首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The Brazilian rosewood (Dalbergia nigra) is an endangered tree endemic to the central Brazilian Atlantic Forest, one of the world''s most threatened biomes. The population diversity, phylogeographic structure and demographic history of this species were investigated using the variation in the chloroplast DNA (cpDNA) sequences of 185 individuals from 19 populations along the geographical range of the species. Fifteen haplotypes were detected in the analysis of 1297 bp from two non-coding sequences, trnV-trnM and trnL. We identified a strong genetic structure (FST=0.62, P<0.0001), with a latitudinal separation into three phylogeographic groups. The two northernmost groups showed evidence of having maintained historically larger populations than the southernmost group. Estimates of divergence times between these groups pointed to vicariance events in the Middle Pleistocene (ca. 350 000–780 000 years ago). The recurrence of past climatic changes in the central part of the Atlantic forest, with cycles of forest expansion and contraction, may have led to repeated vicariance events, resulting in the genetic differentiation of these groups. Based on comparisons among the populations of large reserves and small, disturbed fragments of the same phylogeographic group, we also found evidence of recent anthropogenic effects on genetic diversity. The results were also analysed with the aim of contributing to the conservation of D. nigra. We suggest that the three phylogeographic groups could be considered as three distinct management units. Based on the genetic diversity and uniqueness of the populations, we also indicate priority areas for conservation.  相似文献   

2.
The Brazilian Atlantic Forest is one of the richest biodiversity hotspots of the world. Paleoclimatic models have predicted two large stability regions in its northern and central parts, whereas southern regions might have suffered strong instability during Pleistocene glaciations. Molecular phylogeographic and endemism studies show, nevertheless, contradictory results: although some results validate these predictions, other data suggest that paleoclimatic models fail to predict stable rainforest areas in the south. Most studies, however, have surveyed species with relatively high dispersal rates whereas taxa with lower dispersion capabilities should be better predictors of habitat stability. Here, we have used two land planarian species as model organisms to analyse the patterns and levels of nucleotide diversity on a locality within the Southern Atlantic Forest. We find that both species harbour high levels of genetic variability without exhibiting the molecular footprint of recent colonization or population expansions, suggesting a long-term stability scenario. The results reflect, therefore, that paleoclimatic models may fail to detect refugia in the Southern Atlantic Forest, and that model organisms with low dispersal capability can improve the resolution of these models.  相似文献   

3.
Social, ecological, and historical processes affect the genetic structure of primate populations, and therefore have key implications for the conservation of endangered species. The northern muriqui (Brachyteles hypoxanthus) is a critically endangered New World monkey and a flagship species for the conservation of the Atlantic Forest hotspot. Yet, like other neotropical primates, little is known about its population history and the genetic structure of remnant populations. We analyzed the mitochondrial DNA control region of 152 northern muriquis, or 17.6% of the 864 northern muriquis from 8 of the 12 known extant populations and found no evidence of phylogeographic partitions or past population shrinkage/expansion. Bayesian and classic analyses show that this finding may be attributed to the joint contribution of female-biased dispersal, demographic stability, and a relatively large historic population size. Past population stability is consistent with a central Atlantic Forest Pleistocene refuge. In addition, the best scenario supported by an Approximate Bayesian Computation analysis, significant fixation indices (ΦST = 0.49, ΦCT = 0.24), and population-specific haplotypes, coupled with the extirpation of intermediate populations, are indicative of a recent geographic structuring of genetic diversity during the Holocene. Genetic diversity is higher in populations living in larger areas (>2,000 hectares), but it is remarkably low in the species overall (θ = 0.018). Three populations occurring in protected reserves and one fragmented population inhabiting private lands harbor 22 out of 23 haplotypes, most of which are population-exclusive, and therefore represent patchy repositories of the species'' genetic diversity. We suggest that these populations be treated as discrete units for conservation management purposes.  相似文献   

4.
The aim of the present study is to test by molecular DNA data a hypothesis concerned to speciation by allopatry occurring in Mimagoniates microlepis, associated to the Serra do Mar mountain chain (Atlantic Rain Forest hotspot) in Southern Brazil. Overall genetic diversity and mean genetic distances were high, demonstrating both good conservation status and genetic differentiation. Neighbor-Joining (NJ) and parsimony analyses, together with population genetic parameters (ΦST, Nm, GST, and AMOVA), identified two main vicariant genetic/evolutionary stocks dividing the upper Iguaçu River samples from those of the coastal plains. Other well-supported intrinsic monophyletic clades were also identified, suggesting fast and remarkable speciation processes. In addition, the genetic, evolutionary, geographic, and phylogeographic evidences reinforced an occurring species complex. Moreover, these evolutionarily significant units (species complex) seem to be inside four natural biogeographic areas. Thus, the genesis and evolution of the Serra do Mar complex might be associated to diversification processes of M. microlepis. Such a consideration suggests that the areas including the upper Iguaçu River and the coastal plains of the states of São Paulo, Paraná, and Santa Catarina require distinct conservation policies involving one of the global biodiversity hotspots, namely, the Brazilian Atlantic Rain Forest.  相似文献   

5.
Shifting cultivation systems have been blamed as the primary cause of tropical deforestation and are being transformed through various forms of conservation and development policies and through the emergence of new markets for cash crops. Here, we analyze the outcomes of different policies on land use/land cover change (LUCC) in a traditional, shifting cultivation landscape in the Atlantic Forest (Brazil), one of the world’s top biodiversity hotspots. We also investigate the impacts of those policies on the environment and local livelihoods in Quilombola communities, which are formed by descendants of former Maroon colonies. Our findings show that conservation and social policies have had mixed effects both on the conservation of the Atlantic Forest and on the livelihoods of the Quilombola. We conclude that future interventions in the region need to build on the new, functional links between sustainable livelihoods and biodiversity, where less restrictive state policies leave room for new opportunities in self-organization and innovation.  相似文献   

6.
Traditionally focused on Amazonian and Atlantic rainforests, studies on the origins of high Neotropical biodiversity have recently shifted to also investigate biodiversity processes in the South American dry diagonal, encompassing Chaco, Cerrado savannas, and Caatinga seasonally dry tropical forests. The plateau/depression hypothesis states that riparian forests in the Brazilian Shield in central Brazil are inhabited by Pleistocene lineages, with shallow divergences and signatures of population expansion. Moreover, riparian forests may have acted as a vegetation network in the Pleistocene, allowing gene/species flow across the South American dry diagonal. We tested these hypotheses using Colobosaura modesta, a small gymnophthalmid lizard from forested habitats in the Cerrado savannas and montane/submontane forests in the Caatinga. We conducted phylogeographic analyses using a multi-locus dataset, tested alternative demographic scenarios with Approximate Bayesian Computation, and also employed species delimitation tests. We recovered a history of recent colonization and expansion along riparian forests, associated with Pleistocene climate shifts, and the existence of a new species of Colobosaura restricted to the Serra do Cachimbo region. We also present evidence that riparian forests have provided an interconnected network for forest organisms within the South American dry diagonal and that Pleistocene events played an important role in their evolutionary history.  相似文献   

7.
We present the global phylogeography of the black sea urchin Arbacia lixula, an amphi-Atlantic echinoid with potential to strongly impact shallow rocky ecosystems. Sequences of the mitochondrial cytochrome c oxidase gene of 604 specimens from 24 localities were obtained, covering most of the distribution area of the species, including the Mediterranean and both shores of the Atlantic. Genetic diversity measures, phylogeographic patterns, demographic parameters and population differentiation were analysed. We found high haplotype diversity but relatively low nucleotide diversity, with 176 haplotypes grouped within three haplogroups: one is shared between Eastern Atlantic (including Mediterranean) and Brazilian populations, the second is found in Eastern Atlantic and the Mediterranean and the third is exclusively from Brazil. Significant genetic differentiation was found between Brazilian, Eastern Atlantic and Mediterranean regions, but no differentiation was found among Mediterranean sub-basins or among Eastern Atlantic sub-regions. The star-shaped topology of the haplotype network and the unimodal mismatch distributions of Mediterranean and Eastern Atlantic samples suggest that these populations have suffered very recent demographic expansions. These expansions could be dated 94–205 kya in the Mediterranean, and 31–67 kya in the Eastern Atlantic. In contrast, Brazilian populations did not show any signature of population expansion. Our results indicate that all populations of A. lixula constitute a single species. The Brazilian populations probably diverged from an Eastern Atlantic stock. The present-day genetic structure of the species in Eastern Atlantic and the Mediterranean is shaped by very recent demographic processes. Our results support the view (backed by the lack of fossil record) that A. lixula is a recent thermophilous colonizer which spread throughout the Mediterranean during a warm period of the Pleistocene, probably during the last interglacial. Implications for the possible future impact of A. lixula on shallow Mediterranean ecosystems in the context of global warming trends must be considered.  相似文献   

8.
Understanding the phylogeographic processes affecting endangered species is crucial both to interpreting their evolutionary history and to the establishment of conservation strategies. Lions provide a key opportunity to explore such processes; however, a lack of genetic diversity and shortage of suitable samples has until now hindered such investigation. We used mitochondrial control region DNA (mtDNA) sequences to investigate the phylogeographic history of modern lions, using samples from across their entire range. We find the sub-Saharan African lions are basal among modern lions, supporting a single African origin model of modern lion evolution, equivalent to the 'recent African origin' model of modern human evolution. We also find the greatest variety of mtDNA haplotypes in the centre of Africa, which may be due to the distribution of physical barriers and continental-scale habitat changes caused by Pleistocene glacial oscillations. Our results suggest that the modern lion may currently consist of three geographic populations on the basis of their recent evolutionary history: North African-Asian, southern African and middle African. Future conservation strategies should take these evolutionary subdivisions into consideration.  相似文献   

9.
Climatic oscillations throughout the Pleistocene combined with geological and topographic complexity resulted in extreme habitat heterogeneity along the Atlantic coast of Brazil. Inferring how these historic landscape patterns have structured the current diversity of the region's biota is important both for our understanding of the factors promoting diversification, as well as the conservation of this biodiversity hotspot. Here we evaluate potential historical scenarios of diversification in the Atlantic Coastal Forest of Brazil by investigating the population genetic structure of a frog endemic to the region. Using mitochondrial and nuclear sequences, we generated a Bayesian population-level phylogeny of the Thoropa miliaris species complex. We found deep genetic divergences among five geographically distinct clades. Southern clades were monophyletic and nested within paraphyletic northern clades. Analyses of historical demographic patterns suggest an overall north to south population expansion, likely associated with regional differences in habitat stability during the Pliocene and early Pleistocene. However, genetic structure among southern populations is less pronounced and likely represents more recent vicariant events resulting from Holocenic sea-level oscillations. Our analyses corroborate that the Atlantic Coastal Forest has been a biogeographically dynamic landscape and suggest that the high diversity of its fauna and flora resulted from a combination of climatic and geologic events from the Pliocene to the present.  相似文献   

10.
We combine information about the evolutionary history and distributional patterns of the genus Saintpaulia H. Wendl. (Gesneriaceae; ‘African violets’) to elucidate the factors and processes behind the accumulation of species in tropical montane areas of high biodiversity concentration. We find that high levels of biodiversity in the Eastern Arc Mountains are the result of pre-Quaternary speciation processes and environmental stability. Our results support the hypothesis that climatically stable mountaintops may have acted as climatic refugia for lowland lineages during the Pleistocene by preventing extinctions. In addition, we found evidence for the existence of lowland micro-refugia during the Pleistocene, which may explain the high species diversity of East African coastal forests. We discuss the conservation implications of the results in the context of future climate change.  相似文献   

11.
Comparative phylogeography of Nearctic and Palearctic fishes   总被引:24,自引:2,他引:22  
Combining phylogeographic data from mitochondrial DNA (mtDNA) of Nearctic and Palearctic freshwater and anadromous fishes, we used a comparative approach to assess the influence of historical events on evolutionary patterns and processes in regional fish faunas. Specifically, we (i) determined whether regional faunas differentially affected by Pleistocene glaciations show predictable differences in phylogeographic patterns; (ii) evaluated how processes of divergence and speciation have been influenced by such differential responses; and (iii) assessed the general contribution of phylogeographic studies to conservation issues. Comparisons among case studies revealed fundamental differences in phylogeographic patterns among regional faunas. Tree topologies were typically deeper for species from nonglaciated regions compared to northern species, whereas species with partially glaciated ranges were intermediate in their characteristics. Phylogeographic patterns were strikingly similar among southern species, whereas species in glaciated areas showed reduced concordance. The extent and locations of secondary contact among mtDNA lineages varied greatly among northern species, resulting in reduced intraspecific concordance of genetic markers for some northern species. Regression analysis of phylogeographic data for 42 species revealed significant latitudinal shifts in intraspecific genetic diversity. Both relative nucleotide diversity and estimates of evolutionary effective population size showed significant breakpoints matching the median latitude for the southern limit of the Pleistocene glaciations. Similarly, analysis of clade depth of phylogenetically distinct lineages vs. area occupied showed that evolutionary dispersal rates of species from glaciated and nonglaciated regions differed by two orders of magnitude. A negative relationship was also found between sequence divergence among sister species as a function of their median distributional latitude, indicating that recent bursts of speciation events have occurred in deglaciated habitats. Phylogeographic evidence for parallel evolution of sympatric northern species pairs in postglacial times suggested that differentiation of cospecific morphotypes may be driven by ecological release. Altogether, these results demonstrate that comparative phylogeography can be used to evaluate not only phylogeographic patterns but also evolutionary processes. As well as having significant implications for conservation programs, this approach enables new avenues of research for examining the regional, historical, and ecological factors involved in shaping intraspecific genetic diversity.  相似文献   

12.
Sloths and anteaters form the monophyletic order Pilosa, which is currently represented by only 16 extant species distributed exclusively in the Neotropics. This present-day low species richness is an inheritance of the Pleistocene megafaunal extinctions, where over 65 Pilosa species known from the fossil record went extinct. The large number of species lost in the recent past suggests that this group is greatly vulnerable to extinction. Here, we propose long-term priority conservation areas for the order Pilosa, considering different future climate change scenarios, biotic stability, and the multiple dimensions of the group's biodiversity, such as species richness, species endemism, and phylogenetic diversity. Projections of species distribution for future scenarios show increased fragmentation and clear habitat loss as the Amazon Forest is replaced by savanna-like habitats. Conservation solutions were highly congruent for the different dimensions of biodiversity, with priority areas emerging mainly in the Atlantic Forest, Amazonian wetlands, highlands of Ecuador, and the Central American isthmus. Expanding the currently protected areas network by 6% with the proposed priority areas, independently of which future climatic scenario is considered, can increase sloths and anteaters' coverage in the future by 12%. As a group of high phylogenetic and ecological importance, future conservation planning should deliberately aim to protect areas favorable to Pilosa, especially given the current scenario of environmental dismantling and neglect of critical Neotropical biomes.  相似文献   

13.
The aim of this study was to investigate whether Pleistocene climatic instability influenced the phylogeographic structure and historical demography of an endemic Atlantic Forest (AF) orchid bee, Euglossa iopoecila Dressler, which shows two main patterns of integument colors over of its geographical distribution. We based our analysis on the concatenated sequence of four mtDNA segments belonging to genes 16S (357 bp), Cytb (651 bp) and COI (1206 bp), totaling 2234 bp. Samples of E. iopoecila populations were collected in 14 AF remnants along its geographic distribution. Median-Joining haplotype networks, SAMOVA and BAPS results indicated three lineages (southern, central and northern clusters) for E. iopoecila, with two important phylogeographic ruptures. We found higher genetic diversity among samples collected in the central region of the AF, which coincides with predicted areas of climatic stability, according to recent AF stability–extinction model. The demographic analysis suggests that only the southern cluster had undergone recent population expansion, which probably started after the last glacial maximum (LGM). Our data suggest that the differentiation observed in the three mitochondrial lineages of E. iopoecila is the result of past disconnections and multiple extinction/recolonization events involving climate fluctuations. In terms of conservation, we would emphasize the importance of considering: (1) the region of the central clade as the location of the highest genetic diversity of mtDNA of E. iopoecila populations; (2) the philopatric behavior of females that tends to restrict mtDNA gene flow in particular, with direct implications for the conservation of the total genetic diversity in euglossine populations.  相似文献   

14.
The bird fauna of the Brazilian Atlantic Forest is exceptionally diverse and threatened, with high levels of endemism. Available lists of the endemic birds of the Atlantic Forest were generated before recent taxonomic revisions lumped or split species and before the recent increase in species occurrence records. Our objective, therefore, was to compile a new list of the endemic birds of the Atlantic Forest, characterize these species in terms of conservation status and natural history traits, and map remaining vegetation and protected areas. We combined GIS analysis with a literature search to compile a list of endemic species and, based on the phylogeny and distribution of these species, characterized areas in terms of species richness, phylogenetic diversity, and endemism. We identified 223 species of birds endemic to the Atlantic Forest, including 12 species not included in previous lists. In addition, 14 species included in previous lists were not considered endemic, either because they occur outside the Atlantic Forest biome or because they are not considered valid species. The typical Atlantic Forest endemic bird is a small forest‐dependent invertivore. Of the species on our list, 31% are considered threatened or extinct. Only ~ 34% of the spatial analysis units had > 10% forest cover, and protected area coverage was consistently low (< 1%). In addition, we found spatial incongruity among the different measures of biodiversity (species richness, relative phylogenetic diversity, restricted‐range species, and irreplaceability). Each of these measures provides information concerning different aspects of biological diversity. However, regardless of which aspect(s) of biodiversity might be considered most important, preservation of the remaining areas of remnant vegetation and further expansion of protected areas are essential if we are to conserve the many endemic species of birds in the Atlantic Forest.  相似文献   

15.
The Atlantic Forest (AF) harbours one of the most diverse vertebrate faunas of the world, including 199 endemic species of birds. Understanding the evolutionary processes behind such diversity has become the focus of many recent, primarily single locus, phylogeographic studies. These studies suggest that isolation in forest refugia may have been a major mechanism promoting diversification, although there is also support for a role of riverine and geotectonic barriers, two sets of hypotheses that can best be tested with multilocus data. Here we combined multilocus data (one mtDNA marker and eight anonymous nuclear loci) from two species of parapatric antbirds, Myrmeciza loricata and M. squamosa, and Approximate Bayesian Computation to determine whether isolation in refugia explains current patterns of genetic variation and their status as independent evolutionary units. Patterns of population structure, differences in intraspecific levels of divergence and coalescent estimates of historical demography fit the predictions of a recently proposed model of refuge isolation in which climatic stability in the northern AF sustains higher diversity and demographic stability than in the southern AF. However, a pre‐Pleistocene divergence associated with their abutting range limits in a region of past tectonic activity also suggests a role for rivers or geotectonic barriers. Little or no gene flow between these species suggests the development of reproductive barriers or competitive exclusion. Our results suggests that limited marker sampling in recent AF studies may compromise estimates of divergence times and historical demography, and we discuss the effects of such sampling on this and other studies.  相似文献   

16.
The Atlantic Forest is one of the most diverse ecosystems in the world and considered a hotspot of biodiversity conservation. Dalbergia nigra (Fabaceae) is a tree endemic to the Brazilian Atlantic Forest, and has become threatened due to overexploitation of its valuable timber. In the present study, we analyzed the genetic diversity and fine-scale spatial genetic structure of D. nigra in an area of primary forest of a large reserve. All adult individuals (N = 112) were sampled in a 9.3 ha plot, and genotyped for microsatellite loci. Our results indicated high diversity with a mean of 8.6 alleles per locus, and expected heterozygosity equal to 0.74. The co-ancestry coefficients were significant for distances among trees up to 80 m. The Sp value was equal to 0.017 and indirect estimates of gene dispersal distances ranged from 89 to 144 m. No strong evidence of bottleneck or effects of human-disturbance was found. This study highlights that long-term efforts to protect a large area of Atlantic Forest have been effective towards maintaining the genetic diversity of D. nigra. The results of this study are important towards providing a guide for seed collection for ex-situ conservation and reforestation programmes of this threatened species.  相似文献   

17.
Aim The Pleistocene glaciations were the most significant historical event during the evolutionary life span of most extant species. However, little is known about the consequences of these climate changes for the distribution and demography of marine animals of the north‐eastern Atlantic. The present study focuses on the phylogeographic and demographic patterns of the sand goby, Pomatoschistus minutus (Teleostei: Gobiidae), a small marine demersal fish. Location North‐eastern Atlantic, Mediterranean, Irish, North and Baltic seas. Methods Analysis was carried out by sequencing the mtDNA cytochrome b gene of sand gobies from 12 localities throughout the species’ range, and using this information in combination with published data of allozyme markers and mtDNA control region sequences. Several phylogenetic methods and a network analysis were used to explore the phylogeographic pattern. The historical demography of P. minutus was studied through a mismatch analysis and a Bayesian skyline plot. Results Reciprocal monophyly was found between a Mediterranean Sea (MS) clade and an Atlantic Ocean (AO) clade, both with a Middle Pleistocene origin. The AO Clade contains two evolutionary significant units (ESUs): the Iberian Peninsula (IB) Group and the North Atlantic (NA) Group. These two groups diverged during Middle Pleistocene glacial cycles. For the NA Group there is evidence for geographic sorting of the ancestral haplotypes with recent radiations in the Baltic Sea, Irish Sea, North Sea and Bay of Biscay. The demographic histories of the Mediterranean Clade and the two Atlantic ESUs were influenced mainly by expansions dated as occurring during the Middle Pleistocene glaciations and post‐Eem, respectively. Main conclusions The pre‐LGM (Last Glacial Maximum) subdivision signals were not erased for P. minutus during the LGM. Middle Pleistocene glaciations yielded isolated and differently evolving sets of populations. In contrast to the case for most other taxa, only the northern Atlantic group contributed to the post‐glacial recolonization. The historical demography of Mediterranean sand gobies was influenced mainly by Middle Pleistocene glaciations, in contrast to that of the Atlantic populations, which was shaped by Late Pleistocene expansions.  相似文献   

18.
Most conservation decisions take place at national or finer spatial scales. Providing useful information at such decision-making scales is essential for guiding the practice of conservation. Brazil is one of the world’s megadiverse countries, and consequently decisions about conservation in the country have a disproportionate impact on the survival of global biodiversity. For three groups of terrestrial vertebrates (birds, mammals, and amphibians), we examined geographic patterns of diversity and protection in Brazil, including that of endemic, small-ranged, and threatened species. To understand potential limitations of the data, we also explored how spatial bias in collection localities may influence the perceived patterns of diversity. The highest overall species richness is in the Amazon and Atlantic Forests, while the Atlantic Forest dominates in terms of country endemics and small-ranged species. Globally threatened species do not present a consistent pattern. Patterns for birds were similar to overall species richness, with higher concentrations of threatened species in the Atlantic Forest, while mammals show a more generalized pattern across the country and a high concentration in the Amazon. Few amphibians are listed as threatened, mostly in the Atlantic Forest. Data deficient mammals occur across the country, concentrating in the Amazon and southeast Atlantic Forest, and there are no data deficient birds in Brazil. In contrast, nearly a third of amphibians are data deficient, widespread across the country, but with a high concentration in the far southeast. Spatial biases in species locality data, however, possibly influence the perceived patterns of biodiversity. Regions with low sampling density need more biological studies, as do the many data deficient species. All biomes except the Amazon have less than 3% of their area under full protection. Reassuringly though, rates of protection do correlate with higher biodiversity, including higher levels of threatened and small-ranged species. Our results indicate a need for expanded formal protection in Brazil, especially in the Atlantic forest, and with an emphasis on fully protected areas.  相似文献   

19.

Specialist and generalist life histories are expected to result in contrasting levels of genetic diversity at the population level, and symbioses are expected to lead to patterns that reflect a shared biogeographic history and co-diversification. We test these assumptions using mtDNA sequencing and a comparative phylogeographic approach for six co-occurring crustacean species that are symbiotic with sea anemones on western Atlantic coral reefs, yet vary in their host specificities: four are host specialists and two are host generalists. We first conducted species discovery analyses to delimit cryptic lineages, followed by classic population genetic diversity analyses for each delimited taxon, and then reconstructed the demographic history for each taxon using traditional summary statistics, Bayesian skyline plots, and approximate Bayesian computation to test for signatures of recent and concerted population expansion. The genetic diversity values recovered here contravene the expectations of the specialist–generalist variation hypothesis and classic population genetics theory; all specialist lineages had greater genetic diversity than generalists. Demography suggests recent population expansions in all taxa, although Bayesian skyline plots and approximate Bayesian computation suggest the timing and magnitude of these events were idiosyncratic. These results do not meet the a priori expectation of concordance among symbiotic taxa and suggest that intrinsic aspects of species biology may contribute more to phylogeographic history than extrinsic forces that shape whole communities. The recovery of two cryptic specialist lineages adds an additional layer of biodiversity to this symbiosis and contributes to an emerging pattern of cryptic speciation in the specialist taxa. Our results underscore the differences in the evolutionary processes acting on marine systems from the terrestrial processes that often drive theory. Finally, we continue to highlight the Florida Reef Tract as an important biodiversity hotspot.

  相似文献   

20.
Examining historical and contemporary processes underlying current patterns of genetic variation is key to reconstruct the evolutionary history of species and implement conservation measures promoting their long-term persistence. Combining phylogeographic and landscape genetic approaches can provide valuable insights, especially in regions harboring high levels of biodiversity that are currently threatened by climate and land cover changes, like southern Iberia. We used genetic (mtDNA and microsatellites) and spatial data (climate and land cover) to infer the evolutionary history and contemporary genetic connectivity in a short-range endemic salamander subspecies, Salamandra salamandra longirostris, using a combination of ecological niche modelling, phylogeographic, and landscape genetic analyses. Ecological-based analyses support a role of the Guadalquivir River Basin as a major vicariant agent in this taxon. The lower genetic diversity and greater differentiation of peripheral populations, together with analyses of climatically stable areas throughout time, suggest the persistence of a population in the central part of the current range since the Last Inter Glacial [LIG; ~?120,000–140,000 years BP], and a micro refugium in the eastern end of the range. Habitat heterogeneity plays a major role in shaping patterns of genetic differentiation in S. s. longirostris, with forests representing key areas for its long-term persistence under scenarios of environmental change. Our study stresses the importance of maintaining population genetic connectivity in low-dispersal organisms under rapidly changing environments, and will inform management plans for the long-term survival of this evolutionarily distinct Mediterranean endemic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号