首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phylogeny of the centipede order Scutigeromorpha has received recent attention from combined analyses of molecular and morphological data. Denser generic sampling, an additional marker (12S rRNA), and multiple specimens for selected species are used to explore phylogeny, biogeography and taxonomy of this charismatic group of centipedes. Among 55 specimens/27 species analysed for six genes are the first molecular data for the genera Dendrothereua , Pilbarascutigera , and Tachythereua , and previously unsampled species of Scutigerinae from Madagascar. Sampling density is especially increased for Thereuoneminae from Australia and New Caledonia. At the base of Scutigeromorpha, the split of Pselliodidae from Scutigerinidae + Scutigeridae is favoured by the optimal parameter set in combined analyses, but most suboptimal parameter sets instead unite pselliodids and scutigerinids. Dendrothereua is re-established for a Neotropical clade that variably resolves as sister to Tachythereua or separate from Scutigerinae, grouped with Pselliodidae and Scutigerinidae. As traditionally diagnosed, the genera that comprise most of Australian and New Caledonian diversity, Allothereua and Parascutigera , are mutually polyphyletic, though they unite as a well supported clade, sister to or including the Western Australian Pilbarascutigera . The main biogeographical signal within the Allothereua / Parascutigera clade is Western Australia as sister area to eastern Australia/New Caledonia, within which New Caledonian " Parascutigera " has a single origin under optimal parameter sets. Genetic variation within scutigeromorph species is appraised using samples of Scutigera coleoptrata throughout its native distribution plus presumed synanthropic records, and from the Allothereua/Parascutigera clade. Variation between six alleged narrow-range endemic species of Parascutigera in north Queensland is consistent with a single species.  相似文献   

2.
We use approximately 1900bp of mitochondrial (ND2) and nuclear (c-mos and Rag-1) DNA sequence data to recover phylogenetic relationships among 58 species and 26 genera of Eugongylus group scincid lizards from New Caledonia, Lord Howe Island, New Zealand, Australia and New Guinea. Taxon sampling for New Caledonian forms was nearly complete. We find that the endemic skink genera occurring on New Caledonia, New Zealand and Lord Howe Island, which make up the Gondwanan continental block Tasmantis, form a monophyletic group. Within this group New Zealand and New Zealand+Lord Howe Island form monophyletic clades. These clades are nested within the radiation of skinks in New Caledonia. All of the New Caledonian genera are monophyletic, except Lioscincus. The Australian and New Guinean species form a largely unresolved polytomy with the Tasmantis clade. New Caledonian representatives of the more widespread genera Emoia and Cryptoblepharus are more closely related to the non-Tasmantis taxa than to the endemic New Caledonian genera. Using ND2 sequences and the calibration estimated for the agamid Laudakia, we estimate that the diversification of the Tasmantis lineage began at least 12.7 million years ago. However, using combined ND2 and c-mos data and the calibration estimated for pygopod lizards suggests the lineage is 35.4-40.74 million years old. Our results support the hypothesis that skinks colonized Tasmantis by over-water dispersal initially to New Caledonia, then to Lord Howe Island, and finally to New Zealand.  相似文献   

3.
A phylogenetic analysis of genera within the informal suballiance Beaufortia (family Myrtaceae), largely endemic to Australia and New Caledonia, is presented based on separate and combined data sets for 5S and ITS-1 spacer regions of nuclear ribosomal DNA. The two sets were not in conflict but the 5S data set was more informative. Data were analysed using conventional parsimony, jackknife parsimony, and three-item parsimony analyses. Three-item analysis gave more resolved trees than conventional parsimony analysis. The Beaufortia suballiance includes two major clades, with all Australian representatives of Callistemon (shown to be monophyletic) and most Australian representatives of Melaleuca forming one of these. The sister clade comprises a well-defined group of endemic New Caledonian taxa (classified as Callistemon and Melaleuca ), some Australian species of Melaleuca , a clade including the Western Australia/Northern Territory genera Beaufortia, Lamarchea , and Regelia , and a clade including the south-west Western Australian genera Calothamnus, Eremaea, Conothamnus , and Phymatocarpus . All molecular analyses sup port the monophyly of Conothamnus and of Regelia , genera for which a number of species were included. Three-item analysis of the combined data set supports the monophyly of Beaufortia . The findings have implications for both taxonomy and biogeography.  相似文献   

4.
5.
The Lanceocercata are a clade of stick insects (Phasmatodea) that have undergone an impressive evolutionary radiation in Australia, New Caledonia, the Mascarene Islands and areas of the Pacific. Previous research showed that this clade also contained at least two of the nine New Zealand stick insect genera. We have constructed a phylogeny of the Lanceocercata using 2277 bp of mitochondrial and nuclear DNA sequence data to determine whether all nine New Zealand genera are indeed Lanceocercata and whether the New Zealand fauna is monophyletic. DNA sequence data were obtained from mitochondrial cytochrome oxidase subunits I and II and the nuclear large subunit ribosomal RNA and histone subunit 3. These data were subjected to Bayesian phylogenetic inference under a partitioned model and maximum parsimony. The resulting trees show that all the New Zealand genera are nested within a large New Caledonian radiation. The New Zealand genera do not form a monophyletic group, with the genus Spinotectarchus Salmon forming an independent lineage from the remaining eight genera. We analysed Lanceocercata apomorphies to confirm the molecular placement of the New Zealand genera and to identify characters that confirm the polyphyly of the fauna. Molecular dating analyses under a relaxed clock coupled with a Bayesian extension to dispersal‐vicariance analysis was used to reconstruct the biogeographical history for the Lanceocercata. These analyses show that Lanceocercata and their sister group, the Stephanacridini, probably diverged from their South American relatives, the Cladomorphinae, as a result of the separation of Australia, Antarctica and South America. The radiation of the New Caledonian and New Zealand clade began 41.06 million years ago (mya, 29.05–55.40 mya), which corresponds to a period of uplift in New Caledonia. The main New Zealand lineage and Spinotectarchus split from their New Caledonian sister groups 33.72 (23.9–45.62 mya) and 29.9 mya (19.79–41.16 mya) and began to radiate during the late Oligocene and early Miocene, probably in response to a reduction in land area and subsequent uplift in the late Oligocene and early Miocene. We discuss briefly shared host plant patterns between New Zealand and New Caledonia. Because Acrophylla sensu Brock & Hasenpusch is polyphyletic, we have removed Vetilia Stål from synonymy with Acrophylla Gray.  相似文献   

6.
Aim Determine the geographical and temporal origins of New Zealand cicadas. Location New Zealand, eastern Australia and New Caledonia. Methods DNA sequences from 14 species of cicadas from New Zealand, Australia, and New Caledonia were examined. A total of 4628 bp were analysed from whole genome extraction of four mitochondrial genes (cytochrome oxidase subunits I and II, and ribosomal 12S and 16S subunits) and one nuclear gene (elongation factor‐1 alpha). These DNA sequences were aligned and analysed using standard phylogenetic methods based primarily on the maximum likelihood optimality criterion. Dates of divergences between clades were determined using several molecular clock methods. Results New Zealand cicadas form two well‐defined clades. One clade groups with Australian taxa, the other with New Caledonian taxa. The molecular clock analyses indicate that New Zealand genera diverged from the Australian and New Caledonian genera within the last 11.6 Myr. Main conclusions New Zealand was likely colonized by two or more invasions. One NZ lineage has its closest relatives in Australia and the other in New Caledonia. These invasions occurred well after New Zealand became isolated from other land masses, therefore cicadas must have crossed large bodies of water to reach New Zealand.  相似文献   

7.
Phylogeny, character evolution, and classification of Sapotaceae (Ericales)   总被引:2,自引:0,他引:2  
We present the first cladistic study of the largely tropical family Sapotaceae based on both morphological and molecular data. The data were analyzed with standard parsimony and parsimony jackknife algorithms using equally and successive weighted characters. Sapotaceae are confirmed to constitute two main evolutionary lineages corresponding to the tribes Isonandreae‐Mimusopeae‐Sideroxyleae and Chrysophylleae‐Omphalocarpeae. The Sideroxyleae are monophyletic, Isonandreae are polyphyletic as presently circumscribed, and as suggested by the analyses, the subtribe Mimusopeae‐Mimusopinae has evolved within the Mimusopeae‐Manilkarinae, which hence is also paraphyletic. Generic limits must be altered within Sideroxyleae with the current members Argania, Nesoluma and Sideroxylon. Argania cannot be maintained at a generic level unless a narrower generic concept is adopted for Sideroxylon. Nesoluma cannot be upheld in a narrow or broad generic concept of Sideroxylon. The large tribe Chrysophylleae circumscribes genera such as Chrysophyllum, Pouteria, Synsepalum, and Xantolis, but the tribe is monophyletic only if the taxa from Omphalocarpeae are also included. Neither Chrysophyllum nor Pouteria are monophyletic in their current definitions. The results indicate that the African taxa of Pouteria are monophyletic and distinguishable from the South American taxa. Resurrection of Planchonella, corresponding to Pouteria section Oligotheca, is proposed. The African genera Synsepalum and Englerophytum form a monophyletic group, but their generic limits are uncertain. Classification of the Asian genus Xantolis is particularly interesting. Morphology alone is indecisive regarding Xantolis relationships, the combined unweighted data of molecules and morphology indicates a sister position to Isonandreae‐Mimusopeae‐Sideroxyleae, whereas molecular data alone, as well as successive weighted combined data point to a sister position to Chrysophylleae‐Omphalocarpeae. An amended subfamily classification is proposed corresponding to the monophyletic groups: Sarcospermatoideae (Sarcosperma), Sapotoideae (Isonandreae‐Mimusopeae‐Sideroxyleae) and Chrysophylloideae (Chrysophylleae‐Omphalocarpeae), where Sapotoideae circumscribes the tribes Sapoteae and Sideroxyleae as well as two or three as yet unnamed lineages. Morphological characters are often highly homoplasious and unambiguous synapomorphies cannot be identified for subfamilies or tribes, which we believe are the reason for the variations seen between different classifications of Sapotaceae. © The Willi Hennig Society 2005.  相似文献   

8.
Aim A New Caledonian insect group was studied in a world‐wide phylogenetic context to test: (1) whether local or regional island clades are older than 37 Ma, the postulated re‐emergence time of New Caledonia; (2) whether these clades show evidence for local radiations or multiple colonizations; and (3) whether there is evidence for relict taxa with long branches in phylogenetic trees that relate New Caledonian species to geographically distant taxa. Location New Caledonia, south‐west Pacific. Methods We sampled 43 cricket species representing all tribes of the subfamily Eneopterinae and 15 of the 17 described genera, focusing on taxa distributed in the South Pacific and around New Caledonia. One nuclear and three mitochondrial genes were analysed using Bayesian and parsimony methods. Phylogenetic divergence times were estimated using a relaxed clock method and several calibration criteria. Results The analyses indicate that, under the most conservative dating scenario, New Caledonian eneopterines are 5–16 million years old. The largest group in the Pacific region dates to 18–29 Ma. New Caledonia has been colonized in two phases: the first around 10.6 Ma, with the subsequent diversification of the endemic genus Agnotecous, and the second with more recent events around 1–4 Ma. The distribution of the sister group of Agnotecous and the lack of phylogenetic long branches in the genus refute an assumption of major extinction events in this clade and the hypothesis of local relicts. Main conclusions Our phylogenetic studies invalidate a simple scenario of local persistence of this group in New Caledonia since 80 Ma, either by survival on the New Caledonian island since its rift from Australia, or, if one accepts the submergence of New Caledonia, by local island‐hopping among other subaerial islands, now drowned, in the region during periods of New Caledonian submergence.  相似文献   

9.
New Zealand taxa from the Orthopteran family Anostostomatidae have been shown to consist of three broad groups, Hemiandrus (ground weta), Anisoura/Motuweta (tusked weta) and Hemideina-Deinacrida (tree-giant weta). The family is also present in Australia and New Caledonia, the nearest large land masses to New Zealand. All genera are endemic to their respective countries except Hemiandrus that occurs in New Zealand and Australia. We used nuclear and mitochondrial DNA sequence data to study within genera and among species-level genetic diversity within New Zealand and to examine phylogenetic relationships of taxa in Australasia. We found the Anostostomatidae to be monophyletic within Ensifera, and justifiably distinguished from the Stenopelmatidae among which they were formerly placed. However, the New Zealand Anostostomatidae are not monophyletic with respect to Australian and New Caledonian species in our analyses. Two of the New Zealand groups have closer allies in Australia and one in New Caledonia. We carried out maximum-likelihood and Bayesian analyses to reveal several well supported subgroupings. Our analysis included the most extensive sampling to date of Hemiandrus species and indicate that Australian and New Zealand Hemiandrus are not monophyletic. We used molecular dating approaches to test the plausibility of alternative biogeographic hypotheses for the origin of the New Zealand anostostomatid fauna and found support for divergence of the main clades at, or shortly after, Gondwanan break-up, and dispersal across the Tasman much more recently.  相似文献   

10.
The genus Kermadecia (Proteaceae), originally described as endemic to New Caledonia, has been expanded in recent decades to include three species from the New Hebrides and Fiji. Specialists on the Proteaceae have suggested that the three Melanesian species were generically misplaced, and careful reexamination supports this viewpoint. It is now apparent that a distinct group within the subfamily Grevilleoideae is composed of the genera Euplassa (endemic to South America), Sleumerodendron (a monotypic New Caledonian genus), Gevuina (based on a single South American species but recently expanded to include two other species from Queensland and New Guinea), and the three questionable Melanesian species. A review of this cluster of taxa indicates that Gevuina should again be interpreted as restricted to South America and that the generic name Bleasdalea F. v. Muell. ex Domin should be adopted for a group of five species extending from Queensland and New Guinea to the New Hebrides and Fiji. The relationships of the four genera are discussed and within Bleasdalea four new combinations are proposed: B. bleasdalei (F. v. Muell.), B. ferruginea (A. C. Sm.), B. vitiensis (Turrill), and B. lutea (Guillaumin). Kermadecia, very distinct from the four genera under present consideration, is again interpreted as a New Caledonian endemic.  相似文献   

11.
This study provides the first phylogenetic reconstruction of the ant genus Leptomyrmex Mayr, a prominent endemic component of rain forest and wet sclerophyll forest in Australia, New Guinea and New Caledonia. Five genes are used to reconstruct phylogeny and estimate of ages of diversification in order to test congruence of the history of nuclear and mitochondrial genes: three protein-coding nuclear genes: arginine kinase (argK, 897 bp), long wavelength rhodopsin (LW Rh, 546 bp) and wingless (Wg, 409 bp), as well as the large subunit ribosomal gene 28S (482 bp) and the mitochondrial gene cytochrome oxidase I (COI, 658 bp). Four different partitioning schemes were tested for optimal resolving power; results show that partitioning by gene, translational pattern and codon position were uniformly favoured over less complex partitions. Nuclear markers showed relatively minor sequence divergence and provided strongly supported topology; phylogeny based solely on mtDNA produced somewhat conflicting topology but offered little power to resolve species complexes. Monophyly of the genus Leptomyrmex was recovered, as was the sister-group relationship of 'micro-' and 'macro-'Leptomyrmex species. Divergence dating analyses estimate that Leptomyrmex arose in the Eocene (stem age ~ 44 million years ago (ma)), and that the 'macro-' species diverged from the 'micro-' species in the early Oligocene (~ 31 ma). Diversification of the crown group 'macro-' and 'micro-'Leptomyrmex occurred in the Miocene (~ 15 ma and 7.9 ma, respectively). New Guinean and New Caledonian lineages appear to have diverged from Australian lineages only recently (~ 4.7 ma and 10.3 ma, respectively), and the latter clade is inferred to have reached New Caledonia from Australia via long distance dispersal. These results challenge previous hypotheses of Leptomyrmex classification and assumptions about their historical dispersal, but are in agreement with the current knowledge of the geological history of Melanesia.  相似文献   

12.
Abstract The South American tipulid taxa Elnoretta, Euvaldiviana and Valdiviana are revised. Type material of all described species was examined. Euvaldiviana is raised from subgeneric to generic rank. The synonymy of Valdiviana synempora and V. neuquenensis is established. Details of the genitalia of the five recognized species as well as external characters are illustrated. A phylogeny is presented of a monophyletic group containing Elnoretta, Euvaldiviana and Valdiviana together with the genera Acracantha (Australia) and Austrotipula (New Zealand).  相似文献   

13.
Abstract The present study uses differences among frugivore faunas of the southern hemisphere landmasses to test whether frugivore characteristics have influenced the evolution of fruit traits. Strong floristic similarities exist among southern landmasses; for example, 75% of New Zealand vascular plant genera also have species in Australia. However, plants in Australia and South America have evolved in the presence of a range of mammalian frugivores, whereas those in New Zealand, New Caledonia and the Pacific Islands have not. In addition, the avian frugivores in New Zealand and New Caledonia are generally smaller than those of Australia. If frugivore characteristics have influenced the evolution of fruit traits, predictable differences should exist between southern hemisphere fruits, particularly fruit size and shape. Fruit dimensions were measured for 77 New Zealand species and 31 Australian species in trans‐Tasman genera. New Zealand fruits became significantly more ellipsoid in shape with increasing size. This is consistent with frugivore gape size imposing a selective pressure on fruit ingestability. This result is not a product of phylogenetic correlates, as fruit length and width scaled isometrically for Australian species in genera shared with New Zealand. Within‐genus contrasts between New Zealand and Australian species in 20 trans‐Tasman genera showed that New Zealand species have significantly smaller fruits than their Australian counterparts. Within‐genus contrasts between New Zealand and South American species in nine genera gave the same result; New Zealand species had significantly smaller fruits than their South American counterparts. No difference was found in fruit size or shape between New Zealand and New Caledonia congeneric species from 12 genera. These results are consistent with the broad characteristics of the frugivore assemblage influencing the evolution of fruit size and shape in related species. The smaller‐sized New Zealand frugivore assemblage has apparently influenced the evolution of fruit size of colonizing taxa sometimes within a relatively short evolutionary timeframe.  相似文献   

14.
New Caledonia is a global biodiversity hotspot. Hypotheses for its biotic richness suggest either that the island is a ‘museum’ for an old Gondwana biota or alternatively it has developed following relatively recent long distance dispersal and in situ radiation. The conifer genus Araucaria (Araucariaceae) comprises 19 species globally with 13 endemic to this island. With a typically Gondwanan distribution, Araucaria is particularly well suited to testing alternative biogeographic hypotheses concerning the origins of New Caledonian biota. We derived phylogenetic estimates using 11 plastid and rDNA ITS2 sequence data for a complete sampling of Araucaria (including multiple accessions of each of the 13 New Caledonian Araucaria species). In addition, we developed a dataset comprising 4 plastid regions for a wider taxon sample to facilitate fossil based molecular dating. Following statistical analyses to identify a credible and internally consistent set of fossil constraints, divergence times estimated using a Bayesian relaxed clock approach were contrasted with geological scenarios to explore the biogeographic history of Araucaria. The phylogenetic data resolve relationships within Araucariaceae and among the main lineages in Araucaria, but provide limited resolution within the monophyletic New Caledonian species group. Divergence time estimates suggest a Late Cretaceous-Cenozoic radiation of extant Araucaria and a Neogene radiation of the New Caledonian lineage. A molecular timescale for the evolution of Araucariaceae supports a relatively recent radiation, and suggests that earlier (pre-Cenozoic) fossil types assigned to Araucaria may have affinities elsewhere in Araucariaceae. While additional data will be required to adequately resolve relationships among the New Caledonian species, their recent origin is consistent with overwater dispersal following Eocene emersion of New Caledonia but is too old to support a single dispersal from Australia to Norfolk Island for the radiation of the Pacific Araucaria sect. Eutacta clade.  相似文献   

15.
The flora of New Caledonia encompasses more than 3000 plant species and an endemism of almost 80%. New Caledonia is even considered as one of the 34 ‘hot spots’ for biodiversity. Considering the current global loss of biodiversity and the fact that several drugs and pesticides become obsolete, there is an urgent need to increase sampling and research on new natural products. In this context, here, we reviewed the chemical knowledge available on New Caledonian native flora from economical perspectives. We expect that a better knowledge of the economic potential of plant chemistry will encourage the plantation of native plants for the development of a sustainable economy which will participate in the conservation of biodiversity. This review is divided into three parts, and the third part which is presented here summarizes the scientific literature related to the chemistry of endemic santalales, caryophyllales, and asterids. We show that the high rate of endemism is correlated with the originality of phytochemicals encountered in New Caledonian plants. A total of 176 original natural compounds have been identified from these plants, whereas many species have not been investigated so far. We also discuss the economic potential of plants and molecules with consideration of their medicinal and industrial perspectives. This review finally highlights several groups, such as Sapotaceae, that are unexplored in New Caledonia despite the high chemical interest in them. These plants are considered to have priority in future chemical investigations.  相似文献   

16.
We tested the previous hypotheses of the phylogenetic position and monophyly of the caddisfly family Polycentropodidae. We also tested previous hypotheses about the internal generic relationship within the family by including 15 ingroup genera, many of them also represented by the genotype. All families that were previously taxonomically associated with the polycentropodids were included in the analysis. The total data set of 2225bp representing sequences of combined nuclear and mitochondrial genes and 171 taxa, was analyzed using Bayesian inference. We found strong support for a monophyletic Polycentropodidae with Ecnomidae as the closest sister group. The recently erected families Kambaitipsychidae and Pseudoneureclipsidae were monophyletic and distantly related to the Polycentropodidae. Within Polycentropodidae, monophyly and validity of the genera Neucentropus, Neureclipsis, Cyrnus, Holocentropus, Tasmanoplegas, Pahamunaya, Cernotina and Cyrnellus was strongly supported, while the genera Polycentropus, Polyplectropus, Plectrocnemia, Placocentropus and Nyctiophylax were all polyphyletic. The New Caledonian species were polyphyletic and represented three distinct clades. The sister group to the New Caledonian clades are from Australia, New Zealand and Chile, respectively. The Vanuatu species evolved after dispersal from the Fiji Islands. New internal primers for cytochrome oxidase I sequences of Trichoptera are introduced.  相似文献   

17.
18.

Background

Rutaceae subfamily Rutoideae (46 genera, c. 660 species) is diverse in both rainforests and sclerophyll vegetation of Australasia. Australia and New Caledonia are centres of endemism with a number of genera and species distributed disjunctly between the two regions. Our aim was to generate a high-level molecular phylogeny for the Australasian Rutoideae and identify major clades as a framework for assessing morphological and biogeographic patterns and taxonomy.

Methodology/Principal Findings

Phylogenetic analyses were based on chloroplast genes, rbcL and atpB, for 108 samples (78 new here), including 38 of 46 Australasian genera. Results were integrated with those from other molecular studies to produce a supertree for Rutaceae worldwide, including 115 of 154 genera. Australasian clades are poorly matched with existing tribal classifications, and genera Philotheca and Boronia are not monophyletic. Major sclerophyll lineages in Australia belong to two separate clades, each with an early divergence between rainforest and sclerophyll taxa. Dehiscent fruits with seeds ejected at maturity (often associated with myrmecochory) are inferred as ancestral; derived states include woody capsules with winged seeds, samaras, fleshy drupes, and retention and display of seeds in dehisced fruits (the last two states adaptations to bird dispersal, with multiple origins among rainforest genera). Patterns of relationship and levels of sequence divergence in some taxa, mostly species, with bird-dispersed (Acronychia, Sarcomelicope, Halfordia and Melicope) or winged (Flindersia) seeds are consistent with recent long-distance dispersal between Australia and New Caledonia. Other deeper Australian/New Caledonian divergences, some involving ant-dispersed taxa (e.g., Neoschmidia), suggest older vicariance.

Conclusions/Significance

This comprehensive molecular phylogeny of the Australasian Rutoideae gives a broad overview of the group’s evolutionary and biogeographic history. Deficiencies of infrafamilial classifications of Rutoideae have long been recognised, and our results provide a basis for taxonomic revision and a necessary framework for more focused studies of genera and species.  相似文献   

19.
This first study of the whole genusAgathis makes use of recent local revisions of the New Caledonian and Australian species which are all maintained. The male cone is shown to have most of the taxonomically useful variation, and this confirms the findings of two partial revisions centred on Indonesian species. Thirteen species are recognized, two of which have two subspecies. New Caledonia has five, and Australia three, sympatric species. Otherwise the species are allopatric except for a few populations of central MalesianA. dammara within the range of west MalesianA. borneensis. One of these montane populations is the distinctiveA. dammara subsp.flavescens of Malaya, formerly a full species.Two groups and three individually distinctive species can be recognized on microsporophyll characters. The larger, group B, comprizes eight species,A. australis (New Zealand),A. corbassonii, A. lanceolata andA. montana (New Caledonia),A. macrophylla (Melanesian islands and includingA. obtusa andA. vitiensis),A. atropurpurea (Australia),A. dammara (mainly central Malesia) andA. borneensis (west Malesia); both the last have long synonymies. The smaller species, group (A), comprizesA. microstachya (Australia) andA. labillardieri (west New Guinea and the Sepik basin). The individually distinctive species areA. moorei andA. ovata of New Caledonia andA. robusta of Australia with its new subspeciesnesophila, described here, of eastern New Guinea and New Britain.  相似文献   

20.
The Australasian robins (Petroicidae) comprise a relatively homogeneous group of small to medium-sized insectivorous birds. Their center of diversity is Australia and New Guinea (40 species) but seven species have managed to colonize geographically distant islands such as Tanimbar, New Britain, New Zealand, New Caledonia, Norfolk Island, Vanuatu, Solomon Islands, Fiji and Samoa. To resolve the evolutionary relationships within the Petroicidae, we here present the results of a phylogenetic analysis of sequence data from two mitochondrial genes (ND2, CO1) and one nuclear intron (β-Fibrinogen intron 5) for all 14 genera and 40 of the 46 currently recognized species. All phylogenetic analyses identified six primary lineages, treated here as subfamilies, within the Petroicidae: (1) Eopsaltriinae comprising Eopsaltria (excluding E. flaviventris), Tregellasia, Peneothello, Melanodryas, Poecilodryas and Heteromyias; (2) Drymodinae comprising Drymodes; (3) Microecinae comprising Microeca, Monachella and Eopsaltria flaviventris; (4) Petroicinae comprising Petroica and Eugerygone; (5) Pachycephalopsinae comprising Pachycephalopsis; and (6) Amalocichlinae comprising Amalocichla. The genera Eopsaltria, Microeca, Peneothello and Poecilodryas were found to be paraphyletic. Based on assessments of phylogenetic branching patterns and/or DNA divergence it also was apparent that Eopsaltriaaustralis, Tregellasialeucops, Melanodryascucullata, Heteromyiasalbispecularis, Drymodessupercilious and Microecaflavigaster may each comprise more than one species. The Petroicidae display a complex biogeographical history involving repeated radiations both within, and across Australia and New Guinea. It appears that dispersal into smaller islands such as New Britain, Tanimbar and the South Pacific has only been undertaken by species with a "flycatcher" body form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号