首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Fry AJ  Palmer MR  Rand DM 《Heredity》2004,93(4):379-389
Maternally inherited Wolbachia bacteria are extremely widespread among insects and their presence is usually associated with parasitic modifications of host fitness. Wolbachia pipientis infects Drosophila melanogaster populations from all continents, but their persistence in this species occurs despite any strong parasitic effects. Here, we have investigated the symbiosis between Wolbachia and D. melanogaster and found that Wolbachia infection can have significant survival and fecundity effects. Relative to uninfected flies, infected females from three fly strains showed enhanced survival or fecundity associated with Wolbachia infection, one strain showed both and one strain responded positively to Wolbachia removal. We found no difference in egg hatch rates (cytoplasmic incompatibility) for crosses between infected males and uninfected females, although there were fecundity differences. Females from this cross consistently produced fewer eggs than infected females and these fecundity differences could promote the spread of infection just like cytoplasmic incompatibility. More surprising, we found that infected females often had the greatest fecundity when mated to uninfected males. This could also promote the spread of Wolbachia infection, though here the fitness benefits would also help to spread infection when Wolbachia are rare. We suggest that variable fitness effects, in both sexes, and which interact strongly with the genetic background of the host, could increase cytoplasmic drive rates in some genotypes and help explain the widespread persistence of Wolbachia bacteria in D. melanogaster populations. These interactions may further explain why many D. melanogaster populations are polymorphic for Wolbachia infection. We discuss our results in the context of host-symbiont co-evolution.  相似文献   

2.
Wolbachia are maternally transmitted endocellular bacteria causing a reproductive incompatibility called cytoplasmic incompatibility (CI) in several arthropod species, including Drosophila. CI results in embryonic mortality in incompatible crosses. The only bacterial strain known to infect Drosophila melanogaster (wDm) was transferred from a D. melanogaster isofemale line into uninfected D. simulans isofemale lines by embryo microinjections. Males from the resulting transinfected lines induce >98% embryonic mortality when crossed with uninfected D. simulans females. In contrast, males from the donor D. melanogaster line induce only 18-32% CI on average when crossed with uninfected D. melanogaster females. Transinfected D. simulans lines do not differ from the D. melanogaster donor line in the Wolbachia load found in the embryo or in the total bacterial load of young males. However, >80% of cysts are infected by Wolbachia in the testes of young transinfected males, whereas only 8% of cysts are infected in young males from the D. melanogaster donor isofemale line. This difference might be caused by physiological differences between hosts, but it might also involve tissue-specific control of Wolbachia density by D. melanogaster. The wDm-transinfected D. simulans lines are unidirectionally incompatible with strains infected by the non-CI expressor Wolbachia strains wKi, wMau, or wAu, and they are bidirectionally incompatible with strains infected by the CI-expressor Wolbachia strains wHa or wNo. However, wDm-infected males do not induce CI toward females infected by the CI-expressor strain wRi, which is found in D. simulans continental populations, while wRi-infected males induce partial CI toward wDm-infected females. This peculiar asymmetrical pattern could reflect an ongoing divergence between the CI mechanisms of wRi and wDm. It would also confirm other results indicating that the factor responsible for CI induction in males is distinct from the factor responsible for CI rescue in females.  相似文献   

3.
Yamada R  Floate KD  Riegler M  O'Neill SL 《Genetics》2007,177(2):801-808
Cytoplasmic incompatibility (CI) is the most widespread reproductive modification induced in insects by the maternally inherited intracellular bacteria, Wolbachia. Expression of CI in Drosophila melanogaster is quite variable. Published papers typically show that CI expression is weak and often varies between different Drosophila lines and different labs reporting the results. The basis for this variability is not well understood but is often considered to be due to unspecified host genotype interactions with Wolbachia. Here, we show that male development time can greatly influence CI expression in D. melanogaster. In a given family, males that develop fastest express very strong CI. The "younger brothers" of these males (males that take longer to undergo larval development) quickly lose their ability to express the CI phenotype as a function of development time. This effect is independent of male age effects and is enhanced when flies are reared under crowded conditions. No correlation is seen between this effect and Wolbachia densities in testes, suggesting that a more subtle interaction between host and symbiont is responsible. The observed younger brother effect may explain much of the reported variability in CI expression in this species. When male development time is controlled, it is possible to obtain consistently high levels of CI expression, which will benefit future studies that wish to use D. melanogaster as a model host to unravel CI mechanisms.  相似文献   

4.
The maternally inherited bacterium Wolbachia pipientis infects 25-75% of arthropods and manipulates host reproduction to improve its transmission. One way Wolbachia achieves this is by inducing cytoplasmic incompatibility (CI), where crosses between infected males and uninfected females are inviable. Infected males suffer reduced fertility through CI and reduced sperm production. However, Wolbachia induce lower levels of CI in nonvirgin males. We examined the impact of Wolbachia on mating behaviour in male Drosophila melanogaster and D. simulans, which display varying levels of CI, and show that infected males mate at a higher rate than uninfected males in both species. This may serve to increase the spread of Wolbachia, or alternatively, may be a behavioural adaptation employed by males to reduce the level of CI. Mating at high rate restores reproductive compatibility with uninfected females resulting in higher male reproductive success thus promoting male promiscuity. Increased male mating rates also have implications for the transmission of Wolbachia.  相似文献   

5.
The Asian tiger mosquito, Aedes albopictus (Skuse), is a known vector of dengue in South America and Southeast Asia. It is naturally superinfected with two strains of Wolbachia endosymbiont that are able to induce cytoplasmic incompatibility (CI). In this paper, we report the strength of CI expression in crosses involving field-caught males. CI expression was found to be very strong in all crosses between field males and laboratory-reared uninfected or wAlbA infected young females. In addition, crossing experiments with laboratory colonies showed that aged super-infected males could express strong CI when mated with young uninfected or wAlbA infected females. These results provide additional evidence that the CI properties of Wolbachia infecting Aedes albopictus are well suited for applied strategies that seek to utilise Wolbachia for host population modification.  相似文献   

6.
Endosymbiotic bacteria are often transmitted vertically from one host generation to the next via oocytes cytoplasm. The generally small number of colonizing bacteria in the oocytes leads to a bottleneck at each generation, resulting in genetic homogenization of the symbiotic population. Nevertheless, in many of the species infected by Wolbachia (maternally transmitted bacteria), individuals do sometimes simultaneously harbor several bacterial strains, owing to the fact that Wolbachia induces cytoplasmic incompatibility (CI) that maintains multiple infections. CI occurs in crosses in which the male is infected by at least one Wolbachia strain that the female lacks, and consequently it favors individuals with the greatest symbiotic diversity. CI results in death of offspring in diploid species. In haplodiploid individuals, unfertilized eggs hatch normally into males and fertilized ones, which would lead to females, either die (female mortality type: FM) or develop into males (male development type: MD). Until now, only one theoretical study, restricted to diploid species, has investigated the associations where multiple CI-inducing Wolbachia co-exist, and explored the conditions under which multiple infections can spread. The consequences of double infections on Wolbachia maintenance in host populations, and the selective pressures to which it is subjected have not yet been analysed. Here, we have re-written a model previously developed for single infection in matrix form, which allows easy extension to multiple infections and introduction of mutant strains. We show that (i) the CI type has a strong influence on invasiveness and maintenance of multiple infections; (ii) double infection lowers the invasion threshold of less competitive strains that hitch-hike with their companion strain; (iii) when multiple infections occur, as in single infections, the strains selected are those which maximize the production of infected offspring; and (iv) for the MD CI type, invasion of mutant strains can carry the whole infection to extinction.  相似文献   

7.
Merçot H  Charlat S 《Genetica》2004,120(1-3):51-59
Wolbachia are endosymbiotic bacteria, widespread in terrestrial Arthropods. They are mainly transmitted vertically, from mothers to offspring and induce various alterations of their hosts' sexuality and reproduction, the most commonly reported phenomenon being Cytoplasmic Incompatibility (CI), observed in Drosophila melanogaster and D. simulans. Basically, CI results in a more or less intense embryonic mortality, occurring in crosses between males infected by Wolbachia and uninfected females. In D. simulans, Wolbachia and CI were observed in 1986. Since then, this host species has become a model system for investigating the polymorphism of Wolbachia infections and CI. In this review we describe the different Wolbachia infections currently known to occur in D. melanogaster and D. simulans. The two species are highly contrasting with regard to symbiotic diversity: while five Wolbachia variants have been described in D. simulans natural populations, D. melanogaster seems to harbor one Wolbachia variant only. Another marked difference between these two Drosophila species is their permissiveness with regard to CI, which seems to be fully expressed in D. simulans but partially or totally repressed in D. melanogaster, demonstrating the involvement of host factors in the control of CI levels. The potential of the two host species regarding the understanding of CI and its evolution is also discussed.  相似文献   

8.
Duron O  Fort P  Weill M 《Heredity》2007,98(6):368-374
Wolbachia are maternally inherited endocellular bacteria, widespread in invertebrates and capable of altering several aspects of host reproduction. Cytoplasmic incompatibility (CI) is commonly found in arthropods and induces hatching failure of eggs from crosses between Wolbachia-infected males and uninfected females (or females infected by incompatible strains). Several factors such as bacterial and host genotypes or bacterial density contribute to CI strength and it has been proposed, mostly from Drosophila data, that older males have a lower Wolbachia load in testes which, thus, induces a lighter CI. Here, we challenge this hypothesis using different incompatible Culex pipiens mosquito strains and show that CI persists at the same intensity throughout the mosquito life span. Embryos from incompatible crosses showed even distributions of abortive phenotypes over time, suggesting that host ageing does not reduce the sperm-modification induced by Wolbachia. CI remained constant when sperm was placed in the spermathecae of incompatible females, indicating that sperm modification is also stable over time. The capacity of infected females to rescue CI was independent of age. Last, the density of Wolbachia in whole testes was highly strain-dependent and increased dramatically with age. Taken together, these data stress the peculiarity of the C.pipiens/Wolbachia interaction and suggest that the bacterial dosage model should be rejected in the case of this association.  相似文献   

9.
Mouton L  Henri H  Boulétreau M  Vavre F 《Heredity》2005,94(2):187-192
Cytoplasmic incompatibility (CI) is a sperm-egg incompatibility commonly induced by the intracellular endosymbiont bacterium Wolbachia that, in diploid species, results in embryo mortality. In haplodiploid species, two types of CI exist depending on whether the incompatible fertilized eggs develop into males (male development (MD)) or abort (female mortality (FM)). CI allows multiple infections to be maintained in host populations, and thus allows interactions to occur between co-infecting strains. In Leptopilina heterotoma, three Wolbachia strains coexist naturally (wLhet1, wLhet2, wLhet3). When these three strains are all present, they induce a CI of FM type, whereas wLhet1 alone expresses a CI phenotype intermediate between MD and FM. Here, we compare CI effects in crosses involving insect lines sharing the same nuclear background, but harboring different mixtures of strains. Mating experiments showed that: (i) wLhet2 and wLhet3 also induce an intermediate CI when acting alone, and show a bidirectional incompatibility; (ii) there is no interaction between the co-infecting strains in CI expression; (iii) the diversity of Wolbachia present within a male host influences the expression of CI: an increase in the number of strains is correlated with a decrease in the proportion of the MD type, which is also correlated with an increase in bacterial density. All these data suggest that the CI of FM type results from a stronger effect than the MD type, which conflicts with the conventional hypotheses used to explain CI diversity in haplodiploids, and could provide some new information about CI mechanisms in insects.  相似文献   

10.
Duron O  Weill M 《Heredity》2006,96(6):493-500
Wolbachia are maternally inherited endosymbiotic bacteria that infect many arthropod species and have evolved several different ways for manipulating their host, the most frequent being cytoplasmic incompatibility (CI). CI leads to embryo death in crosses between infected males and uninfected females, as well as in crosses between individuals infected by incompatible Wolbachia strains. In the mosquito Culex pipiens, previous studies suggested developmental variation in embryos stemming from different incompatible crosses. We have investigated this variation in different incompatible crosses. Unhatched eggs were separated into three classes based upon the developmental stage reached by the embryos. We found that incompatible crosses involving uninfected females produced only embryos whose development was arrested at a very early stage, irrespective of the Wolbachia variant infecting the male. These results differ from other host species where a developmental gradient that could reach late stages of embryogenesis or even living larvae was observed, and indicate a novel peculiarity of CI mechanism in C. pipiens. By contrast, all incompatible crosses with infected C. pipiens females produced embryos of all three classes. The proportion of embryo classes appeared to be associated with the strains involved, suggesting specific CI properties in different incompatible crosses. In addition, the contribution of parental genome was characterized in embryo classes using molecular markers for each chromosome. Embryo phenotypes appeared linked to the paternal chromosomes' contribution, as described in Drosophila simulans. However, this contribution varied according to maternal infection and independently of male factors.  相似文献   

11.
【目的】Wolbachia 是广泛存在于昆虫体内的一类通过母系传递的共生菌,能够通过多种方式影响宿主的生殖。细胞质不亲和(CI)是Wolbachia 引起的最普遍的一种表型,即感染Wolbachia的雄性和未感染的雌性宿主交配后,胚胎发育停滞于早期阶段。但目前有关CI的分子机理还不清楚。本研究组前期实验表明,Wolbachia感染引起黑腹果蝇Drosophila melanogaster 3龄幼虫精巢中Mst84Db基因的表达显著下调。本研究的目的是进一步研究Mst84Db与CI的关系。【方法】我们体外合成了Mst84Db的双链RNA(dsRNA),注射雄性果蝇,将注射过的雄果蝇与野生雌果蝇交配,检测其繁殖力。基因表达采用定量RT-PCR方法进行检测。胚胎表型采用DAPI染色进行分析。【结果】注射dsRNA 24 h后,Mst84Db基因的表达水平发生显著下调。注射后72 h,基因表达下调幅度最大。与对照组相比,基因敲降后的雄蝇繁殖能力显著下降,与雌果蝇交配后胚胎孵化率显著低于对照组,这与Wolbachia诱导的CI现象类似。未孵化胚胎的表皮上没有体节出现,说明胚胎停滞于发育的早期。部分胚胎细胞核分裂不同步,且有染色质间桥出现,这也与CI胚胎中的细胞学表型一致。【结论】Wolbachia感染可能抑制果蝇精子发生过程中Mst84Db基因的表达,从而使精子失去正常功能,最终导致与雌性果蝇交配后,胚胎发育停滞,并最终死亡。Mst84Db基因在雄性果蝇中表达下调可能是产生CI的重要原因之一。  相似文献   

12.
Reynolds KT  Thomson LJ  Hoffmann AA 《Genetics》2003,164(3):1027-1034
Because of their obligate endosymbiotic nature, Wolbachia strains by necessity are defined by their phenotypic effects upon their host. Nevertheless, studies on the influence of host background and environmental conditions upon the manifestation of Wolbachia effects are relatively uncommon. Here we examine the behavior of the overreplicating Wolbachia strain popcorn in four different Drosophila melanogaster backgrounds at two temperatures. Unlike other strains of Wolbachia in Drosophila, popcorn has a major fitness impact upon its hosts. The rapid proliferation of popcorn causes cells to rupture, resulting in the premature death of adult hosts. Apart from this effect, we found that popcorn delayed development time, and host background influenced both this trait and the rate of mortality associated with infection. Temperature influenced the impact of popcorn upon host mortality, with no reduction in life span occurring in flies reared at 19 degrees. No effect upon fecundity was found. Contrary to earlier reports, popcorn induced high levels of incompatibility when young males were used in tests, and CI levels declined rapidly with male age. The population dynamics of popcorn-type infections will therefore depend on environmental temperature, host background, and the age structure of the population.  相似文献   

13.
共生菌Wolbachia引起宿主细胞质不亲和的研究进展   总被引:1,自引:0,他引:1  
Wolbachia 是一类广泛存在于节肢动物以及线虫体内细胞质中呈母系遗传的共生细菌,能够在宿主中产生细胞质不亲和、孤雌生殖、雌性化及杀雄等多种生殖调控作用,其中细胞质不亲和是指被 Wolbachia 感染的雄性个体与未感染的雌性个体(单向不亲和),或者感染不同株系 Wolbachia 的雌性个体(双向不亲和)交配后不能或很少产生后代,或者后代偏雄性的现象。细胞质不亲和作用使感染的雌性个体在种群中具有很大的生殖优势,凭借这种生殖优势,Wolbachia 能够迅速在宿主种群中扩张。细胞质不亲和的机理探索主要集中在细胞学水平上,其中广为接受的精子“修饰”和“拯救”理论认为,精巢中的 Wolbachia 能够修饰宿主的精细胞,使其不能和卵细胞正常融合,但是当母本感染相同的 Wolbachia 时,就能够将“修饰”过的精子细胞“拯救”过来,使其恢复与卵细胞的正常融合。而分子机理上的探索也开始在转录组、基因组和miRNA水平上对部分昆虫展开了研究。影响细胞质不亲和的因素有很多,包括宿主遗传背景、 Wolbachia 株系、Wolbachia 基因型、共生菌密度(浓度、滴度)、雄虫年龄、环境因素以及共生菌在宿主生殖组织的分布等。近年来,人类也应用细胞质不亲和控制害虫(主要是蚊虫)和人类疾病,取得了较好的进展。  相似文献   

14.
Numerous animals are known to harbour intracytoplasmic symbionts that gain transmission to a new host generation via female eggs and not male sperm. Bacteria of the genus Wolbachia are a typical example. They infect a large range of arthropod species and manipulate host reproduction in several ways. In terrestrial isopods (woodlice), Wolbachia are responsible for converting males into females (feminization (F)) in some species, or for infertility in certain host crosses in other species (cytoplasmic incompatibility (CI)). Wolbachia with the F phenotype impose a strong excess of females on their host populations, while Wolbachia expressing CI do not. Here, we test the possibility that male mating capacity (MC) is correlated with Wolbachia-induced phenotype. We show that males of isopod hosts harbouring F Wolbachia possess a strong MC (i.e. are able to mate with several females in a short time), while those of species harbouring CI Wolbachia possess a weaker MC. This pattern may be explained either by the selection of high MC following the increase in female-biased sex ratios, or because the F phenotype would lead to population extinction in species where MC is not sufficiently high. This last hypotheses is nevertheless more constrained by population structure.  相似文献   

15.
Wolbachia strains are maternally inherited endosymbiotic bacteria that infect many arthropod species and have evolved several different ways of manipulating their hosts, the most frequent way being cytoplasmic incompatibility (CI). CI leads to embryo death in crosses between infected males and uninfected females as well as in crosses between individuals infected by incompatible Wolbachia strains. The mosquito Culex pipiens exhibits the highest crossing type variability reported so far. Our crossing data support the notion that CI might be driven by at least two distinct genetic units that control the CI functions independently in males and females. Although the molecular basis of CI remains unknown, proteins with ankyrin (ANK) domains represent promising candidates since they might interact with a wide range of host proteins. Here we searched for sequence variability in the 58 ANK genes carried in the genomes of Wolbachia variants infecting Culex pipiens. Only five ANK genes were polymorphic in the genomes of incompatible Wolbachia variants, and none correlated with the CI pattern obtained with 15 mosquito strains (representing 14 Wolbachia variants). Further analysis of ANK gene expression evidenced host- and sex-dependent variations, which did not improve the correlation. Taken together, these data do not support the direct implication of ANK genes in CI determinism.  相似文献   

16.
Abstract The most common effect of the endosymbiont Wolbachia is cytoplasmic incompatibility (CI), a form of postzygotic reproductive isolation that occurs in crosses where the male is infected by at least one Wolbachia strain that the female lacks. We revisited two puzzling features of Wolbachia biology: how Wolbachia can invade a new species and spread among populations, and how the association, once established in a host species, can evolve, with emphasis on the possible process of infection loss. These questions are particularly relevant in haplodiploid species, where males develop from unfertilized eggs, and females from fertilized eggs. When CI occurs in such species, fertilized eggs either die (female mortality type: FM), or develop into males (male development type: MD), raising one more question: how transition among CI types is possible. We reached the following conclusions: (1) the FM type is a better invader and should be retained preferentially after a new host is captured; (2) given the assumptions of the models, FM and MD types are selected on neither the bacterial side nor the host side; (3) selective pressures acting on both partners are more or less congruent in the FM type, but divergent in the MD type; (4) host and symbiont evolution can drive infection to extinction for all CI types, but the MD type is more susceptible to the phenomenon; and (5) under realistic conditions, transition from MD to FM type is possible. Finally, all these results suggest that the FM type should be more frequent than the MD type, which is consistent with the results obtained so far in haplodiploids.  相似文献   

17.
M. Turelli  A. A. Hoffmann 《Genetics》1995,140(4):1319-1338
In Drosophila simulans, cytoplasmically transmitted Wolbachia microbes cause reduced egg hatch when infected males mate with uninfected females. A Wolbachia infection and an associated mtDNA variant have spread northward through California since 1986. PCR assays show that Wolbachia infection is prevalent throughout the continental US and Central and South America, but some lines from Florida and Ecuador that are PCR-positive for Wolbachia do not cause incompatibility. We estimate from natural populations infection frequencies and the transmission and incompatibility parameter values that affect the spread of the infection. On average, infected females from nature produce 3-4% uninfected ova. Infected females with relatively low fidelity of maternal transmission show partial incompatibility with very young infected laboratory males. Nevertheless, crosses between infected flies in nature produce egg-hatch rates indistinguishable from those produced by crosses between uninfected individuals. Incompatible crosses in nature produce hatch rates 30-70% as high as those from compatible crosses. Wild-caught infected and uninfected females are equally fecund in the laboratory. Incompatibility decreases with male age, and age-specific incompatibility levels suggest that males mating in nature may often be 2 or 3 weeks old. Our parameter estimates accurately predict the frequency of Wolbachia infection in California populations.  相似文献   

18.
The growth and distribution of the intracellular microbe Wolbachia pipientis during spermatogenesis in several different host/symbiont genetic combinations in Drosophila melanogaster and Drosophila simulans is described. Considerable intra- and inter-strain variation in Wolbachia density and tissue distribution was observed. Wolbachia were found inside spermatocytes and spermatids or within the somatic cyst cells surrounding the germ cells. Some strains displayed both tissue distributions. High rates of cytoplasmic incompatibility (CI) are correlated with high levels of Wolbachia only when spermatocytes and/or spermatids harbor the microbe. Wolbachia infection of somatic cyst cells, although sometimes present at high levels, did not result in significant CI expression. CI-inducing Wolbachia strains within D. simulans showed no distinguishable differences in distribution or density within infected spermatids. To dissect the relative contribution of host and symbiont to the expression of CI, Wolbachia from various host strains known to exhibit varying levels of CI were introgressed into new uninfected host genetic backgrounds. These introgression experiments confirm that the mod(+)/mod(-) phenotype is an intrinsic Wolbachia trait and is not determined by host factors. The level of sperm modification in those lines harboring Wolbachia capable of modifying sperm, however, is influenced by host genetic background. These results form the basis of the Wolbachia Infected Spermatocyte/Spermatid Hypothesis (WISSH). According to WISSH, Wolbachia infection in spermatocytes and then spermatids during sperm development is required for CI expression.  相似文献   

19.
Presgraves DC 《Genetics》2000,154(2):771-776
Cytoplasmic bacteria of the genus Wolbachia are best known as the cause of cytoplasmic incompatibility (CI): many uninfected eggs fertilized by Wolbachia-modified sperm from infected males die as embryos. In contrast, eggs of infected females rescue modified sperm and develop normally. Although Wolbachia cause CI in at least five insect orders, the mechanism of CI remains poorly understood. Here I test whether the target of Wolbachia-induced sperm modification is the male pronucleus (e.g., DNA or pronuclear proteins) or some extranuclear factor from the sperm required for embryonic development (e.g., the paternal centrosome). I distinguish between these hypotheses by crossing gynogenetic Drosophila melanogaster females to infected males. Gynogenetic females produce diploid eggs whose normal development requires no male pronucleus but still depends on extranuclear paternal factors. I show that when gynogenetic females are crossed to infected males, uniparental progeny with maternally derived chromosomes result. This finding shows that Wolbachia impair the male pronucleus but no extranuclear component of the sperm.  相似文献   

20.
Bordenstein SR  Werren JH 《Heredity》2007,99(3):278-287
Most insect groups harbor obligate bacterial symbionts from the alpha-proteobacterial genus Wolbachia. These bacteria alter insect reproduction in ways that enhance their cytoplasmic transmission. One of the most common alterations is cytoplasmic incompatibility (CI) - a post-fertilization modification of the paternal genome that renders embryos inviable or unable to complete diploid development in crosses between infected males and uninfected females or infected females harboring a different strain. The parasitic wasp species complex Nasonia (N. vitripennis, N. longicornis and N. giraulti) harbor at least six different Wolbachia that cause CI. Each species have double infections with a representative from both the A and B Wolbachia subgroups. CI relationships of the A and B Wolbachia of N. longicornis with those of N. giraulti and N. vitripennis are investigated here. We demonstrate that all pairwise crosses between the divergent A strains are bidirectionally incompatible. We were unable to characterize incompatibility between the B Wolbachia, but we establish that the B strain of N. longicornis induces no or very weak CI in comparison to the closely related B strain in N. giraulti that expresses complete CI. Taken together with previous studies, we show that independent acquisition of divergent A Wolbachia has resulted in three mutually incompatible strains, whereas codivergence of B Wolbachia in N. longicornis and N. giraulti is associated with differences in CI level. Understanding the diversity and evolution of new incompatibility strains will contribute to a fuller understanding of Wolbachia invasion dynamics and Wolbachia-assisted speciation in certain groups of insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号