studies using fluorescein-labelled yeast particles were performed. Numerous yeast particles were found exclusively in dome epithelial cells that were highly positive for cytokeratin 18, thus representing M-cells. In contrast, the content of cytokeratin 19 in M-cells was lower than that in neighbouring enterocytes. The labelling intensity of cytokeratin 8 did not differ between M-cells and enterocytes. In addition, the absence of vimentin and desmin from the dome epithelium of porcine Peyer's patches was demonstrated. The results show (1) that porcine M-cells differ from enterocytes in the composition of their cytoskeleton, (2) that cytokeratin 18 is a useful marker for detecting porcine M-cells and (3) that this marker directly correlas with M-cell function.  相似文献   

14.
The ultrastructural investigations of the Mauthner neurons (M-cells) of P. reticulata were performed on the return of the fishes after a two weeks orbital flight, the M-cells of fishes from different control groups being simultaneously examined. The structure of M-cells from the experimental fishes was shown to be severely damaged. The changes involved the synaptic apparatus, postsynaptic areas, mitochondria and other organelles of the cytoplasm and the nucleus. Particular changes were seen in the neuronal cytoskeleton. While in the M-cells of intact fishes these were seen as evenly distributed microfilaments and neurofilaments, in the M-cells of experimental fishes the cytoskeleton looked as alternating bundles of condensed filaments. The first indications of cytoskeleton damage appeared in M-cells of the guppy from transport control group and strengthened in fishes from the group of synchronous control. Thus, the data obtained give us a possibility to suggest that the return on the Earth and following readaptation after a prolonged flight at conditions of microgravity and consequent disfunction of vestibular apparatus may result in the damage of central neurons receiving vestibular afferentation (such as M-cells). That, in turn, may be a cause of functional disorders of the central nervous system, including the nerve centres maintaining the organs of motion. These facts are necessary to take into consideration when more prolonged cosmic flights are planned.  相似文献   

15.
Summary The occurrence of cytokeratins, vimentin, and desmin in the dome epithelia and adjacent non-dome epithelia in four locations of gut-associated lymphoid tissues (GALT) of adult and newborn rabbits (Peyer's patches, sacculus rotundus, caecal lymphoid patches and appendix) was studied with monoclonal antibodies, using the indirect immunoperoxidase technique. In all locations investigated in adult animals, antibodies specific for vimentin labelled (1) M-cells, which engulf intraepithelial lymphocytes, (2) columnar epithelial cells at the base of the domes lacking an apparent contact with lymphocytes (immature M-cells), and (3) flat cells, which lie in the lamina propria under the dome epithelium, and which line the basal lamina with thin cytoplasmic processes. In newborn rabbits, columnar epithelial cells resembling the immature M-cells of adults were selectively stained with vimentin antibodies. In M-cells, the strongest immunoreactivity was present in the perinuclear region and close to the pocket membrane, whereas the most apical and most basal parts of the cytoplasm showed no vimentin-immunoreactivity. Enterocytes in the dome epithelium and in the non-dome epithelium were vimentin-negative. M-cells and enterocytes bound antibodies against cytokeratin peptides 18 and 19 in adults and newborn animals. Compared with enterocytes, M-cells showed less intense staining for cytokeratins. Dome epithelia and no-dome epithelia did not contain desmin-immunoreactive cells. The results suggest that vimentin is a sensitive marker for M-cells in rabbit GALT.  相似文献   

16.
M-cells are believed to play a pivotal role in initiation of the immune response. These cells, located in the epithelia that overlie mucosal lymphoid follicles, are responsible for the active uptake of particulate antigens and for their translocation to the underlying lymphoid tissue. The identification of reliable markers for M-cells is therefore extremely important for the study of the initial steps that lead to the immune response. For this purpose, we studied cytokeratin 20 (CK20) expression in the epithelium of rabbit palatine tonsils by immunofluorescence, confocal microscopy, and Western blotting. CK20+ cells were observed in all rabbit palatine tonsils examined. By Western blotting, one CK20-immunoreactive band was identified at 46 kD on samples of proteins from the intermediate filament-enriched cytoskeletal fraction of tonsil epithelium. Double labeling of CK20+ cells with cell-specific markers confirmed that such cells were actually M-cells. Moreover, CK20+ M-cells displayed a mature phenotype (they formed pockets harboring lymphoid cells) and were functionally competent because they could take up particulate antigens from the pharyngeal lumen. We conclude that CK20 is an M-cell marker for rabbit palatine tonsils. Moreover, we can hypothesize the use of M-cells as a possible site for antigen delivery of particle-based vaccines.  相似文献   

17.
The ultrastructure of the Mauthner cells (M-cells) and the behaviour of Xenopus laevis tadpoles, reared from eggs under increased gravity (2.9 g) which changes the activity of an afferent vestibular input, were investigated. Besides, a study was made of tadpoles after the hindbrain ablation at earlier embryonal stages which significantly altered the microenvironment of M-cells. It is shown that experimental treatments enhance the proliferation of endoplasmic reticulum and its derivatives, so called subsurface cisterns, in the subsynaptic areas. Some structural changes of the synaptic active zones and the cytoskeleton of M-cells were also noticed. It is assumed that the development of the endoplasmic reticulum promotes an intense removal of calcium ions from subsynaptic areas. The plasticity of the endoplasmic reticulum together with other ultrastructural changes apparently stipulate the adaptation of neurons to changed conditions of functioning.  相似文献   

18.
In the developing amphibian, the formation of extra vestibular contacts on the Mauthner cell (M-cell) enhances dendritic branching, while deprivation reduces it (Goodman and Model, 1988a). The mechanism underlying the interaction between afferent fibers and developing dendritic branches is not known; neural activity may be an essential component of the stimulating effect. We examined the role of afferent impulse activity in the regulation of M-cell dendritic branching in the axolotl (Ambystoma mexicanum) embryo. M-cells occur as a pair of large, uniquely identifiable neurons in the axolotl medulla. Synapses from the ipsilateral vestibular nerve (nVIII) are restricted to a highly branched region of the M-cell lateral dendrite. We varied the amount of nVIII innervation and eliminated neural activity. First, unilateral transplantation of a vestibular primordium deprived some M-cells of nVIII innervation and superinnervated others. Second, surgical fusion of axolotls to TTX-harboring California newt (Taricha torosa) embryos paralyzed the Ambystoma twin: voltage-sensitive Na+ channel blockade by TTX eliminated action potential propagation. Reconstruction of M-cells in 18 mm larvae revealed that dendritic growth was influenced by in-growing axons even in the absence of incoming impulses: impulse blockade had no effect on the stimulation of dendritic growth by the afferent fibers.  相似文献   

19.
The ultrastructure of the Mauthner cells (M-cells) of goldfish fries was investigated under four different functional states: a) intact (native fishes), b) fatigue (intact fishes subjected to a prolonged vestibular stimulation), c) adapted (intact fishes after a prolonged training session of the daily short vestibular stimuli), d) excited (adapted fishes subjected to a prolonged vestibular stimulation). It has been first found that the fatigue of the M-cells may result in destructive changes of their cytoskeleton. Besides, in the afferent synapses of both adapted and excited M-cells numerous dense-cored vesicles were revealed near the active zones. The data show the neuronal cytoskeleton to be the central target susceptible to damage upon stimulation. The training leads presumably to stabilization of the cytoskeleton ultrastructure. The dense-cored vesicles were suggested to play an active role in the process.  相似文献   

20.
M-cells (microfold cells) are thought to be a primary conduit of intestinal antigen trafficking. Using an established neutralizing anti-RANKL (Receptor Activator of NF-κB Ligand) antibody treatment to transiently deplete M-cells in vivo, we sought to determine whether intestinal M-cells were required for the effective induction of protective immunity following oral vaccination with ΔiglB (a defined live attenuated Francisella novicida mutant). M-cell depleted, ΔiglB-vaccinated mice exhibited increased (but not significant) morbidity and mortality following a subsequent homotypic or heterotypic pulmonary F. tularensis challenge. No significant differences in splenic IFN-γ, IL-2, or IL-17 or serum antibody (IgG1, IgG2a, IgA) production were observed compared to non-depleted, ΔiglB-vaccinated animals suggesting complementary mechanisms for ΔiglB entry. Thus, we examined other possible routes of gastrointestinal antigen sampling following oral vaccination and found that ΔiglB co-localized to villus goblet cells and enterocytes. These results provide insight into the role of M-cells and complementary pathways in intestinal antigen trafficking that may be involved in the generation of optimal immunity following oral vaccination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号