首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phylogenetic relationships and taxonomic affinities of coccidia with isosporan-type oocysts have been unclear as overlapping characters, recently discovered life cycle features, and even recently discovered taxa. continue to be incorporated into biological classifications of the group. We determined the full or partial 18S ribosomal RNA gene sequences of three mammalian Isospora spp., Isospora felis, Isospora ohioensis and Isospora suis , and a Sarcocystis sp. of a rattlesnake, and used these sequences for a phylogenetic analysis of the genus Isospora and the cyst-forming coccidia. Various alveolate 18S rDNA sequences were aligned and analyzed using maximum parsimony to obtain a phylogenetic hypothesis for the group. The three Isospora spp. were found to be most closely related to Toxoplasma gondii and Neospora caninum. This clade in turn formed the sister group to the Sarcocystis spp. included in the analysis. The results confirm that the genus Isospora does not belong to the family Eimeriidae, but should be classified together with the cyst-forming coccidia in the family Sarcocystidae. Furthermore, there appear to be two lineages within the Sarcocystidae. One lineage comprises Isospora and the Toxoplasma/Neospora clade which share the characters of having a proliferative phase of development preceding gamogony in the definitive host and an exogenous phase of sporogony. The other lineage comprises the Sarcocystis spp. which have no proliferative phase in the definitive host and an endogenous phase of sporogony.  相似文献   

2.
Although their ssrRNA gene sequences are closely related, the lizard sarcosporidia (Apicomplexa, Sarcocystidae) Sarcocystis lacertae and Sarcocystis gallotiae posses heteroxenous and dihomoxenous life cycles, respectively. When aligned with available sarcosporidian ssrRNA genes, both species constitute a monophyletic clade that is only distantly related with sarcosporidia that have a viperid snake as their definitive host (Sarcocystis sp., Sarcocystis atheridis). To test the phyletic status of the dihomoxenous life style, Sarcocystis rodentifelis and Sarcocystis muris, two dihomoxenous parasites of mammals were included into this study. All studied species group together with former Frenkelia spp., Sarcocystis neurona and related marsupial and bird sarcosporidia in a monophyletic clade. However, the available dataset supports independent appearance of the dihomoxenous life cycle at least twice during the evolution of the Sarcocystidae.  相似文献   

3.
Improved rates of in vitro excystation of sporozoites from sporocysts of Sarcocystis capracanis, Sarcocystis cruzi, and Sarcocystis tenella were obtained by pretreating sporocysts with an aqueous sodium hypochlorite (NaOCl) solution followed by incubation in excysting fluid (EF). After pretreatment with NaOCl, sporocysts were washed 4 times in Hanks' balanced salt solution and then incubated in various EF (pH 7.4) at 38.5 C in 5% CO2-95% air. Maximum rates of excystation (free sporozoites/(sporozoites in sporocysts + free sporozoites) X 100) for all 3 species of Sarcocystis occurred at 4 hr after incubation in EF. These rates were 17% for S. capracanis after incubation in EF containing 2% trypsin + 10% caprine bile; 90% for S. cruzi in 2% trypsin + 10% bovine bile; and 20% for S. tenella in 2% trypsin + 10% caprine bile. Only a 40% excystation rate occurred in sporocysts of S. cruzi that had been stored previously for 14 days in aqueous potassium dichromate. Excysted sporozoites of S. capracanis, S. cruzi, and S. tenella penetrated and developed to mature meronts in bovine pulmonary artery endothelial cells or bovine monocytes.  相似文献   

4.
We present an evolutionary analysis of 13 species of Sarcocystis, including 4 newly sequenced species with ruminants as their intermediate host, based on complete small subunit rDNA sequences. Those species with ruminants as their intermediate host form a well-supported clade, and there are at least two major clades within this group, one containing those species forming microcysts and with dogs as their definitive host and the other containing those species forming macrocysts and with cats as their definitive host. Those species with nonruminants as their intermediate host form the paraphyletic sister group to these clades. Most of the species have considerable genotypic differences (differing in more than 100 nucleotide positions), except for S. buffalonis and S. hirsuta. There is a large suite of genotypic differences indicating that those species infecting ruminant and nonruminant hosts have had very different evolutionary histories, and similarly for the felid- and canid-infecting species. Furthermore, the rDNA sequences that represent the different structural regions of the rRNA molecule have very different genotypic behavior within Sarcocystis. The evolution of these regions should be functionally constrained, and their differences can be explained in terms of the importance of the nucleotide sequences to their functions.  相似文献   

5.
Four littermate 6-wk-old red foxes (Nos. 1-4) were fed Toxoplasma gondii, Sarcocystis cruzi, S. tenella and S. capracanis. One littermate fox (No. 5) served as the control. Two foxes (Nos. 1, 2) were fed tissue cysts of T. gondii and two foxes (Nos. 3, 4) were fed oocysts of T. gondii. Twenty-one to 42 days later, the same five foxes were used to test the infectivity of meat of goat, sheep, and ox experimentally inoculated with Sarcocystis. Fox 2 was fed goat meat and shed S. capracanis-like sporocysts 10 days later. Foxes 3 and 4 were fed beef, and they shed S. cruzi-like sporocysts 9 days later. Fox 5 was fed sheep meat and shed S. tenella-like sporocysts 8 days later. Foxes were killed between 36 and 55 days of the experiment and their tissues were inoculated into mice to recover T. gondii. All foxes remained clinically normal and T. gondii was recovered from all inoculated foxes and not from the control. Sarcocystis sporocysts from foxes induced lethal infections in goats, sheep, and ox. The sporocysts, meronts, merozoites, and sarcocysts of fox-derived parasites were similar to those derived from coyotes or dogs. It was concluded that the red fox can act as a final host for the three pathogenic species of Sarcocystis in cattle, sheep, and goats.  相似文献   

6.
Sporozoites of Sarcocystis capracanis and S. tenella (Apicomplexa) penetrated all four cell types tested (bovine monocytes, BM; bovine pulmonary artery endothelial cells, CPA; Madin-Darby bovine kidney; and ovine monocytes). Sporozoites of S. tenella developed to meronts in BM and CPA; those of S. capracanis developed to meronts in BM only. Both species of Sarcocystis developed to large first-generation meronts followed by small meronts. At 40 to 50 days after inoculation (DAI) of sporozoites, considerably more merozoites of S. tenella were harvested from CPA (24.9 X 10(6) merozoites/75-cm2 flask; n = 4) than from BM (1.9 X 10(6) merozoites/75-cm2 flask; n = 4). Merozoites of S. capracanis were most numerous in BM at 88 to 100 DAI during which time 2.1 X 10(6) merozoites/75-cm2 flask (n = 4) were harvested.  相似文献   

7.
Water buffaloes (Bubalus bubalis) are intermediate hosts for 4 species of Sarcocystis , i.e., Sarcocystis fusiformis and Sarcocystis buffalonis with cats as definitive hosts; Sarcocystis levinei with dogs as definitive hosts; and Sarcocystis dubeyi with an unknown definitive host but thought to be zoonotic. Currently, the latter species has been identified with certainty only from Vietnam. In the present study, sarcocysts of S. dubeyi are reported in 11 (30%) of 35 Egyptian water buffaloes from which the esophageal muscles were examined histologically. Sarcocysts were microscopic, measuring 180-250 × 70-110 μm in size. Ultrastructurally, the sarcocyst wall was 3.5-6.5 μm thick and had palisade-like villar protrusions which give it a striated appearance. The villar protrusions contained microtubules that were distributed along the whole villus. This is the first report of S. dubeyi from water buffaloes in Egypt.  相似文献   

8.
ABSTRACT. Cross-transmission experiments were performed in order to determine the host specificity in the intermediate and definitive hosts of the four described dihomoxenous Sarcocystis species, S. gallotiae, S. stehlinii, S. simonyi , and S. dugesii from lacertid lizards of the genera Gallotia and Podarcis from the Macaronesian Islands. Sarcocysts of either species from experimentally infected lizards were fed to a variety of laboratory-bred lizard species of the genera Gallotia, Lacerta , and Podarcis . These sarcocysts proved to be infectious to all examined animals, showing no definitive host specificity in the tested genera. Lizards of the genera Chalcides and Tarentola , however, were not susceptible definitive hosts for S. gallotiae . The inoculation of experimentally obtained sporocysts of each of the four Sarcocystis species to various lacertid lizard species revealed varying degrees of intermediate host specificity, generally demonstrating each native host to be the most susceptible.  相似文献   

9.
Studies designed to investigate the causative agent of equine protozoal myeloencephalitis and its life cycle have been hampered by the marked similarity of Sarcocystis neurona to other Sarcocystis spp. present in the same definitive host. Random-amplified polymorphic DNA techniques were used to amplify DNA from isolates of S. neurona and Sarcocystis falcatula. DNA sequence analysis of polymerase chain reaction (PCR) products was then used to design PCR primers to amplify specific Sarcocystis spp. DNA products. The ribosomal RNA internal transcribed spacer was also amplified and compared between S. neurona and S. falcatula. Useful sequence heterogeneity between the 2 organisms was identified, creating potential markers to distinguish these Sarcocystis spp. These markers were used to characterize Sarcocystis isolates from opossum (Didelphis virginiana) feces. Our data suggest that S. neurona and S. falcatula can be differentiated with these markers and that multiple Sarcocystis spp., including S. neurona and S. falcatula, are shed by opossums.  相似文献   

10.
Controversy exists concerning whether cattle and water buffalo sustain infections with cysts of distinct arrays of species in the genus Sarcocystis. In particular, morphologically similar parasites have been alternately ascribed to Sarcocystis cruzi or to Sarcocystis levinei, depending on their occurrence in cattle or water buffalo. We used light and transmission electron microscopy, genetic analysis, and experimental infections of definitive canine hosts to determine whether consistent differences could be identified from parasites derived from several natural infections of each host, examining several tissue types (esophagus, skeletal muscles, and heart). Cysts derived from cattle and water buffalo shared similar structure; variation among 18S rRNA sequences did not segregate consistently according to intermediate host type; parasites derived from cattle and water buffalo induced similar outcomes in the canine definitive host. One cattle specimen harbored unusually large (macroscopic) sarcocysts which nonetheless conformed to previously reported ultrastructural and genetic features of S. cruzi. Finding no consistent basis to differentiate between them, we conclude that the parasites infecting each host and tissue type correspond to S. cruzi. In our sample, no phylogenetically distinct taxon was sampled which might correspond to a distinct taxon previously described as S. levinei. Either that taxon was missed by our sampling effort, or it may represent a junior synonym to S. cruzi, which would then cycle between dogs and a broader range of intermediate bovine hosts than was previously considered.  相似文献   

11.
Isoenzyme electrophoretic techniques were applied to the characterization of seven Sarcocystis spp. that had been identified by conventional morphological studies. Cystozoites were harvested from macroscopic cysts from sheep, cattle, and mice and from microscopic cysts from sheep, cattle, and goats. Soluble cystozoite extracts were subjected to cellulose acetate gel electrophoresis and characterized at 15 of the 39 enzyme loci examined. Genetic relationships among isolates were examined by simple phenetic clustering. Two different morphological types of macroscopic cysts from sheep, identified as S. gigantea (syn. S. ovifelis) and S. medusiformis, consistently differed at 40% of the loci examined. Such genetic divergence confirms their separate morphotypic classification. Both differed from microscopic cyst isolates from sheep at 87% of the loci examined; however, two different morphotypes of microscopic cysts were found in the sheep sampled (thick-walled and thin-walled cysts). Until sufficient numbers of each type can be isolated and examined separately, both were regarded as belonging to the species S. tenella (syn. S. ovicanis). Macroscopic and microscopic cysts from cattle consistently differed at 80% of the loci thereby supporting their separate classification as S. hirsuta (syn. S. bovifelis) and S. cruzi (syn. S. bovicanis), respectively. Isolates from goats (microscopic cysts identified as S. capracanis) differed from S. tenella and S. cruzi at 20% and 47% of the loci, respectively. All macroscopic cyst isolates from the various host animal species (including S. muris from mice) differed from each other at nearly all loci. Isoenzyme electrophoretic techniques therefore provided genetic evidence supporting the classification of these various Sarcocystis spp. by their morphological characteristics.  相似文献   

12.
DNA templates were extracted from isolates of Sarcocystis hominis-like cysts collected from cattle and water buffalo, as well as from Sarcocystis fusiformis cysts and Sarcocystis suihominis cysts. The 18S rRNA genes were amplified using DNA from a single cyst as the templates. Approximately 1,367-1,440 bp sequences were obtained. The sequence difference in isolates of Sarcocystis hominis-like cysts from water buffaloes, and isolates of S. hominis cysts from cattle were very low, only about 0.1%, much lower than the lowest value (1.7%) among different species. Combined with their morphological structure, these sequence data indicate that the 4 isolates from cattle and water buffalo might be the same species, i.e., S. hominis, suggesting that both cattle and water buffalo may serve as the intermediate hosts for this parasite. Apparently, this is the first report using a single cyst to do such work and is a useful way to distinguish the Sarcocystis cyst in an intermediate host that may be simultaneously infected by several different Sarcocystis species.  相似文献   

13.
The nine-banded armadillo (Dasypus novemcinctus) is an intermediate host of at least three species of Sarcocystis, Sarcocystis dasypi, Sarcocystis diminuta, and an unidentified species; however, life cycles of these species have not been determined. Following feeding of armadillo muscles containing sarcocysts to the Virginia opossum (Didelphis virginiana), the opossums shed sporulated Sarcocystis sporocysts in their faeces. Mean dimensions for sporocysts were 11.0x7.5 microm and each contained four sporozoites and a residual body. Sporocysts were identified as Sarcocystis neurona using PCR and DNA sequencing. A 2-month-old foal that was negative for S. neurona antibodies in the CSF was orally inoculated with 5x10(5) sporocysts. At 4 weeks post-infection, the foal had a 'low positive' result by immunoblot for CSF antibodies to S. neurona and by week 6 had a 'strong positive' CSF result and developed an abnormal gait with proprioceptive deficits and ataxia in all four limbs. Based on the results of this study, the nine-banded armadillo is an intermediate host of S. neurona.  相似文献   

14.
Sequences of the small subunit rRNA genes were obtained for two coccidians, Sarcocystis dispersa and an unnamed Sarcocystis sp. which parasitise the European barn owl and an African viperid snake as their final host, respectively, and share mouse as their intermediate host. Phylogenetic analysis of the sequence data showed that Sarcocystis sp. from the viperid snake is most closely related to another Sarcocystis sp. isolated from an American crotalid snake, while S. dispersa grouped with other bird-transmitted species. The available dataset failed to resolve the evolutionary relationships among four major branches into which all Sarcocystidae and Isospora spp. were split. However, within these branches, the phylogenetic relationships of the majority of analysed members of the genus Sarcocystis reflected coevolution with their final, rather than intermediate hosts.  相似文献   

15.
An unidentified isolate of a Sarcocystis falcatula-like parasite was obtained from the lungs of budgerigars (Melopsittacus undulatus) fed sporocysts from a naturally-infected South American opossum, Didelphis albiventris from Brazil. Four captive budgerigars fed sporocysts from the opossum intestine died of acute sarcocystosis 8, 10, and 12 days after oral inoculation (DAI); one budgerigar was killed 12 DAI when it was lethargic. Schizonts and merozoites found in the lungs of the budgerigars reacted mildly with polyclonal S. falcatula antibody. The parasite was isolated in equine kidney cell cultures inoculated with lung tissue from a budgerigar that was killed 12 DAI. Two budgerigars inoculated subcutaneously with 100,000 culture-derived S. falcatula merozoites developed acute sarcocystosis and S. falcatula-like schizonts were found in their lungs 15 and 16 DAI. Four budgerigars kept as unfed controls in the same environment remained free of Sarcocystis infection. The parasite underwent schizogony in African green monkey kidney cells and bovine turbinate cells. Merozoites divided by endopolygeny, often leaving a residual body. Polymerase chain reaction studies using primers JNB33/JNB54 and Hinf I and Dra I digestion indicated that the isolate was not S. falcatula. Results of this study indicated that the South American opossum, D. albiventris, is a definitive host for yet another S. falcatula-like parasite.  相似文献   

16.
Equine protozoal myeloencephalitis is the most important protozoan disease of horses in North America and is usually caused by Sarcocystis neurona. Natural cases of encephalitis caused by S. neurona have been reported in skunks (Mephitis mephitis) and raccoons (Procyon lotor). Opossums (Didelphis spp.) are the only known definitive host. Sera from 24 striped skunks, 12 raccoons, and 7 opossums (D. virginiana) from Connecticut were examined for agglutinating antibodies to S. neurona using the S. neurona agglutination test (SAT) employing formalin-fixed merozoites as antigen. The SAT was validated for skunk sera using pre- and postinfection serum samples from 2 experimentally infected skunks. Of the 24 (46%) skunks 11 were positive, and all 12 raccoons were positive for S. neurona antibodies. None of the 7 opossums was positive for antibodies to S. neurona. These results suggest that exposure to sporocysts of S. neurona by intermediate hosts is high in Connecticut. The absence of antibodies in opossums collected from the same areas is most likely because of the absence of systemic infection in the definitive host.  相似文献   

17.
Cyst-forming coccidia of the genus Sarcocystis (Alveolata: Apicomplexa: Coccidea) parasitize vertebrates worldwide. Data from the small subunit rRNA genes (SSU) and the D2 domain of the large subunit rRNA genes were used to reconstruct phylogeny for all species in the Sarcocystidae for which sequences are currently available. We have focused on the evolutionary history of species that circulate between snakes as definitive hosts and rodents as intermediate hosts. Trees were reconstructed using maximum parsimony, minimum evolution, maximum likelihood and the bayesian phylogenetics. Our reconstructions support monophyly of Sarcocystidae but fail to robustly resolve the relationship within clades. Using a concatenated dataset of available rDNAs, the "isosporoid" coccidia Neospora, Toxoplasma, Besnoitia, Isospora and Hyaloklossia form a sister group to the monophyletic Sarcocystis. Moreover, we show that Sarcocystis from arboreal vipers of the genus Atheris, which are endemic to the mountain rain forests of the Equatorial Africa, are monophyletic, with sister species parasitizing the desert viper Pseudocerastes persicus from the Near East. We report the co-evolution of Sarcocystis spp. with their final snake hosts. The geological history of the African continent, mountain ranges, forests and general SSU rDNA rates were used to construct a linearized tree. Possible origin of the heteroxenous life cycle of Sarcocystis is discussed.  相似文献   

18.
The taxonomy of Sarcocystis (Protozoa, Apicomplexa) species   总被引:2,自引:0,他引:2  
The taxonomy of the heteroxenous apicomplexan protozoan genus Sarcocystis was reviewed, and a list of 122 species with their synonyms and hosts given. Both definitive and intermediate hosts are known for only 56 species. The fine structure of the sarcocyst wall may change with age and is not considered necessarily satisfactory for separating species. Specificity for the intermediate host is not narrow for all species. Earlier work on transmission of the parasite from one intermediate host to another should be repeated in the light of present knowledge of the life cycle of species of Sarcocystis.  相似文献   

19.
The occurrence of apicomplexan parasites in Podarcis sp. wall lizards from the Iberian Peninsula and Balearic islands was studied by amplification and sequencing of the 18S rRNA gene. Species from 3 genera, Hepatozoon , Sarcocystis , and Eimeria , were found. The phylogenetic analysis of the 18S rRNA gene provides unexpected insights into the evolutionary history of these parasites. All Hepatozoon spp. specimens were recovered as part of a clade already identified in lizards from North Africa. The Sarcocystis species, detected in Podarcis lilfordi from Cabrera Island in the Balearic Islands, appears related to Sarcocystis gallotiae , known only from endemic Gallotia sp. lizards from the Canary Islands. Based on the lack of snake predators on this island, this parasite presumably presents an atypical transmission cycle that uses the same host species as both intermediate and final host through cannibalism, like S. gallotiae . Eimeria sp. is reported for the first time from Podarcis spp. lizards. This study shows the power of detecting multiple different apicomplexan parasites through screening of tail tissue samples and blood drops that are often collected in reptiles for other purposes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号