首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethidium bromide monoazide (EMA) was utilized to selectively allow conventional PCR amplification of target DNA from viable but not dead cells from a broth culture of bacterial mixed flora derived from cod fillets. The universal primers designated DG74 and RW01 that amplify a 370-bp sequence of a highly conserved region of all eubacterial 16S rDNA were used for the PCR. The use of 10 microg/ml or less of EMA did not inhibit the PCR amplification of DNA derived from viable bacteria. The minimum amount of EMA to completely inhibit the PCR amplification of DNA derived from dead bacterial cells was 0.8 microg/ml. Amplification of target DNA from only viable cells in a suspension with dead cells was selectively accomplished by first treating the cells with 1 microg/ml of EMA. A standard curve was generated relating the intensity of fluorescence of DNA bands to the log of CFU of mixed bacterial cultures for rapidly assessing the number of genomic targets per PCR derived from the number of CFU. A linear range of DNA amplification was exhibited from 1 x 10(2) to 1 x 10(5) genomic targets per PCR. The viable/dead cell discrimination with the EMA-PCR method was evaluated by comparison with plate counts following freezing and thawing. Thawing frozen cell suspensions initially containing 1 x 10(5) CFU/ml at 4, 20, and 37 degrees C yielded a 0.8 log reduction in the number of viable cells determined by both plate counts and EMA-PCR. In contrast, thawing for 5 min at 70 degrees C resulted in a 5 log reduction in CFU derived from plate counts (no CFU detected) whereas the EMA-PCR procedure resulted in only a 2.8 log reduction in genomic targets, possibly reflecting greater damage to enzymes or ribosomes at 70 degrees C to a minority of the mixed population compared to membrane damage.  相似文献   

2.
Ethidium bromide monoazide (EMA) was utilized to selectively allow conventional PCR amplification of target DNA from viable but not dead cells from a broth culture of bacterial mixed flora derived from cod fillets. The universal primers designated DG74 and RW01 that amplify a 370-bp sequence of a highly conserved region of all eubacterial 16S rDNA were used for the PCR. The use of 10 μg/ml or less of EMA did not inhibit the PCR amplification of DNA derived from viable bacteria. The minimum amount of EMA to completely inhibit the PCR amplification of DNA derived from dead bacterial cells was 0.8 μg/ml. Amplification of target DNA from only viable cells in a suspension with dead cells was selectively accomplished by first treating the cells with 1 μg/ml of EMA. A standard curve was generated relating the intensity of fluorescence of DNA bands to the log of CFU of mixed bacterial cultures for rapidly assessing the number of genomic targets per PCR derived from the number of CFU. A linear range of DNA amplification was exhibited from 1 × 102 to 1 × 105 genomic targets per PCR. The viable/dead cell discrimination with the EMA-PCR method was evaluated by comparison with plate counts following freezing and thawing. Thawing frozen cell suspensions initially containing 1 × 105 CFU/ml at 4, 20, and 37 °C yielded a 0.8 log reduction in the number of viable cells determined by both plate counts and EMA-PCR. In contrast, thawing for 5 min at 70 °C resulted in a 5 log reduction in CFU derived from plate counts (no CFU detected) whereas the EMA-PCR procedure resulted in only a 2.8 log reduction in genomic targets, possibly reflecting greater damage to enzymes or ribosomes at 70 °C to a minority of the mixed population compared to membrane damage.  相似文献   

3.
基于EMA-qPCR的茄科青枯菌活体检测技术的建立   总被引:1,自引:0,他引:1  
【目的】利用特异性核酸染料叠氮溴乙锭(Ethidium monoazide bromide, EMA)与实时荧光定量PCR技术相结合, 建立一种能有效区分青枯菌死活细胞的检测方法。【方法】样品DNA制备前经EMA渗透预处理, 再进行实时荧光定量PCR特异扩增菌体DNA。【结果】终浓度为2.0 mg/L的EMA能有效排除1.0×107 CFU/mL灭活青枯菌细胞DNA的扩增, 对活细胞和不可培养状态(Viable but non-culturable, VBNC)活菌的DNA扩增均没有影响。当每个定量PCR反应体系中的活细胞在5.0×100?5.0×104 CFU范围内时, 扩增Ct值与定量PCR反应体系中活细胞CFU对数值呈良好的负相关性(R2=0.992 5)。比较EMA-qPCR法和平板计数法对经过不同温度短期保存的青枯菌检测结果发现, 待检样品可在24 °C与4 °C冷藏条件下短期保存。【结论】本研究建立的EMA-qPCR方法能有效检测青枯菌VBNC细胞和有效区分死活菌, 避免或减少青枯菌PCR检测的假阳性和假阴性。  相似文献   

4.
Aims: The detection of viable Enterobacter sakazakii cells is important due to the association of this pathogen with outbreaks of life-threatening neonatal infections. The aim of this study was to optimize a PCR-based method for selective detection of only viable Ent. sakazakii cells in the presence of dead cells, utilizing propidium monoazide (PMA) or ethidium bromide monoazide (EMA). Methods and Results: PMA or EMA was added to suspensions of viable and/or dead Ent. sakazakii cells at varying concentrations (10, 50 or 100 μg ml−1) prior to DNA isolation and PCR with Ent. sakazakii-specific primers. At concentrations of 50 and 100 μg ml−1, PMA completely inhibited PCR amplification from dead cells, while causing no significant inhibition of the amplification from viable cells. PMA was also effective in allowing selective PCR detection of only viable cells in mixtures of varying ratios of viable and dead cells. EMA was equally effective in preventing amplification from dead cells, however, it also inhibited DNA amplification from viable cells. Conclusions: This study demonstrated the efficiency of PMA for viable and dead differentiation of Ent. sakazakii, as well as the lack of selectivity of EMA for this purpose. Significance and Impact of the Study: PMA-PCR, in particular, will be useful for monitoring the resistance, survival strategies and stress responses of Ent. sakazakii in foods and the environment.  相似文献   

5.
Ethidium monoazide (EMA) is a DNA intercalating agent and a eukaryotic topoisomerase II poison. We found that EMA treatment and subsequent visible light irradiation (photoactivation or photolysis) shows a bactericidal effect, hence the mechanism was analyzed. When bacterial cells were treated with more than 10 microg/ml of EMA for 1 hr plus photoactivation for 20 min, cleavage of bacterial DNA was confirmed by agarose gel electrophoresis and electron microscopic studies. The cleavage of chromosomal DNA was seen when it was treated in vitro with EMA and photolysis, which showed that the cleavage directly took place without the assistance of DNA gyrase/topoisomerase IV and the DNA repair enzymes of bacteria. It was also verified, by using negatively supercoiled pBR322 DNA, that medium/high concentrations of EMA (1 to 100 microg/ml) led to breaks of double-stranded DNA and that low concentrations of EMA (10 to 100 ng/ml) generated a single-stranded break. EMA is known to easily penetrate dead but not live bacteria. After treatment of 10 microg/ml of EMA for 30 min and photoactivation for 5 min, EMA cleaved the DNA of dead but not live Klebsiella oxytoca. When the cleaved DNA was used for templates in PCR targeting 16S rDNA, PCR product from the dead bacteria was completely suppressed. We demonstrated that EMA and photolysis directly cleaved bacterial DNA and are effective tools for discriminating live from dead bacteria by PCR.  相似文献   

6.
The polymerase chain reaction (PCR) can confirm the presence of bacteria, but it is unable to differentiate between live and dead bacteria. Although ethidium monoazide (EMA)- and propidium monoazide (PMA)-based PCR have been evaluated, a quantity of ≥ 10(3)cells/ml dead cells produces a false-positive reading at 40 to 50 cycles (K. Rudi et al., Appl. Environ. Microbiol. 71 (2005) 1018-1024). After confirming the precision of real-time PCR of a long DNA target (16S or 23S ribosomal RNA [rRNA] gene, 1490 or 2840 bp), we evaluated the degree of suppression of an EMA treatment on the 16S/23S PCR using various amplification lengths (110-2840 bp) with heat-killed cells of Enterobacteriaceae (e.g., Salmonella enteritidis). We found that the inhibition rate was proportional to the PCR amplification length; short DNA (110 bp) amplification slightly delayed the threshold cycle (C(T)) of heat-killed cells of Enterobacteriaceae when compared with no EMA treatment. Regardless of the amplification length, the C(T) delay using live cells of Enterobacteriaceae with EMA was negligible. Thus, our real-time PCR of a long DNA (16S or 23S) template following EMA treatment is a rapid viable bacterial assay, which can potentially target all genera, for testing pasteurized milk that may have originally been contaminated with high levels of dead bacteria.  相似文献   

7.
Differentiation of DNA derived from viable or non-viable microorganisms within mixed microbial communities continues to be one of the greatest challenges in molecular studies of environmental samples. A novel method developed for microbial food pathogens is tested here on environmental samples. This technique involves the use of ethidium monoazide bromide (EMA) for the distinction of live/dead cells. In non-viable cells EMA intercalates into the DNA which prevents amplification by PCR. We adapted and evaluated the EMA technique for soil, elemental sulfur and river biofilm samples. Quantitative PCR determined that EMA suppressed 99.99% of E. coli LKI gfp+ signal in non-viable cultures and 100.00% when the cultures were added to soil samples. The same technique was also successful at suppressing DNA amplification from spiked non-viable cells in elemental sulfur samples by 100.00%, but not in three Saskatchewan River biofilms. In sub Antarctic soil, EMA-Q-PCR was used to detect the prevalence of a functional gene, amoA, and this was closely correlated to nitrification activity measurements. The ability of EMA to differentiate between viable and non-viable populations in soil was confirmed by the similarity of the 16S rRNA denaturing-gradient-gel electrophoresis DNA fingerprint of EMA treated soil and the 16S rRNA cDNA fingerprint of non-EMA treated soil. The EMA technique effectively suppressed amplification of non-viable spiked controls, closely mirrored activity assays and yielded community composition profiles similar to rRNA techniques. The use of EMA in soil effectively suppressed amplification of non-viable organism DNA, however it was not effective in biofilm samples and EMA partially inhibited amplification of viable organism DNA in elemental sulfur samples.  相似文献   

8.
The effect of refrigerated and frozen storage on the viability of Vibrio vulnificus was evaluated using cell suspensions (1 × 108 CFU/ml). Ethidium bromide monoazide (EMA) was utilized to selectively allow real-time (Rti) PCR amplification of target DNA from viable but not dead cells. Bacterial survivors from the EMA Rti-PCR were evaluated by comparison with the plate count assay following different temperature exposures (− 20 and 4 °C) every 24 h for 72 h. The log CFU values from the EMA Rti-PCR assays were erroneously higher than that from plate counts. DNA amplification was not completely suppressed by EMA treatment of low temperature destroyed cells suggesting that membrane damage was not sufficient to allow effective EMA penetration into the cells. The optimal concentration of sodium deoxycholate (SD) was also determined to enhance discrimination of viable and dead cells following exposure of cells to low temperatures. The use of 0.01% or less of SD did not inhibit the Rti-PCR amplification derived from viable bacterial cells. A rapid decrease of the log CFU was observed with cell suspensions subjected to frozen storage and a slow decline in the log CFU occurred at 4 °C. The combination of SD and EMA treatments applied to cells of V. vulnificus held at − 20 °C and 4 °C resulted in a high level of correlation between the log of CFU (plate counts) and the log of the number of viable cells determined from SD+EMA Rti-PCR.  相似文献   

9.
The distinction between viable and dead cells is a major issue in many aspects of biological research. The current technologies for determining viable versus dead cells cannot readily be used for quantitative differentiation of specific cells in mixed populations. This is a serious limitation. We have solved this problem by developing a new concept with the viable/dead stain ethidium monoazide (EMA) in combination with real-time PCR (EMA-PCR). A dynamic range of approximately 4 log(10) was obtained for the EMA-PCR viable/dead assay. Viable/dead differentiation is obtained by covalent binding of EMA to DNA in dead cells by photoactivation. EMA penetrates only dead cells with compromised membrane/cell wall systems. DNA covalently bound to EMA cannot be PCR amplified. Thus, only DNA from viable cells can be detected. We evaluated EMA-PCR with the major food-borne bacterium Campylobacter jejuni as an example. Traditional diagnosis of this bacterium is very difficult due to its specific growth requirements and because it may enter a state where it is viable but not cultivable. The conditions analyzed included detection in mixed and natural samples, survival in food, and survival after disinfection or antibiotic treatment. We obtained reliable viable/dead quantifications for all conditions tested. Comparison with standard fluorescence-based viable/dead techniques showed that the EMA-PCR has a broader dynamic range and enables quantification in mixed and complex samples. In conclusion, EMA-PCR offers a novel real-time PCR method for quantitative distinction between viable and dead cells with potentially very wide application.  相似文献   

10.
Pasteurized milk is a complex food that contains various inhibitors of polymerase chain reaction (PCR) and may contain a large number of dead bacteria, depending on the milking conditions and environment. Ethidium monoazide bromide (EMA)-PCR is occasionally used to distinguish between viable and dead bacteria in foods other than pasteurized milk. EMA is a DNA-intercalating dye that selectively permeates the compromised cell membranes of dead bacteria and cleaves DNA. Usually, EMA-PCR techniques reduce the detection of dead bacteria by up to 3.5 logs compared with techniques that do not use EMA. However, this difference may still be insufficient to suppress the amplification of DNA from dead Gram-negative bacteria (e.g., total coliform bacteria) if they are present in pasteurized milk in large numbers. Thus, false positives may result. We developed a new method that uses real-time PCR targeting of a long DNA template (16S-23S rRNA gene, principally 2,451?bp) following EMA treatment to completely suppress the amplification of DNA of up to 7?logs (10(7)?cells) of dead total coliforms. Furthermore, we found that a low dose of proteinase K (25?U/ml) removed PCR inhibitors and simultaneously increased the signal from viable coliform bacteria. In conclusion, our simple protocol specifically detects viable total coliforms in pasteurized milk at an initial count of ≥1?colony forming unit (CFU)/2.22?ml within 7.5?h of total testing time. This detection limit for viable cells complies with the requirements for the analysis of total coliforms in pasteurized milk set by the Japanese Sanitation Act (which specifies <1?CFU/2.22?ml).  相似文献   

11.
The distinction between viable and dead bacterial cells poses a major challenge in microbial diagnostics. Due to the persistence of DNA in the environment after cells have lost viability, DNA-based quantification methods overestimate the number of viable cells in mixed populations or even lead to false-positive results in the absence of viable cells. On the other hand, RNA-based diagnostic methods, which circumvent this problem, are technically demanding and suffer from some drawbacks. A promising and easy-to-use alternative utilizing the DNA-intercalating dye ethidium monoazide bromide (EMA) was published recently. This chemical is known to penetrate only into "dead" cells with compromised cell membrane integrity. Subsequent photoinduced cross-linking was reported to inhibit PCR amplification of DNA from dead cells. We provide evidence here that in addition to inhibition of amplification, most of the DNA from dead cells is actually lost during the DNA extraction procedure, probably together with cell debris which goes into the pellet fraction. Exposure of bacteria to increasing stress and higher proportions of dead cells in defined populations led to increasing loss of genomic DNA. Experiments were performed using Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium as model pathogens and using real-time PCR for their quantification. Results showed that EMA treatment of mixed populations of these two species provides a valuable tool for selective removal of DNA of nonviable cells by using conventional extraction protocols. Furthermore, we provide evidence that prior to denaturing gradient gel electrophoresis, EMA treatment of a mature mixed-population drinking-water biofilm containing a substantial proportion of dead cells can result in community fingerprints dramatically different from those for an untreated biofilm. The interpretation of such fingerprints can have important implications in the field of microbial ecology.  相似文献   

12.
EMA-LAMP方法快速检测鉴别副溶血性弧菌   总被引:1,自引:0,他引:1  
建立将DNA染料EMA(ethidium bromide monoazide)结合环介导等温扩增技术(loop-mediated isother-mal amplification,LAMP)的方法(EMA-LAMP),用于检测鉴别副溶血性弧菌(Vibrio parahaemolyticus)死/活菌细胞。针对副溶血性弧菌不耐热溶血素基因tlh(thermolabile hemolysin)特异性序列的6个位点设计4条引物及2条环引物,进行检测。结果表明,浓度为8.0μg/mL或更高浓度的EMA,至少经25 min的曝光处理,能够有效抑制浓度为1×108cfu/mL的副溶血性弧菌死细胞的扩增,而对用相同浓度EMA处理的副溶血性弧菌活细胞扩增没有影响。经EMA处理,含有不同比例的副溶血弧菌死细胞和活细胞的混合液中,活菌的最小检测限为1.0×102cfu/mL。EMA-LAMP方法比EMA-PCR方法区分死活细胞中的活细胞更为有效,是一种能够快速、灵敏且更为有效鉴别副溶血性弧菌死活细胞的新方法。  相似文献   

13.
Aims: The aim of this study was to develop and optimize a novel method that combines ethidium bromide monoazide (EMA) staining with real‐time PCR for the detection of viable Escherichia  coli O157:H7 in ground beef. EMA can penetrate dead cells and bind to intracellular DNA, preventing its amplification via PCR. Methods and Results: Samples were stained with EMA for 5 min, iced for 1 min and exposed to bright visible light for 10 min prior to DNA extraction, to allow EMA binding of the DNA from dead cells. DNA was then extracted and amplified by TaqMan® real‐time PCR to detect only viable E. coli O157:H7 cells. The primers and TaqMan® probe used in this study target the uidA gene in E. coli O157:H7. An internal amplification control (IAC), consisting of 0·25 pg of plasmid pUC19, was added in each reaction to prevent the occurrence of false‐negative results. Results showed a reproducible application of this technique to detect viable cells in both broth culture and ground beef. EMA, at a final concentration of 10 μg ml?1, was demonstrated to effectively bind DNA from 108 CFU ml?1 dead cells, and the optimized method could detect as low as 104 CFU g?1 of viable E. coli O157:H7 cells in ground beef without interference from 108 CFU g?1 of dead cells. Conclusions: EMA real‐time PCR with IAC can effectively separate dead cells from viable E. coli O157:H7 and prevent amplification of DNA in the dead cells. Significance and Impact of the Study: The EMA real‐time PCR has the potential to be a highly sensitive quantitative detection technique to assess the contamination of viable E. coli O157:H7 in ground beef and other meat or food products.  相似文献   

14.
Aims:  The DNA-intercalating dye ethidium bromide monoazide (EMA) has recently been used as a DNA binding agent to differentiate viable and dead bacterial cells by selectively penetrating through the damaged membrane of dead cells and blocking the DNA amplification during the polymerase chain reaction (PCR). We optimized and tested the assay in vitro using Staphylococcus aureus and Staphylococcus epidermidis cultures to distinguish viable from dead bacteria, with the goal of reducing false positive PCR results.
Methods and Results:  Viable and heat-inactivated bacteria were treated with EMA or left untreated before DNA extraction. A real-time PCR assay for the detection of the tuf gene in each DNA extract was used. Our results indicated that EMA influenced viable bacteria as well as dead bacteria, and the effect of EMA depended on the EMA concentration and bacterial number.
Conclusions:  EMA is not a suitable indicator of bacterial viability, at least with respect to Staphylococcus species.
Significance and Impact of the Study:  Determining the viability of pathogens has a major impact on interpreting the results of molecular tests for bacteria and subsequent clinical management of patients. To this end, several methods are being evaluated. One of these methods – intercalating DNA of dead bacteria by EMA – looked very promising, but our study found it unsatisfactory for S. aureus and coagulase-negative Staphylococci.  相似文献   

15.
Because Helicobacter pylori has a role in the pathogenesis of gastric cancer, chronic gastritis and peptic ulcer disease, detection of its viable form is very important. The objective of this study was to optimize a PCR method using ethidium monoazide (EMA) or propidium monoazide (PMA) for selective detection of viable H. pylori cells in mixed samples of viable and dead bacteria. Before conducting the real-time PCR using SodB primers of H. pylori, EMA or PMA was added to suspensions of viable and/or dead H. pylori cells at concentrations between 1 and 100 μM. PMA at a concentration of 50 μM induced the highest DNA loss in dead cells with little loss of genomic DNA in viable cells. In addition, selective detection of viable cells in the mixtures of viable and dead cells at various ratios was possible with the combined use of PMA and real-time PCR. In contrast, EMA penetrated the membranes of both viable and dead cells and induced degradation of their genomic DNA. The findings of this study suggest that PMA, but not EMA, can be used effectively to differentiate viable H. pylori from its dead form.  相似文献   

16.
The distinction between viable and dead cells is a major issue in many aspects of biological research. The current technologies for determining viable versus dead cells cannot readily be used for quantitative differentiation of specific cells in mixed populations. This is a serious limitation. We have solved this problem by developing a new concept with the viable/dead stain ethidium monoazide (EMA) in combination with real-time PCR (EMA-PCR). A dynamic range of approximately 4 log10 was obtained for the EMA-PCR viable/dead assay. Viable/dead differentiation is obtained by covalent binding of EMA to DNA in dead cells by photoactivation. EMA penetrates only dead cells with compromised membrane/cell wall systems. DNA covalently bound to EMA cannot be PCR amplified. Thus, only DNA from viable cells can be detected. We evaluated EMA-PCR with the major food-borne bacterium Campylobacter jejuni as an example. Traditional diagnosis of this bacterium is very difficult due to its specific growth requirements and because it may enter a state where it is viable but not cultivable. The conditions analyzed included detection in mixed and natural samples, survival in food, and survival after disinfection or antibiotic treatment. We obtained reliable viable/dead quantifications for all conditions tested. Comparison with standard fluorescence-based viable/dead techniques showed that the EMA-PCR has a broader dynamic range and enables quantification in mixed and complex samples. In conclusion, EMA-PCR offers a novel real-time PCR method for quantitative distinction between viable and dead cells with potentially very wide application.  相似文献   

17.
Nogva HK  Drømtorp SM  Nissen H  Rudi K 《BioTechniques》2003,34(4):804-8, 810, 812-3
PCR techniques have significantly improved the detection and identification of bacterial pathogens. Even so, the lack of differentiation between DNA from viable and dead cells is one of the major challenges for diagnostic DNA-based methods. Certain nucleic acid-binding dyes can selectively enter dead bacteria and subsequently be covalently linked to DNA. Ethidium monoazide (EMA) is a DNA intercalating dye that enters bacteria with damaged membranes. This dye can be covalently linked to DNA by photoactivation. Our goal was to utilize the irreversible binding of photoactivated EMA to DNA to inhibit the PCR of DNA from dead bacteria. Quantitative 5'-nuclease PCR assays were used to measure the effect of EMA. The conclusion from the experiments was that EMA covalently bound to DNA inhibited the 5'-nuclease PCR. The maximum inhibition of PCR on pure DNA cross-linked with EMA gave a signal reduction of approximately -4.5 log units relative to untreated DNA. The viable/dead differentiation with the EMA method was evaluated through comparison with BacLight staining (microscopic examination) and plate counts. The EMA and BacLight methods gave corresponding results for all bacteria and conditions tested. Furthermore, we obtained a high correlation between plate counts and the EMA results for bacteria killed with ethanol, benzalkonium chloride (disinfectant), or exposure to 70 degrees C. However, for bacteria exposed to 100 degrees C, the number of viable cells recovered by plating was lower than the detection limit with the EMA method. In conclusion, the EMA method is promising for DNA-based differentiation between viable and dead bacteria.  相似文献   

18.
Legionella organisms are prevalent in manmade water systems and cause legionellosis in humans. A rapid detection method for viable Legionella cells combining ethidium monoazide (EMA) and PCR/real-time PCR was assessed. EMA could specifically intercalate and cleave the genomic DNA of heat- and chlorine-treated dead Legionella cells. The EMA-PCR assay clearly showed an amplified fragment specific for Legionella DNA from viable cells, but it could not do so for DNA from dead cells. The number of EMA-treated dead Legionella cells estimated by real-time PCR exhibited a 104- to 105-fold decrease compared to the number of dead Legionella cells without EMA treatment. Conversely, no significant difference in the numbers of EMA-treated and untreated viable Legionella cells was detected by the real-time PCR assay. The combined assay was also confirmed to be useful for specific detection of culturable Legionella cells from water samples obtained from spas. Therefore, the combined use of EMA and PCR/real-time PCR detects viable Legionella cells rapidly and specifically and may be useful in environmental surveillance for Legionella.  相似文献   

19.
[目的]通过将表面活性剂脱氧胆酸钠(Sodium deoxycholate,SD)与叠氮溴乙锭(Ethidium bromide monoazide,EMA)-PCR反应体系相结合,建立SD-EMA-PCR鉴别副溶血性弧菌死活细胞的检测方法.[方法]依次对加入检测体系中的脱氧胆酸钠最适浓度、EMA区分死活细胞DNA的浓度范围、EMA激活光解最佳曝光时间进行优化;确定SD-EMA-PCR方法检测副溶血性弧菌死活细胞混合体系中活细胞的最低检出限.[结果]当脱氧胆酸钠浓度≤0.5 g/L,EMA的浓度为3.2-34.0 mg/L,曝光时间为25 min时,SD-EMA-PCR检测体系仅对死细胞DNA扩增产生抑制作用.SD-EMA-PCR检测活菌细胞的最低检出限为10 CFU/mL.[结论]死活细胞混合体系的SD-EMA-PCR检测证明该方法能够明显降低EMA-PCR漏检的死菌对检测结果造成的影响,为完善食源性致病菌检测中死活菌细胞鉴别方法提供了一种有效途径.  相似文献   

20.
The distinction between viable and dead bacterial cells poses a major challenge in microbial diagnostics. Due to the persistence of DNA in the environment after cells have lost viability, DNA-based quantification methods overestimate the number of viable cells in mixed populations or even lead to false-positive results in the absence of viable cells. On the other hand, RNA-based diagnostic methods, which circumvent this problem, are technically demanding and suffer from some drawbacks. A promising and easy-to-use alternative utilizing the DNA-intercalating dye ethidium monoazide bromide (EMA) was published recently. This chemical is known to penetrate only into “dead” cells with compromised cell membrane integrity. Subsequent photoinduced cross-linking was reported to inhibit PCR amplification of DNA from dead cells. We provide evidence here that in addition to inhibition of amplification, most of the DNA from dead cells is actually lost during the DNA extraction procedure, probably together with cell debris which goes into the pellet fraction. Exposure of bacteria to increasing stress and higher proportions of dead cells in defined populations led to increasing loss of genomic DNA. Experiments were performed using Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium as model pathogens and using real-time PCR for their quantification. Results showed that EMA treatment of mixed populations of these two species provides a valuable tool for selective removal of DNA of nonviable cells by using conventional extraction protocols. Furthermore, we provide evidence that prior to denaturing gradient gel electrophoresis, EMA treatment of a mature mixed-population drinking-water biofilm containing a substantial proportion of dead cells can result in community fingerprints dramatically different from those for an untreated biofilm. The interpretation of such fingerprints can have important implications in the field of microbial ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号